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Chapter

Cheminformatics Applied 
to Analytical Pyrolysis of 
Lignocellulosic Materials
Jorge Reyes-Rivera

Abstract

Pyrolysis-Gas Chromatography/Mass Spectrometry has been used to 
 characterize a wide variety of polymers. The main objective is to infer the attri-
butes of materials in relation to their chemical composition. Applications of this 
technique include the development of new improved materials in the industry. 
Furthermore, due to the growing interest in biorefinery, it has been used to study 
plant biomass (lignocellulose) as a renewable energy source. This chapter describes 
a procedure for characterization and classification of polymeric materials using 
analytical pyrolysis and cheminformatics. Application of omics tools for spectral 
deconvolution/alignment and compound identification/annotation on the Py-GC/
MS chromatograms is also described. Statistical noise is generated by production of 
numerous small uninformative compounds during pyrolysis. Such noise is reduced 
by cheminformatics here detailed and this facilitate the interpretation of results. 
Furthermore, some inferences made by comparison of the identified compounds 
to those annotated with a biological role in specialized databases are exemplified. 
This cheminformatic procedure has allowed to characterize in detail, and classify 
congruently, different lignocellulosic samples, even using different Py-GC/MS 
equipment. This method can also be applied to characterize other polymers, as well 
as to make inferences about their structure, function, resistance and health risk 
based on their chemical composition.

Keywords: Biomass pyrolysis, polymeric materials characterization, 
cheminformatics, multivariate comparative analysis, Py-GC/MS

1. Introduction

The largest repository of lignocellulosic biomass is generated by the cell walls of 
plants [1]. Its main chemical components are cellulose, hemicelluloses and lignin. 
The proportions are variable but close to 4:3:3, respectively, and the element content 
is 50% C, 6% H, 44% O y ≤ 0.4% N, for resources such as wood [1]. Because 
biomass is a renewable resource, its study for the production of energy and value-
added aromatic compounds has gained importance in recent decades [2, 3]. It has 
been considered that lignocellulosic biomass as a renewable energy source would 
satisfy around 25% of energy requirements [4]. Thus, CO2 sequestered by plants 
during photosynthesis would balance the CO2 generated by biofuels and their use 
would not contribute to global warming [5, 6]. On the other hand, after cellulose, 
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lignin is the most abundant polymer in nature and the main natural source of 
aromatic compounds [1, 7]. For this reason, lignin is important in the chemical 
industry and it has been projected as a replacement for aromatic polymers derived 
from fossil fuels [8].

Lignocellulosic biomass, like other non-volatile complex materials, cannot be 
directly analyzed in its original state by gas chromatography. Therefore, one of 
the most common methods for its analysis is the Pyrolysis-Gas Chromatography/
Mass Spectrometry (Py-GC/MS). This method consists of the rapid heating of the 
materials under analysis (close 300°C), to break the covalent bonds and produce 
individual fragments. The compounds derived from pyrolysis pass through a 
capillary column of fused silica in a Gas Chromatograph using an inert gas as car-
rier (e.g., He). Then the fragments are separated based on their retention times. 
The selective fragmentation pattern caused by Electron Impact and the m/z ratio 
for each pyrolysis product are registered by a detector on a Mass Spectrometer. 
Finally, each compound is identified by comparing its mass spectrum to those in 
the reference electronic libraries (NIST, MONA, etc.) or to the mass spectra pro-
duced by analytical standards [9–12]. The sequential combination of these three 
processes in Py-GC/MS makes it a versatile and powerful tool for the analysis 
of lignocellulosic materials and other complex mixtures, such as polymers and 
copolymers [3, 13].

Analytical pyrolysis is currently implemented as a standard method for deter-
mining the ratio of H/G/S subunits in plant biomass, agricultural and industrial 
waste, soil samples and organic matter [6]. This technique has also been useful to 
elucidate the series of reactions and products derived from the pyrolysis of carbo-
hydrates [14, 15] and lignins [16, 17]. It has been applied for monitoring changes 
during the delignification and bleaching process as well as for the characterization 
of different lignocellulosic materials [12]. In addition, it has been used to determine 
the S/G ratio in lignin of drought-resistant succulent species with results highly 
comparable to other characterization techniques [18]. On the other hand, its high 
sensitivity has enabled the detection of hundreds of chemical compounds, includ-
ing less abundant monomers in lignin, such as acetylated subunits (i.e., sinapyl and 
coniferyl acetates [19]) and 5-hydroxyguaiacyl units [20]. Recently, Py-GC/MS 
applied to the analysis of cacti spines, with the use of cheminformatics, allowed a 
detailed characterization of lignocellulosic matrix, as well as the classification of the 
samples from a chemotaxonomic approach [21].

