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Ruthenium(II) Aquo Complexes
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Abstract

Polypyridyl ruthenium(II) complexes have been widely researched as promising
functional molecules. We have found unique photoisomerization reactions of
polypyridyl ruthenium(II) aquo complexes. Recently we have attempted to provide
insight into the mechanism of the photoisomerization of the complexes and distin-
guish between the distal�/proximal-isomers in their physicochemical properties
and functions. Moreover, polypyridyl ruthenium(II) aquo complexes have been
intensively studied as active water oxidation catalysts (WOCs) which are indis-
pensable for artificial photosynthesis. The catalytic aspect and mechanism of water
oxidation by the distal-/proximal-isomers of polypyridyl ruthenium(II) aquo
complexes have been investigated to provide the guided thought to develop more
efficient molecular catalysts for water oxidation. The recent progress on the
photoisomerization and water oxidation of polypyridyl ruthenium(II) aquo
complexes in our group are reviewed to understand the properties and functions of
ruthenium complexes.

Keywords: Ruthenium aquo complexes, Photoisomerization, Water oxidation
catalysis, Artificial photosynthesis

1. Introduction

Polypyridyl ruthenium(II) complexes have been widely researched as promising
functional molecules due to appealing photochemical [1–3] and photophysical [4–6]
properties as well as redox properties [7, 8], which enable them to exhibit a number
of functions such as electrochromism [9, 10], proton-coupled electron transfer
[11–13] and photocatalysis [14, 15]. As a result, the polypyridyl ruthenium(II)
complexes have been applied to a large variety of devices including sensors [16],
photovoltaic cells [17], displays [18] and artificial photosynthesis [19, 20].

We presented irreversible and stoichiometric photoisomerization of distal-[Ru
(tpy)(pynp)OH2]

2+ (d-1) (tpy = 2,20;60,2″-terpyridine, pynp = 2-(2-pyridyl)-1,8-
naphthyridine) to proximal-[Ru(tpy)(pynp)OH2]

2+ (p-1) as shown in Figure 1
[21–23], which had not been characterized previously for polypyridyl ruthenium
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(II) aquo complexes although various photochemical reactions of the ruthenium(II)
complexes have been reported [24–33]. We have attempted to provide insight into
the mechanism of the photoisomerization of polypyridyl ruthenium(II) aquo com-
plexes and distinguish between the distal�/proximal-isomers in their physicochem-
ical properties and functions [21–23, 34–36]. We have also developed new synthetic
strategy to form dinuclear ruthenium(II) complexes utilizing the photoisome-
rization [37, 38]. Moreover, polypyridyl ruthenium(II) aquo complexes have been
intensively studied as active WOCs [21, 22, 34, 35, 37, 39, 40] which are indispens-
able for artificial photosynthesis. The catalytic aspect and mechanism of water
oxidation by the distal-/proximal-isomers of polypyridyl ruthenium(II) aquo
complexes have been investigated to provide the guided thought to develop more
efficient molecular catalysts for water oxidation. In this chapter, we review the
recent progress on the photoisomerization and water oxidation of polypyridyl
ruthenium(II) aquo complexes in our group.

2. Photoisomerization of polypyridyl ruthenium(II) aquo complexes

With respect to the photoisomerization of polypyridyl Ru(II) aquo complexes,
the photoisomerization of cis-[Ru(bpy)2(OH2)2]

2+ (bpy = 2,20-bipyridine) to its
trans form in aqueous media was first reported by Meyer [24]. The mechanism of
the photoisomerization reaction was later investigated by Planas et al. [41]. In this
case, the trans form was present as a photostationary state and slowly went back to
the original cis form. To the best of our knowledge, the cis-[Ru(bpy)2(OH2)2]

2+ had
been the only one polypyridyl Ru(II) aquo complex that exhibits photoisome-
rization behavior before we presented the photoisomerization of d-1 to p-1 [21].
Furthermore, we reported the reversible photoisomerization equilibrium between
distal- and proximal-[Ru(tpy)(pyqu)OH2]

2+ (d-2 and p-2) isomers with a ligand of
2-(2-pyridyl)quinoline (pyqu) instead of pynp, in contrast to the irreversible
photoisomerization of d-1 to p-1. The aspect and mechanism of the irreversible
photoisomerization of d-1 are first described, followed by those of the reversible
one of d�/p-2 in this section.

2.1 Irreversible photoisomerization of distal-[Ru(Xtpy)(pynp)OH2]
2+ to the

proximal-isomer

Photoisomerization behavior of d-1 was investigated by 1H-NMR and UV–Vis
spectroscopy. Upon irradiation of visible light to a D2O solution of d-1, the NMR

Figure 1.
Photoisomerization of distal-[Ru(Rtpy)(pynp)OH2]

2+ to proximal-isomers.
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peak at 9.6 ppm due to d-1 decreased with the irradiation time and disappeared
completely after 25 min under the experimental conditions (Figure 2A) [21]. The
new peak at 8.9 ppm assigned to p-1 increased with the concomitant decrease of d-1.
Figure 2B displays the concentration profile of d-1 and p-1, which indicates that
irreversible and stoichiometric photoisomerization from d-1 to p-1 proceeds in
water by visible light irradiation (Figure 1). By contrast, no isomerization of d-1 in
water was found to occur under thermal treatment. The photoisomerization rate
showed a first-order dependence on d-1 concentration, and the kinetic analysis
provided the observed rate constant ((kd-p)obs/s

�1) of photoisomerization (distal to
proximal) to be 4.1 x 10�3 s�1 under the conditions employed (λ > 420 nm,
180 mW cm�2). The (kd-p)obs values increased linearly with respect to the light
intensity below 255 mW cm�2, indicating that the photoexcited state participated in
photoisomerization under the employed conditions. Arrhenius plots of the
photoisomerization gave a straight line in a range of 10 � 35°C, providing
41.7 kJ mol�1 of activation energy (Ea) for the photoisomerization (Table 1). Inter-
estingly, the (kd-p)obs value decreased drastically at pD > 7 (pD = �log [D+]), while
it was unchanged over pD 1-7. The UV–Vis spectrophotometric pH titration of d-1
gave pKa of 9.7 attributed to the deprotonation of an aquo ligand to form the
hydroxo complex, distal-[Ru(tpy)(pynp)OH]+. The trend of (kd-p)obs change
depending on pH corresponds to the fraction of d-1 (aquo form) dissolved in the
solution versus pH, suggesting that the hydroxo form of d-1 is inert for the
photoisomerization [21, 22].

