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Chapter

Vitamin B6 and Related Inborn 
Errors of Metabolism
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Abstract

Vitamin B6 (vitB6) is a generic term that comprises six interconvertible 
 pyridine compounds. These vitB6 compounds (also called vitamers) are pyri-
doxine (PN), pyridoxamine (PM), pyridoxal (PL) and their 5′-phosphorylated 
forms pyridoxine 5′-phosphate (PNP), pyridoxamine 5′-phosphate (PMP) and 
pyridoxal 5′-phosphate (PLP). VitB6 is an essential nutrient for all living organ-
isms, but only microorganisms and plants can carry out de novo synthesis of this 
vitamin. Other organisms obtain vitB6 from dietary sources and interconvert its 
different forms according to their needs via a biochemical pathway known as the 
salvage pathway. PLP is the biologically active form of vitB6 which is important 
for maintaining the biochemical homeostasis of the body. In the human body, PLP 
serves as a cofactor for more than 140 enzymatic reactions, mainly associated with 
synthesis, degradation and interconversion of amino acids and neurotransmitter 
metabolism. PLP-dependent enzymes are also involved in various physiological 
processes, including biologically active amine biosynthesis, lipid metabolism, heme 
synthesis, nucleic acid synthesis, protein and polyamine synthesis and several other 
metabolic pathways. PLP is an important vitamer for normal brain function since it 
is required as a coenzyme for the synthesis of several neurotransmitters including 
D-serine, D-aspartate, L-glutamate, glycine, γ-aminobutyric acid (GABA), sero-
tonin, epinephrine, norepinephrine, histamine and dopamine. Intracellular levels 
of PLP are tightly regulated and conditions that disrupt this homeostatic regulation 
can cause disease. In humans, genetic and dietary (intake of high doses of vitB6) 
conditions leading to increase in PLP levels is known to cause motor and sensory 
neuropathies. Deficiency of PLP in the cell is also implicated in several diseases, the 
most notable example of which are the vitB6-dependent epileptic encephalopathies. 
VitB6-dependent epileptic encephalopathies (B6EEs) are a clinically and geneti-
cally heterogeneous group of rare inherited metabolic disorders. These debilitating 
conditions are characterized by recurrent seizures in the prenatal, neonatal, or 
postnatal period, which are typically resistant to conventional anticonvulsant 
treatment but are well-controlled by the administration of PN or PLP. In addition to 
seizures, children affected with B6EEs may also suffer from developmental and/or 
intellectual disabilities, along with structural brain abnormalities. Five main types 
of B6EEs are known to date, these are: PN-dependent epilepsy due to ALDH7A1 
(antiquitin) deficiency (PDE-ALDH7A1) (MIM: 266100), hyperprolinemia type 2 
(MIM: 239500), PLP-dependent epilepsy due to PNPO deficiency (MIM: 610090), 
hypophosphatasia (MIM: 241500) and PLPBP deficiency (MIM: 617290). This 
chapter provides a review of vitB6 and its different vitamers, their absorption and 
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metabolic pathways in the human body, the diverse physiological roles of vitB6, 
PLP homeostasis and its importance for human health. Finally, the chapter reviews 
the inherited neurological disorders affecting PLP homeostasis with a special focus 
on vitB6-dependent epileptic encephalopathies (B6EEs), their different subtypes, 
the pathophysiological mechanism underlying each type, clinical and biochemical 
features and current treatment strategies.

Keywords: vitamin B6 (vitB6), Salvage pathway, PLP-dependent enzymes, inherited 
vitB6-dependent epilepsies

1. Introduction

Vitamin B6 (vitB6) is a generic term that refers to a group of six interconvert-
ible chemical compounds that share a pyridine ring in their centre. These vitB6 
compounds (also called vitamers) are pyridoxine (PN), pyridoxamine (PM), 
pyridoxal (PL) and their 5′-phosphorylated forms pyridoxine 5′-phosphate (PNP), 
pyridoxamine 5′-phosphate (PMP) and pyridoxal 5′-phosphate PLP) [1] (Figure 1). 
VitB6 is required by all living organisms for their survival, but only microorganisms 
and plants can carry out de novo synthesis of this vitamin. Other organisms includ-
ing humans acquire vitB6 from exogenous sources and interconvert its different 
forms according to their needs using a biochemical pathway known as the salvage 
pathway [1, 3].

1.1 Metabolism of vitB6

Among the six vitB6 compounds, PLP is the biologically active and most 
important vitamer since it is required as a cofactor for a multitude of enzymes in 
the body. Humans and other mammals obtain PLP directly from diet or through 
synthesis from other vitameric forms ingested with food or recycled from degraded 
PLP-dependent enzymes via the salvage pathway [1, 4] (Figure 2). The central 
enzyme in this pathway is PNP oxidase (PNPO), a flavin mononucleotide (FMN)-
dependent enzyme that is capable of converting PNP or PMP to the active cofactor 

Figure 1. 
Chemical structures of the six vitamin B6 vitamers. Colored atoms designate oxygen or hydroxyl group (red), 
nitrogen or amine group (blue) and phosphorus (brown). (Retrieved from [2]).
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PLP [1]. Other important enzymes in the salvage pathway are PL kinase (PLK) and 
a number of different phosphatases [5].