1.1 Advantages of Py-GC/MS

Different advantages confer great versatility of application to Py-GC/MS. Firstly, 
its efficiency, precision and relatively low operating costs [6] make it a suitable rou-
tine technique. In addition, it is a fast technique that requires a very small sample 
size [22, 23]. Volatilization of samples by pyrolysis minimizes the need for pre-iso-
lation, even when analyzing macromolecules in complex mixtures [24]. Therefore, 
it can be used to analyze a wide variety of materials: e.g., fibers and textiles, wood, 
bark and paper, artistic materials, synthetic polymers and heteropolymers [12, 13]. 
Likewise, comparable and reproducible results can be obtained when the conditions 
of the analysis are kept constant: i.e., carrier gas, heating rate, maximum tempera-
ture, homogeneous particle size and removal of non-structural compounds [18, 21]. 
Therefore, samples with the same composition will produce the same derivatives of 
pyrolysis [13, 21]. On the other hand, the advantages of the coupled GC/MS system 
are associated with a high speed, specificity and sensitivity, in both the separation 
of the pyrolysis products and in their identification [9, 12]. In addition, Py-GC/
MS allows the identification of compounds without the necessity of standards. 
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It enables the comparison to commercial or open access libraries, including some 
already curated for different classes of chemical compounds [21, 25–28]. Finally, the 
raw data generated can be exported for quantitative or qualitative analysis [29, 30].

1.2 Issues related to Py-GC/MS

Although the many advantages and applications of Py-GC/MS are evident, dif-
ferent authors consider some problematic aspects. The main ones are: 1) pyrolysis 
produces a large amount of compounds, therefore, is necessary to deal with the 
vast amount of information registered by the Mass Spectrometer. 2) Only one part 
of the compounds produced can be unambiguously identified. 3) Low availability 
of mass spectra in databases and reference libraries. 4) Altogether, this makes the 
interpretation of the results from analytical pyrolysis difficult. However, most of 
these problems can be solved if cheminformatics is applied to the data resulting 
from Py-GC/MS.

The following sections will describe the use of omics tools for the deconvolution 
of mass spectra, as well as the alignment and annotation of the compounds identi-
fied in the chromatograms (Figure 1). This process is useful to compare different 
samples obtained by Py-GC/MS, under the same operating conditions, even using 
different equipment. In addition, different multivariate methods will be described 
to minimize the statistical noise generated by numerous uninformative com-
pounds (i.e., those derived from carbohydrates). Together, the use of omics tools 
and multivariate methods facilitate the interpretation of the results of analytical 
pyrolysis. The processes detailed here may also be applicable to Py-GC/MS analysis 
of materials other than lignocellulosics (i.e., polymers, copolymers, soil samples 
and organic matter). In addition, they can be applied to raw data generated by other 
chromatography systems coupled to mass spectrometry (i.e., GC/MS/MS, LC/MS, 
and LC/MS/MS), including different equipment and output formats.

Figure 1. 
Untargeted cheminformatics workflow for analysis of lignocellulosic materials by Py-GC/MS.
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1.3  Common problems in Py-GC/MS and contribution of cheminformatics for 
their solution

Some apparent methodological problems attributed to pyrolysis are associated 
with the conditions necessary for the analysis of specific materials. Lourenço et al. 
[12], point out that care must be taken with the pyrolysis temperature when analyzing 
materials rich in suberin, such as barks. The main problem is that suberin decomposes 
at temperatures in the range of 550–600°C [31]. Therefore, this is an aspect to take 
into account if it is required to know the composition of this polymer within lignocel-
lulosic samples [12]. Another problem referred in various works is that Py-GC/MS 
cannot guarantee an entirely quantitative determination. However, some authors 
have successfully carried out quantitative analyses in the optimization of aromatic 
hydrocarbon production from biomass [29]. Also for the quantification of only small 
amounts of aromatic hydrocarbons, applying the external calibration method [3, 30].