The internal quantum yield (Φ) for photoisomerization, which is defined as the
ratio of the number of the photoisomerized complexes to the number of incident
photons of a given energy, was estimated from the UV–vis spectral change in the
experiment under monochromatic light irradiation (520 nm, 26.4 mW cm�2). The
Φ values were calculated according to the following equation:

Φ ¼
hcNAkpinint
pλA 1‐Tð Þ

(1)

where h, c, NA, kpi, nint, p, λ, A and T are Plank’s constant, the speed of light,
Avogadro’s number, the rate constant for photoisomerization, initial amount of the
complex, photon flux, wavelength, the irradiated area and the transmittance,

Figure 2.
(A) Time course of 1H NMR spectral changes during the photoisomerization of d-1 in D2O with 180 mW cm�2

visible light irradiation (λ > 420 nm). (B) Kinetic profiles of d-1 (red circle) and of p-1 (blue square).
(Reproduced with permission of American Chemical Society from ref. [21]).
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respectively. The Φ values for photoisomerization from d-1 to p-1 are 1.5 and 0.31%
at 0.088 and 3.9 mM, respectively, as shown in Table 1.

In order to investigate influence of chloro substituent on photoisomerization of
d-1, distal- and proximal-[Ru(Cl-tpy)(pynp)OH2]

2+ (d-Cl1 and p-Cl1; Cl-tpy = 40-
chloro-2,20;60,2″-terpyridine) complexes were prepared. When an aqueous solution
of d-Cl1 was irradiated with visible light (λ > 420 nm, 180 mWcm�2), the stoichio-
metric photoisomerization of d-Cl1 to p-Cl1 was observed as it is for d-1 (Figure 1).
The rate constant for photoisomerization of d-Cl1 was estimated to be (kd-p)obs =
4.9 x 10�3 s�1 [35], which is higher than that ((kd-p)obs = 4.1 x 10�3 s�1) [22, 34]
observed for d-1 under the same conditions (Table 1). Additionally, the Φ value of
d-Cl1 (2.1%) is higher than that (Φ =1.5%) of d-1.

Several groups reported that some polypyridyl complexes undergo photo-
substitution reactions via the triplet metal centered (3MC) state from the 3MLCT
excited state [25–27]. According to the reports, a possible mechanism for the
photoisomerization of d-1 and p-1 isomers was speculated as follows. The 3MLCT
excited state of d-1 is generated by absorption of visible light. The photo-
dissociation of the aquo ligand from the exited d-1 proceeds through the thermal
accessible 3MC state, leading to the formation of the penta-coordinated [Ru(tpy)
(pynp)]2+ intermediate. The p-1 isomer is formed by re-coordination of a water
molecule to the penta-coordinated intermediate from the opposite direction of a tpy
plane. The temperature-dependent transient absorption spectroscopic measure-
ments of d-1 suggest existence of the thermally activated process from the 3MLCT
state with an Ea of 49 kJ mol�1 [22], which is close to those from the 3MLCT state to
the 3MC state reported for various polypyridyl Ru complexes [42–45]. The agree-
ment of the Ea value (49 kJ mol�1) with that (41.7 kJ mol�1) calculated from the
Arrhenius plot for the photoisomerization (Table 1) also supports the possibility
that a main activation process of the photoisomerization reaction is the thermal
transition from the 3MLCT state to the 3MC state. However, Density functional

Complexes λmax / nm pKa cRu /

mM

Photoisomerization parameters Ref.

(ε / M�1 cm�1) (kd-p)obs /

s�1b

(kp-d)obs /

s�1b

Φ / %

(λ = 520 nm)

Ea /

kJ

mol�1

d-1 527 (9,300) 9.7 0.088 n.m. — 1.5 n.m. [21]

3.9 4.1 x 10�3
— 0.31 41.7 [34]

p-1 524 (9,300) 10.7 3.9 — n.r — — [21]

d-Cl1 524 (8,600) 9.3 0.088 n.m. — 2.1 n.m. [35]

3.9 4.9 x 10�3
— n.m. n.m.

p-Cl1 518 (8,900) 10.9 3.9 — n.r — — [35]

d-2 501 (8,300) 9.4 3.9 1.2 x 10�2
— 1.1 23.3 [34]

p-2 502 (8,700) 10.5 3.9 — 4.3 x 10�3 0.34 30.6 [34]

d-3 614 (5,700) n.m. 2.0 n.m. — 0.05 n.m. [37]

p-3 612 (6,200) n.m. — n.m. n.m. n.m. n.m. [37]
acRu is concentrations of ruthenium complexes. The marks of “n.m.” and “n.r.” mean “not measured” and “no
reaction”, respectively.
bThe filtered halogen lamp was used for visible light irradiation (λ > 420 nm, 180 mW cm�2).

Table 1.
Summary of the observed rate constants and internal quantum yields of photoisomerization of d�/p-1,
d�/p-Cl1, d�/p-2 and d�/p-3 isomers at 25°C.a
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theory (DFT) calculations suggested a different activation process, where the
distal-penta-coordinated intermediate changes the conformation to proximal-penta-
coordinated intermediate for p-1 while maintaining the otherwise octahedral struc-
ture of d-1 [22].