The amount of information that is generated as a result of the entire process can 
be challenging aspect. One analysis of 45 minutes by Py-GC/MS on lignocellulosic 
samples can generate up to 2,729 mass spectra [21]. However, after cheminformat-
ics and manual curation of the datasets, the authors were able to unambiguously 
recognize 451 compounds, including some putative isomers. Another common 
problem is the displacement of the peaks in the chromatograms for samples with 
different chemical composition. For example, the displacement of the peak corre-
sponding to levoglucosan in Py-GC/MS chromatograms for syringil-rich wood [18]. 
The displacement is due to the absence of acetovanillone in the samples. Therefore, 
the peak of levoglucosan appears at a Retention Time (RT) of 22.72 min, while 
in species that produce acetovanillone it is observed at 23.55 min (Figure 2). The 
above effect is problematic when it is required to directly process a batch of several 
samples with differential compositions. There are two reasons: 1) the process would 
be very time consuming if several species are analyzed and all the peaks identified 
by Py-GC/MS are compared one by one (about 40 compounds per sample, using 

Figure 2. 
Displacement of the peaks. Py-GC/MS chromatograms from extractives-free wood in cacti: A) Pilosocereus 
chrysacanthus and B) Ferocactus hamatacanthus. Displacement of levoglucosan (black arrows) is due to 
the absence of acetovanillone (gray arrows) in samples with 94% of syringil units [18]. The origin of the 
compounds is marked with letters: Ch, carbohydrates; G, guaiacyl subunits; S, syringil subunits, Fa, ferulates.
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the native GC/MS software). This implies that the analysis has to be limited only 
to differences in the relative abundance, or the presence/absence, of only certain 
compounds. 2) If the raw datasets from the chromatograms are compared directly, 
using any multivariate method, the peak displacement would cause methodologi-
cal bias because equivalent compounds are not being compared. Cheminformatics 
analysis solves this problem by automating the alignment of mass spectra and the 
identification of compounds for a batch of samples.

On the other hand, the high degree of degradation caused by the high tem-
peratures used in pyrolysis represents, by far, the main problem of this technique. 
Therefore, this technique is considered to be of little use to characterize molecules 
larger than monomers or dimers in biopolymers such as lignin [6]. In addition, 
it is considered that the large number of derivatives makes the description of the 
chemical composition of sample difficult. Therefore, the detailed interpretation of 
the results is difficult and probably not necessary [3]. For example, when analyzing 
carbohydrate samples, low molecular weight derivatives can originate from hexoses 
or pentoses [12, 32]. The reason is that cellulose and hemicelluloses involve similar 
thermal degradation pathways, therefore a large part of the derivatives produced are 
the same [33, 34]. The reason is that cellulose pyrolysis causes the heterolytic cleav-
age of the glycosidic C⸺O bonds. In addition, it involves complex reactions and 
different pathways to give rise to anhydro sugars and numerous compounds with 
low molecular weight: i.e., acetic acid, 1-hydroxybutan-2-one, hydroxyacetalde-
hyde, 1-hydroxypropan-2-one and 2-furaldehyde [15, 35, 36]. A large part of these 
small compounds can also be originated from the decomposition of hemicelluloses. 
For example, 2-furaldehyde and acetic acid can be produced from the degradation 
of xylan [12, 37, 38]. On the other hand, there are contrary cases, but they also 

Figure 3. 
Complete profile of the compounds identified for eight samples of lignocellulosic materials. A) Cluster 
corresponding to Guaiacyl lignin derivatives. B) Abundance patterns for carbohydrates derivatives. Similar 
(sMS) or quasi identical (qiMS) mass spectra.



Recent Perspectives in Pyrolysis Research

6

contribute to the ambiguity in the identification of the compounds and their origin. 
Particularly when different ions are produced by the same class of compounds. 
The case of pyrans and furans is an example of compounds with ambiguous origin; 
both, with different molecular ions, can derive from the degradation of cellulose 
or hemicelluloses [12]. In this sense, the use of cheminformatics makes it possible 
to identify the abundance patterns of the compounds in a batch of samples. Based 
on this, it can be inferred if there are coincidences in the behavior of the pyrolysis 
products (Figure 3). In this way, it is possible to infer whether different compounds 
have the same origin, or rule out differences due to the operating conditions of the 
method or the characteristics of the samples [21].