To obtain deeper mechanistic insights into the irreversible photoisomerization,
the 3MLCT excited states of the d-1 and p-1were characterized by the time-resolved
infrared spectroscopy (TR-IR) [36]. The decay of the photoexcited 3MLCT states
for both isomers were investigated by the TR-IR analysis, and the lifetimes of the
excited state for the d-1 and p-1 were determined to be 9.7 ns and 6.4 ps, respec-
tively. In general, the decay of the 3MLCT excited states of Ru polypyridyl com-
plexes occurs on nanosecond timescale or above, because the transition from a
triplet excited state to a singlet ground state is forbidden by spin selection rules. The
very short excited lifetime (6.4 ps) for p-1 imply that a non-radiative process from
the 3MLCT state was accelerated, so that p-1 is inert for photoisomerization to d-1.

The large difference in lifetimes of the 3MLCT state between d-1 and p-1 was
interpreted by geometry optimization calculations using DFT of both d-1 and p-1
isomers in the singlet ground (S0) and

3MLCT (T1) states. While both the structures
of d-1 and p-1 isomers in the S0 states (indicated by lighter color atoms in Figure 3)
show no considerable distortion, the aquo ligand was restricted by a hydrogen bond
(1.48 Å) between its H atom and an N atom on the pynp ligand for p-1. The
transition from S0 state to T1 state of d-1 results in a significant change in the
dihedral angle of the pynp plane to the tpy plane from 180° to 161°, together with
bending at the bond between the naphthyridine and pyridine rings. The distortion
for d-1 is likely to originate from the steric hindrance between the extended π*-
orbital of the pynp ligand and the π-orbital of the tpy ligand owing to the charge
localization on the pynp ligand in the T1 state. In the case of p-1, on the other hand,
no considerable distortion was observed in the transition (Figure 3), but the Ru-O
(1.98 Å) and hydrogen bonds (1.06 Å) between the pynp and the water ligands
were shorter compared with the Ru-O (2.12 Å) and hydrogen bonds (1.48 Å) in the
S0 state. The shortened hydrogen bond is attributed to the charge localization on the
pynp ligand in the T1 state.

Figure 4 shows the DFT-calculated energy diagram of d-1 and p-1 in the S0, T1

and putative 3MC states. p-1 in the S0 state is more stable than d-1 by 65 kJ mol�1

because of hydrogen bond interaction between the pynp and the aquo ligand. The
energy difference between the S0 and T1 states for d-1 is 176 kJ mol�1, which is
remarkably higher than that (101 kJ mol�1) for p-1. The higher energy difference
for d-1 is mainly due to the significant distortion of the pynp ligand on the transition
from the S0 to T1 states (Figure 3). As a result, the energy of d-1 in the T1 state is
higher than that of p-1 in the T1 state by 140 kJ mol�1. Considering the similar
ligand field for both isomers, the energy difference in the 3MC state between d-1
and p-1 is assumed to be not as much as that (140 kJ mol�1) in T1 states. For p-1, the
3MC state is presumed to be located at much higher energies than that in the T1

state. This suggests the possibility of the different decay mechanism of p-1 in the T1

state from the case of d-1 (usual lifetime of 9.7 ns), exhibiting the non-radiative
decay through the thermally populated 3MC state. The possible mechanism is direct
relaxation of the T1 to S0 states according to the energy-gap law: the decay rate
decreases exponentially with increasing the energy gap between excited and ground
states [46–48]. Considering almost the same geometries of p-1 between the S0 and
T1 states, the law can be applied as the weak coupling limit. The lower energy band
gap of 101 kJ mol�1 between the S0 and T1 states for p-1 could explain the short
lifetime, at least qualitatively, based on the energy gap law. The direct relaxation
mechanism is consistent with the non-thermal decay process suggested by the very
quick decay (unusual lifetime of 6.4 ps) for p-1 in the T1 state. The direct relaxation
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process from the T1 states to the S0 state (not via the 3MC state) could explain the
inert photoisomerization of p-1.

2.2 Reversible photoisomerization between distal- and proximal-[Ru(tpy)
(pyqu)OH2]

2+ isomers

The photoisomerization between d-2 and p-2 was examined to reveal the influ-
ence of structures of bidentate ligands on the photoisomerization of d-1 (Figure 5)
[34]. On irradiation of visible light to a D2O solution of p-2, the 8.9 ppm peak
characteristic of p-2 in the 1H NMR spectrum (Figure 6A) decreased with increas-
ing the 9.5 ppm peak assigned to the d-2 isomer. The 1H NMR spectral change
reached saturation in 5 min, while the 8.9 ppm peak did not completely disappear.
This result suggests that the photoisomerization of p-2 to d-2 reaches a photo-
stationary state (Figure 5). This shows that irreversible photoisomerization alters to
reversible one by the replacement of the pynp ligand to pyqu in mononuclear Ru
aquo complexes [21, 22]. From the integrated peak areas at 8.9 and 9.5 ppm, the
equilibrated concentration ratio of p-2:d-2 was calculated to be 76:24 (Figure 6B).
The kinetic profiles of the photoisomerization of p-2 to d-2 were well fitted with a
reversible reaction model, giving the observed rate constants of the forward reac-
tion (proximal to distal, (kp-d)obs/s

�1) of 4.3 � 0.1� 10�3 s�1 and the back reaction
(distal to proximal, (kd-p)obs/s

�1) of 1.2 � 0.03 � 10�2 s�1 under the conditions
employed (λ > 420 nm, 180 mW cm�2), respectively (Table 1) [34]. The observed
equilibrium constant were given to Kobs (= (kp-d)obs/(kd-p)obs) = 0.34 � 0.01 under