For example, 2,5-dimetylfuran and 4-methyl-2H-pyran correspond to differ-
ent molecular ions, but have the same average mass (96.13 Da) with similar RT, 
4.64 min and 4.74 min, respectively (see Supplementary Materials of [21]). Based 
on the observed abundance patterns, it can be deduced that they are related to 

Figure 4. 
Representation of the importance of using standardized data for the interpretation of the results. Non-
standardized data: A) just ordered alphabetically; it is not possible to identify abundance patterns. B) Data 
arranged based on the HCA; trace compounds are overshadowed by the most abundant ones. C) Standardized 
data; compounds with the same origin share patterns of abundance and high similarity.
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two different groups of compounds. Another example includes guaiacols, which 
are derived from guaiacyl (G) units. Under the same conditions of pyrolysis and 
composition of the samples, their abundance patterns should be the same. In the 
clustering analysis (CA) of Figure 3A, the guaiacols appear together forming a 
single group. For carbohydrate derivatives, abundance patterns with high similarity 
can also be identified for related compounds or putative isomers. Figure 3B shows 
the abundance patterns for ethyleneglycol diacetate and compounds with quasi 
identical (qiMS) or similar (sMS) mass spectrum. Another similar example is the 
independent origin of catechols and guaiacols in some lignocellulosic samples [21]. 
Catechols can be produced from guaiacols by secondary reactions at high tempera-
tures [12, 21, 36]. However, as seen in Figure 4, the catechol abundance patterns 
across the samples, under the same experimental conditions, are clearly different 
from those samples with a predominance of G lignin. Therefore, catechols can be 
considered independently derived from those derivatives from G lignin.

2. Cheminformatics applied to Py-GC/MS

Increased computational capacity, development of powerful deconvolution 
algorithms and technological advances in analysis equipment have allowed the 
design of specialized software for chemical analysis. Areas such as omics sciences 
have particularly benefited from the rise of cheminformatics [26]. However, the 
application of untargeted analysis is becoming broader and is no longer restricted to 
the discovery and characterization of compounds in metabolomics. In this sense, it 
is possible to use the spectral deconvolution software for the processing of the data 
resulting from Py-GC/MS [21]. Open source software follows the same principle as 
native GC/MS software for spectra deconvolution and compound identification. 
However, it allows the use of different input formats for the raw datasets, regardless 
of the type, resolution and brand of the GC/MS equipment [26, 28]. In addition, 
different parameters can be adjusted to improve the informative quality of the 
results; e.g., the parameters used for deconvolution, the use of quality controls 
and normalization of the relative abundances for a batch of samples, alignment 
parameters and identification of compounds, use of different reference libraries for 
mass spectra, retention indices and times of retention. Because Py-GC/MS produces 
a large number of derived compounds, a lot of information is generated (i.e., mass 
spectra recorded by the detector in the MS). Omics tools allow deconvolution 
of all acquired mass spectra for a batch of samples in independent experiments. 
Basically, the peaks are detected by deconvolution of the mass spectra, smoothing 
the data points by the least squares method or by linear weighted smoothing average 
[28, 39]. Afterwards, both the first and second derivatives are considered together 
with the amplitude of the ions to identify the noise threshold. Based on the noise 
levels, the initial retention times are calculated for each peak. For the final detec-
tion of the peaks, the unsmoothed raw chromatogram is used as a control [28]. The 
deconvoluted spectra for the batch of samples are aligned based on the similarity 
of their mass spectra and their RTs. Finally, they are compared with those spectra 
in the reference MS libraries and the compounds can be identified based on the 
maximum fit of their RT, RI and mass spectra [26]. Additionally, the deconvoluted 
datasets for a batch of samples can be normalized and exported in table format. 
The information contained in the output file is important for comparative analysis: 
i.e., EI fragmentation pattern, quant mass (m/z of the main ion), averaged RT, 
InChIKey, total similarity with the reference spectrum and relative abundance of 
each compound normalized for the entire batch of samples [28]. This information 
can be used for comparative analysis by multivariate methods. Alternatively, it can 
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be compared with databases such as the Chemical Entities of Biological Interest 
(ChEBI) ontology [25], to infer biological characteristics of the original samples 
based on their derivatives from pyrolysis [21].