Figure 3.
Overlay of optimized structures of d-1 and p-1 in the S0 (lighter color) and T1 (deeper color) states. The top
and bottom structures are illustrated from the horizontal directions of the pynp and tpy planes, respectively. The
colored labels of atoms are as follows: Green, Ru; gray, carbon; red, oxygen; blue, nitrogen; white, hydrogen.
(reprinted with permission from ref. [36] copyright 2015 Elsevier).
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the employed conditions. Both (kp-d)obs and (kd-p)obs increased linearly with respect
to light intensity up to 180 mW cm�2, suggesting that the photoexcited states of p-2
and d-2 isomers are also involved in the forward and back reactions, respectively
[34]. As shown in Figure 7, (kp-d)obs and (kd-p)obs decreased from pD = 8 to 12, and
the photoisomerization did not take place at all above pD =12 [34]. This result implies
that both hydroxo isomers, proximal- and distal-[Ru(tpy)(pyqu)OD]+ are inert for
the forward and back photoisomerization reactions, respectively, as observed in
the case of distal-[Ru(tpy)(pynp)OH]+ [21, 22]. The pD-dependent (kp-d)obs and
(kd-p)obs analysis demonstrated inflection points at pD = 10.5 and 9.8 for the

Figure 4.
DFT-calculated energy diagram of d-1 and p-1 in the S0 and T1 states. The speculated energy levels of Tn

3MC
states were described. (see text) (reprinted with permission from ref. [36] copyright 2015 Elsevier).

Figure 5.
Photoisomerization equilibrium between proximal- and distal-[Ru(tpy)(pyqu)OH2]

2+ (p-2 and d-2)
isomers.
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forward and back reactions, respectively. These values are close to the pKa of p-2
(pKa = 10.5) and d-2 (pKa = 9.4) (Table 1). The difference in pKa values (1.1)
between p-2 and d-2 results in the markedly pD-dependent Kobs values (inset of
Figure 7). Kobs increased above pH = 9, and reached its maximum value
(Kobs = 2.5) at pH = 12. This trend is consistent with the observation that the yield
of d-2 generated in the photoisomerization raised from 26–65% on increasing from
pH 5.7 to 12.

The thermal dependent kinetics for (kp-d)obs and (kd-p)obs in a temperature
range of 25 to 70°C gives Ea = 30.6 � 2.9 and 23.3 � 2.1 kJ mol�1 for the forward and
back reactions, respectively. The higher Ea of the forward reaction ((kp-d)obs)
compared to the back one ((kd-p)obs) is attributable to the unfavorable loss of the
hydrogen bond (C-H���O) between the H atom bonded to 8-C of the quinoline
moiety of the pyqu ligand and the O atom of the aquo ligand upon water

Figure 6.
(A) Time course of 1H NMR spectral changes during the photoisomerization of p-2 (3.9 mM, pD = 8.4) with
180 mW/cm2 visiblelight irradiation (λ > 420 nm) in D2O. (B) Kinetic profiles of p-2 (blue square) and d-2
(red circles). (reproduced from ref. [34] with permission of John Wiley & Sons, Inc.).

Figure 7.
Plots of observed rate constants ((kp-d)obs and (kd-p)obs) vs. pD for the photoisomerization reactions shown in
Figure 5. Visible light (λ > 420 nm, 180 mW/cm2) was irradiated to the p-2 (3.9 mM) in D2O at 25°C. Inset
shows diagram of observed equilibrium constants Kobs vs. pD. (reproduced from ref. [34] with permission of
John Wiley & Sons, Inc.).
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dissociation for photoisomerization. The van’t Hoff plots for Kobs gave
ΔH = 7.7 � 2.7 kJ mol�1, that is close to enthalpy for the hydrogen bond
(5.4 kJ mol�1) of C-H���O in the benzene-water complex [49].

The Φ values for the forward and back photoisomerization reactions were esti-
mated to be 0.34% and 1.1% from the experiments using monochromatic light
(520 nm, 26.4 mW cm�2) (Table 1). The higher Φ (1.1%) of d-2 compared to that
(0.34%) of p-2 could be attributed to the enthalpy of hydrogen bond (C-H���O) of
p-2 (decreased Φ for p-2) and the steric repulsion between the H atom bonded to 8-
C of the quinoline moiety of pyqu and the tpy plane for d-2 (increased Φ for d-2).
The Φ value of 1.1% for photoisomerization from d-2 to p-2 is 3.5 times higher than
that (0.31%) for the photoisomerization from d-1 to p-1 under the same concentra-
tion [34]. This could also be ascribed to the dominant steric repulsion between the
tpy ligand and the H atom bonded to 8-C of the quinoline ring of pyqu for d-2,
compared to the repulsion between the tpy ligand and the uncoordinated nitrogen
of the naphthyridine ring of pynp for d-1.

2.3 New synthetic strategy for dinuclear ruthenium(II) complexes utilizing the
photoisomerization

The photoisomerization of Ru(II) aqua complexes was applied to the strategic
synthesis of dinuclear Ru complexes that are difficult to be synthesized by conven-
tional thermal reactions so far. Herein, we succeeded to newly synthesize several
dinuclear Ru(II) complexes, proximal, proximal-[Ru2(tpy)2LXY]

3+ (L = 5-phenyl-
2,8-di(2-pyridyl)-1,9,10- anthyridine, X and Y = other coordination sites; denoted
as p,p-Ru2XY) utilizing the photoisomerization of a mononuclear Ru aquo complex
[37]. The tetradentate backbone ligand L was used to form a proximal, proximal -
dinuclear Ru(II) structure (Figure 8). The reaction of [Ru(tpy)Cl3] with L gave
distal-[Ru(tpy)LCl]+ (d-3Cl) selectively in ethanol in a 59% isolated yield. This
selective formation of d-3Cl was possibly caused by the steric hindrance of L with a
chloro ligand. d-3Cl was then converted to distal-[Ru(tpy)LOH2]

2+ (d-3) by chloro
subtraction with a silver salt in water in a 90% isolated yield. The thermal reaction
of d-3 with a second ruthenium center [Ru(tpy)Cl3] for dimerization failed to give