The comparative analysis of lignocellulosic samples is highly favored by the 
normalization process on the data obtained for a batch of samples [21]. The normal-
ization of the deviations of the MS signal intensities is carried out including a series 
of quality control (QC) samples. The QC samples are one or more samples obtained 
by combining all samples in the batch. For lignocellulosic materials it is suitable 
to use alternately one QC sample for every five samples analyzed [21]. The data 
obtained from the measurement of the QC samples are smoothed by the Lowess of 
the single-degree least-squares. The coefficients generated on the QC samples are 
interpolated using the cubic spline and finally all the datasets are aligned based on 
the spline interpolation result [28].

Additionally, the unknown compounds can be annotated using their elemental 
formulas and in silico mass spectra fragmentation based on public spectral data-
bases, such as MassBank, LipidBlast and GNPS [27, 28]. Currently most open access 
MS reference libraries are focused on the compounds of interest; i.e., metabolomics 
and lipidomics. Several of them include precursors or derivatives of lignocellulosic 
biomass, such as anhydro sugars, furans, pyrans and phenols and their derivatives. 
Actually, as the areas of application of omics tools diversify (for spectral deconvolu-
tion and compound annotation) it can be expected that the diversity and number of 
compounds incorporated in open access databases will increase.

2.1 Multivariate analysis on exported Py-GC/MS data

Interpretation of the results obtained by Py-GC/MS is a complex process. This is 
due to the large number of compounds that are generated by pyrolysis and the little 
information provided by compounds with ambiguous origin, often very numerous 
(as described above). Multivariate analysis applied to Py-GC/MS data from various 
materials helps to make data management easier, reduce the information obtained 
and facilitate the interpretation of the results. It has been used to characterize 
lignocellulosic samples and other biological samples [40–43].

A common application of Py-GC/MS material analysis is the classification of 
samples based on the similarities of the compounds they produce. For example, to 
evaluate different experimental systems [44, 45] or for the optimization of two dif-
ferent methods [46]. It was recently used to characterize and classify lignocellulosic 
samples applying cheminformatics from a chemotaxonomic approach [21].

Classification of the observations into groups requires the calculation of the distance 
between each pair of observations. As a result, a distance matrix is obtained, also called 
a dissimilarity matrix. The distance most commonly used by computational algorithms 
is the Euclidean distance [47]; i.e., the root sum-of-squares of differences for a set of 
vectors [48]. As a result, observations with high values of features will be grouped 
together, likewise, observations with low features values will be grouped together.

Apart from the normalization performed by the spectral deconvolution software 
on the output datasets, it is highly recommended to standardize the variables before 
measuring the dissimilarities between observations [49]. This step is considered 
necessary as it can have a great impact on the results of the analysis on biological 
data [49, 50]. Figure 4 represents the differences between non-standardized data 
and standardized data. In standardization, the values of each variable are weighed 
by a scale factor in order to give more weight to the small but potentially significant 
changes in signal intensity [51]. Thus, the standard deviation and the mean usually 
take values of one and zero, respectively. On the other hand, standardization will 
help to obtain equivalent similarities regardless of the distance method used (e.g., 
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Euclidian, Manhattan, Correlation or Eisen). For example, when using standard-
ized data, there is a functional relationship between Pearson’s correlation coefficient 
and the standardized Euclidean distance, so that both results are comparable [48].