Figure 8.
Synthetic scheme of a μ-Cl bridged dinuclear ruthenium complex, p,p-Ru2(μ-Cl) using photoisomerization of
d-3. (reproduced from ref. [37] with permission of American Chemical Society).
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the proximal, proximal-dinuclear Ru(II) complex owing to the steric hindrance
located between the tpy ligand on the d-3 and the one on [Ru(tpy)Cl3]. However, if
the photoisomerization of d-3 to proximal-[Ru(tpy)LOH2]

2+ (p-3) is utilized
(Figure 8), the steric constraint of d-3 for formation of the proximal,proximal-
dinuclear Ru(II) species could be avoided. The photoisomerization of d-3 stoichio-
metrically progressed to form p-3 in water/ethanol mixture under visible light
irradiation (λ > 420 nm). The subsequent thermal reaction of p-3with [Ru(tpy)Cl3]
in water/ethanol mixture successfully generated proximal,proximal-[Ru2(tpy)2L(μ-
Cl)]3+ (p,p-Ru2(μ-Cl) in a 67% isolated yield that was unambiguously characterized
by X-ray diffraction [37]. The p,p-Ru2(μ-Cl) was converted to the proximal,proxi-
mal-[Ru2(tpy)2L(μ-OH)]3+ (p,p-Ru2(μ-OH)) in neutral or slightly basic aqueous
medium via substitution of the μ-Cl bridge with an OH� ion as shown in Figure 9
[37, 38]. The p,p-Ru2(μ-OH)was then converted to proximal,proximal-[Ru2(tpy)2L
(OH)(OH2)]

3+ (p,p-Ru2(OH)(OH2)) via insertion of a water molecule to the
central core to reach equilibrium between p,p-Ru2(μ-OH) (�10%) and p,p-
Ru2(OH)(OH2).

3. Water oxidation catalysis by ruthenium(II) aquo complexes

The mononuclear ruthenium polypyridyl aquo complexes are promising WOCs
to understand water oxidation chemistry and provide the guided thought for effi-
cient WOCs because of their simple structures, high catalytic activities, ease of
chemical modification, and informative knowledge including catalytic mechanisms
[13, 21–23, 34, 35, 40, 50–52]. Controlling the electron density on the metal center
as an active site by alternating the substituent groups on their ligands is a common
approach to reveal the mechanism and influencing factors for water oxidation
catalysis.

The molecular WOCs take part in the process of the four electrons and four
protons removal from two water molecules, either consecutively or concerted, to
form the O-O bond. Understanding the mechanism of the O-O bond formation is
vital in improvement of molecular WOCs. Two main classes of proposed reaction
mechanisms at metal centers are shown in Figure 10; water nucleophilic attack
(WNA) on metal-oxo centers (M = O) and interaction of two M-O centers (I2M)
[53–56]. In the WNA mechanism (Figure 10a), an electrophilic high-valent metal-
oxo (Mn+ = O) species is formed via multiple consecutive oxidation steps. A nucle-
ophilic attack of a water molecule on the Mn+ = O species occurs, that leads to
formation of a hydroperoxide (M(n�2)+-OOH) species. Further oxidation and

Figure 9.
Reversible bridging-ligand substitution reactions among p,p-Ru2(μ-Cl), p,p-Ru2(μ-OH) p,p-Ru2(OH)
(OH2).
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deprotonation steps generate a M(n�1)+-OO� intermediate, which releases O2 and
converts to M(n�2)+-OH2 with incorporation of OH2. A lot of mononuclear com-
plexes have been proposed to undergo the WNA mechanism for water oxidation
[21–23, 34, 35, 40, 51, 52, 57, 58]. In the I2Mmechanism (Figure 10b), the coupling
of either two Mn+-O oxyl radicals or coupling of one Mn+-O oxyl radical with
another Mn+-O unit of a non-radical character affords a peroxo Mn+-O-O-Mn+

intermediate, which releases O2 and returns to 2 M(n�2)+-OH2 with incorporation of
OH2. It involves intramolecular [37, 59, 60] and intermolecular [61, 62] pathways.

In this section, we introduce our recent progress on chemical and electrochem-
ical water oxidation catalyses by mono- and dinuclear ruthenium(II) aquo com-
plexes in homogeneous systems. Firstly, substitution effects on the catalytic activity
and mechanism of mononuclear ruthenium(II) aquo complexes for chemical water
oxidation are described in Section 3-1. Secondly, the difference in the catalytic
properties between distal�/proximal-isomers is explicated in Section 3-2. Finally,
the electrocatalytic activities of a series of dinuclear ruthenium(II) complexes are
discussed in Section 3-3.

3.1 Substitution effect on the catalytic activities of mononuclear ruthenium
complexes for water oxidation

To investigate the catalytic aspects of [Ru(Rtpy)(bpy)(H2O)]
2+

(Rtpy = 2,20:60,2″-terpyridine derivatives) complexes (4R) having a variety of 40-
substituent groups on Rtpy ligand (Figure 11), chemical water oxidation experi-
ments were performed in a homogeneous aqueous solution using a CeIV as a