2.2 Groupings by k-means partition

The k-means algorithm is commonly used in the partition of N-dimensional 
population into k series based on a sample [52, 53]. Where k-series corresponds to 
the number of clusters to be calculated, arbitrarily specified by the researcher. The 
algorithm consists of classifying objects forming k clusters, so that for each group the 
intra-class similarity is minimized, but in turn, each group is as different as possible 
from the rest [54, 55]. Since the members of each cluster are the most similar to each 
other, the centre (centroid) of each group is represented by the respective mean. 
Briefly, the standard procedure for the computational algorithm is as follows: 1) the 
researcher specifies an arbitrary number of k clusters to be calculate. Alternatively, 
centroids can also be specified; 2) if the centroids are not specified, they are obtained 
randomly for each group; 3) by calculating the Euclidean distance, each object is 
assigned to its closest centroid; 4) the centroids are updated considering the recently 
incorporated objects; 5) each observation is reviewed with respect to the other 
clusters to confirm their membership to the respective group. The assignment and 
update steps are repeated until convergence or the total number of iterations are 
reached [53]. This method implies advantages when the author has prior knowledge 
of the analyzed data. For example, in taxonomy, the number of k clusters can refer to 
the number of data classes to classify [56, 57] or to the taxa that are known or those 
that want to be tested [21]. In the validation or optimization analysis of methods, it 
could correspond to the number of systems or criteria that are being considered [58]. 
An optimal number of k clusters can be more efficient when combined with other 
multivariate analysis techniques; e.g., in analysis of hierarchical clustering on prin-
cipal components with partition of k-means (HCPC), which will be explained in the 
subsequent sections. If there is not enough information to select a specific number 
of k clusters, the optimal number of k partitions can be inferred using the “elbow” 
method [49, 59, 60]. The method consists of applying the k-means algorithm to 
the data, adopting different numbers of k clusters. Then graphically represent the 
internal variance of the groups, using the number of groups and their respective 
total within-cluster sum-of-squares (WCSS). The optimal number of k clusters will 
be indicated by the point where the slope of the WCSS tends to flatten, that is, where 
the variance is minimized [59, 61, 62]. Due to the randomness with which the initial 
centroids are selected, it is possible to observe variation in the clusters obtained when 
replicating the analysis. A suggested solution is to calculate the k-means algorithm 
several times and select the number of k clusters that generates the lowest WCSS 
[49]. Furthermore, it is suggested to compare different indices and select an optimal 
number of k clusters based on the majority rule (Figure 5).

2.3 Principal component analysis

Among multivariate analyses, Principal Component Analysis (PCA) is the 
most common method for extracting information from large datasets generated by 
analytical pyrolysis [3, 12]. The PCA has different objectives, it is mainly used to 
reduce the dimensions of the datasets by extracting the most important informa-
tion. In addition, it is useful to simplify the description of the data series and to 
analyze the structure of the observations and variables [63–65]. The PCA generates 
principal components (PC) that result from linear combinations of the original 
variables (e.g., the identified compounds). The number of these new variables can 
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be arbitrarily defined. Commonly, the first component explains the largest possible 
variance of the dataset and the second, being orthogonal to the first, will be calcu-
lated to represent the largest possible variance. The factor scores correspond to the 
values of these new variables for the original observations (e.g., relative abundances 
of the compounds). The eigenvalues associated with each component correspond 
to the sum of the squared factor scores for each component. Thus, the contribution 
of each observation to a component (i.e., importance of the observation) is repre-
sented by the ratio of the square factor score of the observation by the eigenvalue 
associated with that component. Contributions for a given component can take 
values from zero to one, so the sum of all contributions for that component is equal 
to one [65]. Alternatively, the correlation of the two new variables generated by the 
PCA can be represented by a biplot [66]. Thus, it is possible to know the compounds 
that contribute the most to the sets obtained in the PCA (Figure 6). As stated, the 
first two components extracted by the PCA represent the largest variances for the 
data series. However, to determine the optimal number of components to consider, 
it is suggested to perform the “scree” test, plotting the eigenvalues as a decreasing 
function of their size [64]. In the graph, an “elbow” will be observed after the point 
where the slope of the curve decreases (flattens), therefore the optimal number of 
components must include all the components before that point (Figure 7A).

2.4 Classification of samples using only the most informative compounds

Multivariate analyses are very useful when working with a large number of 
data. If lignocellulosic samples are analyzed by Py-GC/MS and the deconvolu-
tion method is applied, hundreds of derived compounds can be expected for each 
sample [21]. The PCA and clustering analysis allows separately to reduce the dimen-
sionality of the datasets, identify relationships between the variables, and quan-
tify the significance of the variables that can explain the resulting clusters [67]. 