Figure 10.
Schematic representation of the two mechanistic pathways for O-O bond formation. (reproduced with
permission from ref. [20]. Copyright 2019 Wiley).
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sacrificial oxidant [39, 40]. For 4EtO (R = EtO), O2 was significantly evolved from
the catalytic solution, and the amount (nO2/μmol) of O2 evolved increased linearly
until 100 min and then saturated to 35 μmol at 4 h, which is 5 times higher than that
for 4H (Figure 12) [39]. The initial O2 evolution rates (vO2/mol s�1) were calculated
from the initial slopes. The vO2 for 4EtO increased with the CeIV concentration (cCe/
M) and reached a saturation at cCe = 1.0 M (Figure 13), indicating that O2 evolution
is zero order with respect to CeIV under the large excess CeIV conditions. This
behavior was well-analyzed by Michaelis–Menten-like kinetics to give the maxi-
mum catalytic rate (v max) of 1.5 (�0.08) x 10�1 mol s�1 (4EtO mol)�1 and the
constant (Km = 1.2 (�0.06) mmol) in terms of the CeIV concentration for the half
value of vmax. The oxidation reaction from RuIV=O to RuV=O by CeIV could involve
the redox equilibrium prior to oxygen evolution because the redox potential (1.45 V
vs. SCE) of RuIV=O/RuV=O for 4EtO is close to standard potential (E° = 1.47 V vs.
SCE (1.71 V vs. NHE) [63]) of CeIII/IV. The redox equilibrium presumably leads to
saturation of the vO2 with increase of the CeIV concentration (Figure 13). The vO2
increased linearly with the 4EtO concentration (cRu/M) under the large excess CeIV

conditions (cCe = 0.1 M, cRu = � 0.2 mM, 5.0 ml water) (Figure 14), showing that
the O2 evolution is a first order process with respect to 4EtO. This result is consis-
tent with the case of earlier-reported mononuculear Ru(II) aquo complexes [50, 51].

The mechanism of water oxidation by 4R is shown in Figure 15 based on the
WNA mechanism [50, 51, 56]. 4R (abbreviated to RuII-OH2 as the oxidation state)
is oxidized by CeIV to RuIII-OH2 by a 1-electron process, and subsequently oxidized
to RuIV=O by two-proton/one-electron process at pH = 1.0 [39, 40]. RuIV=O is
further oxidized to RuV=O, involving the above-mentioned redox equilibrium (step
I, Figure 15). RuV=O undergoes water nucleophilic attack (step II, Figure 15) to

Figure 11.
Chemical structures of mononuclear ruthenium(II) aquo complexes.
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form an O-O bond in the RuIII-OOH intermediate. Finally, O2 is produced via
further oxidation to RuIV-OO�, with RuII-OH2 regenerated by incorporation of
water.

The vO2 showed a first-order dependence on the complex amount for all the 4R
derivatives (Figure 14) [40], suggesting that O2 is produced by a unimolecular

Figure 12.
Time courses of the amount (nO2/Mol) of O2 evolved in chemical water oxidation experiments in an aqueous
solution at 25°C using a CeIV oxidant. cCe = 0.1 M (0.5 mmol); complexes, 20 μM (0.1 μmol); pH = 1.0;
liquid volume, 5.0 ml. (○) 4EtO, (●) 4H and (□) without complex. (reproduced with permission from ref.
[39]. Copyright 2011 the Royal Society of Chemistry).

Figure 13.
Plots of vO2 versus the Ce

IV concentration (cCe/M) in chemical water oxidation experiments using 0.2 mM
4EtO (5.0 ml water) at 25°C. the solid line is the simulated curve based on a Michaelis–Menten-like kinetic
equation. (reproduced with permission from ref. [39]. Copyright 2011 the Royal Society of Chemistry).
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reaction of 4R. Turnover frequencies (kO2/s
�1) were calculated from the slopes of

the linear relationships. The kO2 values were largely affected by the Rtpy ligands,
being variable from 0.05 to 44 x 10�2 s�1 (as the highest kO2 for 4EtO) by a factor
of 880 (Table 2). The kO2 values were plotted with respect to Hammett constant σp
of the 40-substituents of Rtpy ligands in Figure 16A. However, the Me2N group is
protonated to give Me2NH+ under the catalytic conditions (pH = 1.0), and the σp
value of Me2NH+ was assumed as σp = 0.71 of the midpoint between σp = 0.60 for
protonated amino group and σp = 0.82 for protonated trimethylamino group [64].
The kO2 values were almost constant (3.4 � 6.1 x 10�2 s�1) in a range of σp = �0.17
(R = Me) � 0.23 (R = Cl), although the kO2 value (5 x 10�4 s�1) of 4Me2N is lower
than these values. The kO2 value increased sharply at σp = �0.24 (R = EtO) to 4.4
x10�1 s�1 as the maximum, and thereafter decreased with the σp decrease to �0.37
(R = OH). This result demonstrates that very critical Hammett constant

Figure 14.
Plots of initial O2 evolution rate (vO2/Mol s�1) versus the amount of 4R complexes. cCe = 0.1 M, 5.0 ml water,
pH = 1.0. (reproduced with permission from ref. [40]. Copyright 2019 American Chemical Society).

Figure 15.
Mechanism of water oxidation by 4R complexes at pH = 1.0. (reprinted with permission from ref. [40].
Copyright 2019 American Chemical Society).

14

Ruthenium - An Element Loved by Researchers



(σp = �0.27 � �0.24) exists for the high kO2 values. The very low kO2 values for
4OH and 4Me2N arise from the difficulty of RuV=O formation. Most likely, 4OH
and 4Me2N are considered to decompose through their ligand oxidation during
water oxidation catalysis, as reported recently [65, 66].

The kO2 values were plotted with respect to redox potentials of RuIV=O/RuV=O
in Figure 16B. The kO2 values increased with the decrease of the redox potentials in
an order of 4H, 4Cl, 4Me < 4MeO < 4PrO < 4EtO. This indicates that the
potential for formation of RuV=O species is essential in the water oxidation catalysis
under the employed conditions. This kO2 profile can be explained by the increased

Complexes Abbreviation kO2/10
�3 s�1 Ref

[Ru(tpy)(bpy)OH2]
2+ 4H 34 [39]

[Ru(Cltpy)(bpy)OH2]
2+ 4Cl 43 [40]

[Ru(Metpy)(bpy)OH2]
2+ 4Me 61 [40]

[Ru(MeOtpy)(bpy)OH2]
2+ 4MeO 240 [40]

[Ru(EtOtpy)(bpy)OH2]
2+ 4EtO 440 [40]

[Ru(PrOtpy)(bpy)OH2]
2+ 4PrO 331 [40]

[Ru(OHtpy)(bpy)OH2]
2+ 4OH 0.9 [40]

[Ru(Me2Ntpy)(bpy)OH2]
2+ 4Me2N 0.5 [40]

distal-[Ru(tpy)(pynp)OH2]
2+ d-1 3.8 [21]

proximal-[Ru(tpy)(pynp)OH2]
2+ p-1 0.48 [21]

distal-[Ru(Cltpy)(pynp)OH2]
2+ d-1Cl 6.3 [35]

proximal-[Ru(Cltpy)(pynp)OH2]
2+ p-1Cl 0.39 [35]

distal-[Ru(tpy)(pyqu)OH2]
2+ d-2 1.0 [34]

proximal-[Ru(tpy)(pyqu)OH2]
2+ p-2 1.7 [34]

Table 2.
Summary of kO2 by mononuclear Ru(II) aquo complexes.

Figure 16.
Plots of the turnover frequency (kO2/s

�1) versus Hammett constant (σp) of 4
0-substituent groups (A) and

versus the redox potentials of a RuIV=O/RuV=O pair (B). The Me2N group is protonated to a Me2NH+ group
under the experimental conditions for water oxidation (pH = 1.0), and the σp value of Me2NH+ was assumed
as σp = 0.71 of the midpoint between σp = 0.60 for protonated amino group and σp = 0.82 for protonated
trimethylamino group [64]. The redox potentials were estimated from Eap values, where Eap is an anodic peak
potential corresponding to the RuIV=O/RuV=O couple in a cyclic voltammogram for each of 4R complexes. The
red dashed line indicates the standard redox potential of CeIII/IV [63]. (Reproduced with permission from ref.
[40]. Copyright 2019 American Chemical Society).
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fraction of RuV=O in the equilibrium. In this case, the oxidation rate (step I in
Figure 15) from RuIV=O to RuV=O by CeIV could be comparable with the rate of the
nucleophilic attack of water on RuV=O (step II in Figure 15) to be involved in a rate-
determining step. The O-O bond formation process via water nucleophilic attack
could be no longer a rate-determining step singularly. One might deservedly expect
that the kO2 values of 4H, 4Cl, and 4Me with the higher redox potentials of
RuIV=O/RuV=O are higher than those of 4MeO, 4PrO and 4EtO with the lower
redox potentials since water nucleophilic attack on RuV=O (step II, Figure 15) is
assumed to accelerate because of the higher electrophilicity of the oxo of RuV=O for
the formers. By contrast, the kO2 values of 4H, 4Cl, and 4Me were indeed lower
than those of 4MeO, 4PrO and 4EtO, which could be explained by the slow
oxidation rate (step I in Figure 15) from RuIV=O to RuV=O involved in a rate-
determining step.

3.2 Comparison in catalytic activities between distal and proximal isomers of
mononuclear ruthenium complexes

To explore the catalytic aspects of a series of distal and proximal isomers for the
mononuclear Ru(II) aquo complexes, chemical water oxidation experiments were
conducted in a homogeneous aqueous solution using a CeIV oxidant [21, 22]. O2 was
significantly evolved from a mixed solution of d-1 and CeIV, and nO2 increased
linearly with time until 50 min (Figure 17). vO2 increased linearly with respect to
the amount of the complex, and the slope of the linear relationship provides
kO2 = 3.8 x 10�3 s�1 (Figure 18). The same chemical water oxidation experiments
were carried out after visible light irradiation to the solution of d-1 for 1 h to
generate p-1 completely (Figure 1). nO2 dramatically decreased compared with the
case before light irradiation (Figure 17). The linear plot of vO2 with the catalyst

Figure 17.
Time courses of the amount (nO2/μmol) of O2 evolved in chemical water oxidation experiments in an aqueous
solution at 25°C using a CeIV as a sacrificial oxidant. cCe = 0.1 M (0.5 mmol); Ru complex, 1.0 μmol;
pH = 1.0; liquid volume, 5.0 ml. (●) d-1, (■) p-1. (Reproduced with permission from ref. [21]. Copyright
2011 American Chemical Society).
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amount provided kO2 = 4.8 x 10�4 s�1 for p-1, indicating that the observed kO2 value
is decreased due to photoisomerization of d-1 to p-1 by nearly an order of magni-
tude. This result tells us that we have to pay attention to the observed catalytic
activity decrease due to photoisomerization of d-1 to p-1 when d-1 is applied to
photocatalytic systems.

The chemical water oxidation catalyzed by d-1Cl and p-1Cl was investigated
under the same conditions as the d�/p-1 isomer system to understand the effect of
40-chloro-substitusion on tpy ligand on the catalytic activity of the distal�/proxi-
mal-isomer complexes for water oxidation [35]. vO2 increased linearly with respect
to the complex amount for d-1Cl and p-1Cl, as is the case of the d�/p-1 isomer
system (Figure 18). kO2 (6.3 � 10�3 s�1) for d-1Cl was 15 times higher than that
(3.9 � 10�4 s�1) for p-1Cl. From a perspective of the effect of the chloro-
substitution on tpy, kO2 for d-1Cl was also 1.6 times higher that (3.8 � 10�3 s�1) for
d-1, while kO2 for p-1Cl was 1.2 times lower than that (4.8 � 10�4 s�1) for p-1. If
assuming that the O-O bond formation via the nucleophilic attack of water on the
RuV=O intermediate is the rate-determining step, kO2 could increase by the chloro
substitution because electrophilicity of RuV=O increased, as is the case for d-1Cl
relative to d-1. However, another explanation is needed for the kO2 decrease for p-
1Cl relative to p-1. For instance, there are cases that the rate for oxidation of RuIV=O
to RuV=O could be involved in a rate-determining step, or that the stabilities of the
complexes are different, as pointed out in the Section 3-1.