Figure 5. 
Comparison of different methods for calculating the optimal number of k clusters. A) Optimal number of k 
clusters suggested by the majority rule by analysing all indexes. B) Elbow method. C) Silhouette method. D) 
Gap Statistic method.
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The dimensionality of the data directly influences the results; the higher the 
dimensionality the classifications obtained will be more reliable [68, 69]. For the 
analysis of chemical compounds in materials the optimal relation of data points 
to variables is 6:1 or higher, with an absolute minimum of 3:1 [69–71]. However, 
to achieve these high proportions in the optimal ratio it is necessary to increase 
the number of experiments. An alternative to achieve the optimal relationship 

Figure 6. 
PCA results: the correlation between the variables generated by the PCA for lignin derivatives is shown. A) 
Compounds clustered according to their origin: C, catechols; H, phenols; G, guaiacols. B) Biplot that represents 
the correlation between variables. C) Confidence intervals for the correlation between variables; ellipses 
represent a significance level of 99%.
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when it is not possible to increase the number of experiments is by reducing the 
number of variables [68]. In that sense, the HCPC analysis is a very powerful tool 
(Figure 7A–C). Compared with PCA and CA, the HCPC analysis increases the 
objectivity and robustness of the results. That is, the classifications are restricted 
only to the dimensions that contain the most significant information [67, 72]. In this 
way, the statistical noise caused by the many uninformative derivatives of pyrolysis 
is minimized [21]. In addition, it improves the visualization of the data and pro-
vides information on the variables (i.e., compounds) that contribute predominantly 
to the resulting clusters [21, 67]. The HCPC is an exploratory statistical analysis 
whose computational algorithm can be summarized in three steps: first, the reduc-
tion of dimensions can be by any factorial method. PCA for quantitative variables, 
multiple correspondence analysis for categorical data, or multiple factor analysis to 
jointly integrate different data blocks [72, 73]. This step allows the determination 
of the relationships between the concentrations of most abundant compounds and 
the trace compounds. In addition, it simplifies the dataset by reducing the number 
of variables to only two principal components that explain most of the variance 
[74] (Figure 7C). Second, the hierarchical cluster analysis (HCA), by using the 
Euclidean distance, form clusters of samples according to the similarities in their 
chemical composition [73, 74] (Figure 7D). Each object is treated as a single cluster 

Figure 7. 
HCPC analysis for minimizing noise resulting in Py-CG/MS analysis. A) Scree plot, to determine the number 
of components that explain most of the variance. Number of components used = 5. B) Optimal number of k 
clusters. Optimal k clusters suggested by the majority rule = 4. C) Factorization of the data series using the 
PCA. D) Initial hierarchical clustering on the reduced matrix generated by the PCA. E) Clustering obtained 
using the number of k clusters suggested by the majority rule (the same suggested by the “elbow” method). F) 
Clusters obtained using a non-optimal number of k clusters.
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and pairs of groups are successively merged until all clusters merge into one large 
group [48]. The algorithm uses Ward’s method to minimize the total intragroup 
variance [47, 72, 75]. Finally, the partition with k-means allows to stabilize the 
groupings obtained by the HCA [67, 73] (Figure 7E). In this way, the HCPC applied 
to the data resulting from Py-GC/MS of lignocellulosic materials allows the samples 
to be classified based on the abundance patterns of the most informative com-
pounds. That is, statistical noise generated by uninformative, ambiguous, or noisy 
compounds is suppressed [21].

2.5  Simplified visualization of abundance and similarity patterns from  
Py-GC/MS data

The heat map method is a simple but highly efficient tool for the graphical 
representation of large datasets (Figure 3). This method is very useful in studies 
where it is necessary to interpret a large amount of quantitative data; e.g., metabo-
lomics, proteomics, lipidomics, and genomics [76–78]. The quantitative data (i.e., 
relative abundances of the ions detected by the MS) are represented in different 
color scales in the format of a two-dimensional matrix [79, 80]. The basic structure 
of the matrix is given by columns and rows; each column represents a sample and 
each row represents a compound [76]. The quantitative values correspond to the 
relative abundance for each compound in each sample. For a certain range of values 
a particular color is assigned. The highest relative abundances are represented by 
one end of the color scale and the lowest abundances are represented by the oppo-
site end of that color scale [77]. Additionally, the columns and rows of the matrix 
are rearranged to recognize significant patterns in the heat map. To do this, rows 
and columns with similar profiles are arranged so that they are closer to each other, 
making these profiles easily visible to the eye [79, 80]. The permutation of rows 
and columns is made based on the result of the CA on the correlation matrix of the 
variables for each set of variables [77]. Alternatively, the dendrograms resulting 
from the CA can be represented at the edges of the matrix, both for the samples and 
for the compounds [77, 79, 81, 82]. This form of representation of the relative abun-
dances is so efficient that after rearranging the rows and columns of the matrices 
the abundance patterns of the compounds become obvious [76, 83].