The kO2 value (1.7� 10�3 s�1) of p-2was higher than that (1.0� 10�3 s�1) of d-2
by a factor of 1.7 (Table 2) [34]. This result is in contrast to the d�/p-1 and d�/p-
1Cl isomer systems, in which kO2 of distal-isomers are higher than those of the
proximal-ones by one order of magnitude. The kO2 value of p-2 is 3.5 times higher

Figure 18.
Plots of initial rate (vO2 / mol s�1) of O2 evolved vs. the amount (μmol) of d-1Cl (■), p-1Cl (●), d-1 (□),
p-1 (○). Conditions: cCe = 0.1 M (0.5 mmol); liquid volume, 5.0 mL; pH = 1.0. (reproduced with permission
from ref. [35]. Copyright 2015 Elsevier).
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than that (4.8 � 10�4 s�1) of p-1, though the value of d-2 is 3.8 times lower than
that (3.8 x 10�3 s�1) of p-2 under the same conditions.

3.3 Electrocatalytic activities of a series of dinuclear ruthenium complexes for
water oxidation

We investigated catalytic activities of p,p-Ru2(OH)(OH2) and the related
mono- and dinuclear Ru(II) complexes (Figures 8 and 9) for electrochemical water
oxidation in homogeneous solution [37]. The cyclic voltammogram (CV) of p,p-
Ru2(OH)(OH2) displayed a higher anodic current after 1.2 V vs. SCE attributed to
water oxidation (Figure 19). The catalytic current density increased to 3.5 mA cm�2

(the blank without the complex generates 0.31 mA cm�2) at a potential of 1.4 V and
pH 6.0, that is 4.8 and 9.2 times higher compared to those of d-3 and p,p-Ru2(μ-
Cl). Importantly, the current density value (3.5 mA cm�2 at pH 6.0) obtained from
p,p-Ru2(OH)(OH2) was much higher than that (1.4 mA cm�2 at pH 9.0) obtained
for p,p-Ru2(μ-OH), under even thermodynamically unfavorable pH conditions.
These results suggest that the proximal,proximal-dinuclear Ru(II) core structure
with vicinal aquo and hydroxo groups is inevitably essential for efficient
electrocatalytic water oxidation. Bulk electrolysis was performed in a nearly neutral
phosphate buffer solution (pH 6.0) for p,p-Ru2(OH)(OH2) at 1.3 V vs. SCE. A
higher charge amount of 2.1 C compared to the that (0.55 C) of the blank without
the complex was obtained, and a 4.2 μmol (Faradaic efficiency 76–80%) of O2 was

Figure 19.
CVs of 1 mM p,p-Ru2(OH)(OH2) (red), d-3 (blue), p,p-Ru2(μ-Cl) (green), and blank (black dots) in a
0.1 M phosphate buffer (pH 6.0) at a scan rate of 50 mV s�1. CV of p,p-Ru2(μ-OH) (black) was measured at
pH 9.0 because it gradually converts to p,p-Ru2(μ-Cl) at acidic conditions. Inset shows CV of 0.5 mM p,p-
Ru2(OH)(OH2) in a 0.1 M phosphate buffer (pH 7.0) at a scan rate of 20 mV s�1. (Reprinted with
permission from ref. [37] with permission of American Chemical Society).
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produced after 1 h electrolysis. This evolved O2 amount obtained by p,p-Ru2(OH)
(OH2) corresponds to 5.3 equivalent of the total p,p-Ru2(OH)(OH2) amount
(0.6 μmol) in the electrolyte solution, ensuring the catalytic water oxidation. The
UV–Visible absorption spectrum of the electrolyte solution after the electrolysis
displayed an intense band at 694 nm, assigned to proximal,proximal-[RuIII2(tpy)2L
(OH)2]

4+ (abbreviated to RuIII-OH:RuIII-OH as a oxidation state). This observation
suggests that RuIII-OH:RuIII-OH is involved in the catalytic cycle. For the proposed
electrocatalytic cycle for water oxidation under neutral conditions, p,p-Ru2(OH)
(OH2) was electrochemically oxidized by the proton-coupled electron transfer
reactions via RuIII-OH:RuIII-OH and RuIV=O:RuIV–OH states most possibly to the
RuV=O:RuV=O state, which could oxidize water to O2 together with the regenera-
tion of RuIII-OH:RuIII-OH.

In order to provide mechanistic insights into O–O bond formation for O2 pro-
duction, the H/D isotope effect on electrocatalytic water oxidation by p,p-Ru2(OH)
(OH2) and d-3 were examined in H2O and D2O media. A large H/D isotope effect
(1.7) on electrocatalytic water oxidation by d-3 was observed relative to the blank
experiment (1.1). This result is consistent with the proton transfer-concerted O–O
bond formation by the WNA mechanism. On the other hand, the isotopic effect
(1.1) on the electrocatalysis by p,p-Ru2(OH)(OH2) was comparable with the blank
(1.1). The lower isotope effect indicates proton-non-concerted chemical reaction
process in the electrocatalytic cycle, and p,p-Ru2(OH)(OH2) is likely to produce O2

via the I2M mechanism.

4. Conclusions

Recent progress on the aspects and mechanistic insights of photoisomerization
of Ru(II) aquo complexes in our group was reviewed to unveil the photoisome-
rization reactions and its mechanism comprehensively. The controls of properties
and functions of mononuclear Ru(II) aquo complexes by the photoisomerization
were exemplified in terms of their water oxidation catalyses. An example of appli-
cation of the photoisomerization is demonstrated; the employment of the
photoisomerization enabled to synthesize the dinuclear Ru(II) complexes that have
been difficult to be synthesized by conventional thermochemical processes. The
synthesized dinuclear complexes also serve as efficient catalysts for water oxida-
tion. New design and development of variety types of Ru complexes are desired to
explore unique reactions, functions and application based on the photoisome-
rization for future molecular systems such as artificial photosynthetic devices.
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