The standardization (e.g., Z-transformation) of the variables from each series 
of variables highly influences the correct representation of the similarity patterns 
obtained [77, 80]. If raw, non-standardized data are used, the low relative abun-
dances will be obscured by the higher relative abundances (Figure 4A–C). When 
using transformed data it is possible to infer that those compounds with similar 
abundance patterns imply equal origins [21, 79].

An interactive variant of the heat map method has been referred by several 
authors in the field of metabolomics [76, 84, 85]. Of course, this can also be 
applied to Py-GC/MS data. This online variant allows the visualization of impor-
tant information from the mass spectra on the matrix. Metadata such as mass 
spectrum, retention time, extracted ion chromatograms (EICs), box and whisker 
plots as well as matches for each compound can be displayed in real time for each 
 observation [76, 86].

On the other hand, alternative methods for interpreting the data resulting 
from Py-GC/MS have emerged recently. The Van Krevelen (VK) diagrams have 
been successfully applied for interpretation of high resolution GC/MS data [3, 87]. 
These diagrams allows to visualize the chemical composition of complex chemical 
mixtures by plotting the H:C ratio against the O:C ratio for every compound in 
the mixture [6]. Thus, the VK diagrams provide information about the classes of 
compounds present and allow accurately evaluate the number of compounds in 
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a sample [88]. Furthermore, van Krevelen diagrams play an important role in the 
deconvolution of high resolution MS spectra for complex lignin samples [6].

3. Potential areas of cheminformatics applied to Py-GC/MS

Due to its versatility, Py-GC/MS has been successfully applied to different areas 
of knowledge. Among these areas, cheminformatics reviewed in this chapter also 
has important application opportunities. Environmental, chemical and materi-
als sciences, engineering, energy and biorefinery, biology, biotechnology, and 
conservation and restoration of cultural heritage are among the most cited in the 
literature. The fields of application are also varied; for example, in the develop-
ment and optimization of the properties of new materials and resources, such as 
synthetic polymers, resins and biofuels [3, 10, 11, 13]. On the other hand, several 
samples of environmental materials have been characterized by analytical pyrolysis; 
e.g., organic matter, soil and pollutants in different natural substrates [89–91]. In 
addition, Kush [13] list a series of applications for polymers, in which the follow-
ing can be highlighted: 1) identification of polymers through the use of reference 
libraries, 2) qualitative analysis of copolymers, 3) investigation of thermal stability 
and kinetics degradation of polymers and copolymers and 4) determination of 
monomers in polymers and volatile organic compounds.

4. Conclusions

Cheminformatics detailed in this chapter can be applied to the analysis of any 
type of polymeric materials by Py-GC/MS. The use of open access software to 
deconvolution of mass spectra streamlines the processing of the resulting data 
series for a large number of samples. The computational processing capacity of 
current equipment makes this technique suitable for any laboratory with a Py-GC/
MS equipment. In a few minutes a large number of samples can be processed: e.g., 
deconvolution, alignment and identification of compounds for 30 samples can take 
about 30 min. On the other hand, the interpretation of the results is greatly aided 
by the use of the chemometric techniques exemplified here. In addition, cheminfor-
matics makes it possible to compare the mass spectra of the studied compounds, not 
only with commercial databases, but with other open access databases. Some of the 
open access databases contain relevant biological information about the compounds 
(e.g., the ontology of CheBI, MassBank, LipidBlast and GNPS). This is important 
in studies of materials (e.g., in the case of elements with carcinogenic potential), or 
of biological interest (e.g., in samples with antibacterial, antibiotic, or medicinal 
properties). There are currently a significant number of open access MS libraries. 
Actually, with the diversification of the application field for deconvolution software 
it is expected that the number of mass spectra in open access libraries will increase. 
Finally, studies like this leave open the possibility of knowing most of the chemical 
compounds that take part in the decomposition and secondary reactions during 
pyrolysis of polymeric materials.
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