VitB6 vitamers are widely available in animal and plant food sources. PLP and in 
a lesser amount, PMP are present as such in animal-derived foods, mainly associ-
ated with muscle glycogen phosphorylase, while plant foods are more enriched in 
PN, PNP and PN glucosides [1, 4, 8].

After being ingested, phosphorylated vitamers (PLP, PNP and PMP) undergo 
dephosphorylation by the ecto-enzyme tissue-specific intestinal phosphatase (IP) 
[5], whereas PN glucoside (PNG) vitamers from plants are hydrolyzed by a glucosi-
dase before absorption [1, 10]. Absorbed vitamers are carried by the portal circula-
tion to the liver where they are phosphorylated by PLK [5]. Inside liver cells, PNP 
and PMP are oxidized by PNPO to form PLP, which is then released to the circula-
tion bound to lysine-190 residue of albumin (Figure 3) [9–11]. Binding of PLP to 
albumin is thought to protect the cofactor from hydrolysis and other reactions [11]. 
About 60% of circulating vitB6 is in the form of albumin-bound PLP, while PN, PM 
and PL constitutes the remaining proportion [5].

Prior to delivering the circulating PLP to different tissues, it is dephosphorylated 
to PL by the ecto-enzyme tissue nonspecific alkaline phosphatase (TNSALP) to 
enable entry into the cells and through the blood–brain barrier. Inside the cell, PL 
is re-converted by PLK to PLP, which now can be used as a cofactor in many bio-
chemical reactions (Figure 3) [1, 5, 9]. Degradation of PLP-bound enzymes (holo-
B6 enzymes) can generate PMP, which is then oxidized back to PLP by the action of 
PNPO [6] (Figures 2 and 3).

Besides the liver, it has been shown that the intestine also contributes an 
important role in vitB6 metabolism. In vitro studies utilizing human intestinal 

Figure 2. 
The PLP salvage pathway. Phosphorylated vitamers are converted to PLP by the enzyme PNPO. PLP is also 
recycled from degraded holo-B6 enzymes through PMP as an intermediate step. ADP: adenosine diphosphate, 
ATP: adenosine triphosphate, FMNH2: flavin mononucleotide reduced form, Ph’ases: phosphatases, Pi: 
inorganic phosphate. (Based on [5–7]).
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epithelial Caco-2 cells [12] demonstrated that, after incubation of these cells with 
multiple vitB6 vitamers, PL was the only vitamer detected at the basolateral side 
which indicated that all other vitamers were converted to PL inside the intestinal 
cells. Excretion of PN and PM at the basolateral side was only detected when 
the enterocytes were incubated with high concentrations of these vitamers. The 
authors suggested that under normal dietary intakes, PN and PM are converted 
to PL by the enterocytes and PL becomes the principal vitamer that reaches the 
portal circulation. All other organs including the liver can then obtain PL from 
the circulation and only require PLK to produce PLP. Under high vitB6 intakes, 
however, the ingested amounts of PN or PM may surpass the intestine’s capacity 
to fully metabolize these vitamers. In this case, PN and PM will be released to the 

Figure 3. 
Metabolism of vitB6 vitamers in different tissues of the body. PNGH: PNG hydrolase; PLPase: PLP 
phosphatase; AOX/DH: aldehyde oxidase/dehydrogenase; BBB: blood–brain barrier; PA: pyridoxic acid; 
E-PLP: enzyme-bound PLP; E-PMP: enzyme-bound PMP. (Based on [6, 7]).
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portal circulation and will subsequently be converted to PLP in the liver. The study 
also showed the expression of a full battery of the salvage enzymes in Caco-2 cells 
as well as in lysates of human intestine, adding further evidence for a major role 
of the intestine in vitB6 metabolism [12]. Earlier works in mice [13, 14] have also 
pointed to a similar role of the intestine. In these studies, following oral administra-
tion of radiolabeled PN, labeled PL and PLP were detected in the mouse intestine 
and portal circulation indicating involvement of the intestine in converting dietary 
vitamers to circulating PL [13, 14].

1.2 Catabolism of vitamin B6

At the other end of vitB6 metabolism, little is known about the catabolic path-
ways in humans or other mammals. In contrast, these mechanisms are well estab-
lished in microorganisms [3, 11, 15]. In humans and other mammals, the primary 
product of the degradation of PLP (and all other vitB6 vitamers) is 4-pyridoxic 
acid (4-PA). This compound, which is excreted in urine, is generated in two steps. 
In the first one, PLP is hydrolyzed to PL by the action of an intracellular enzyme 
known as PLP phosphatase (PLPase). In the following step, PL is oxidized to 4-PA 
by a non-specific aldehyde oxidase (AOX) or aldehyde dehydrogenase (Figure 3) 
[3, 6, 12, 15, 16]. In microorganisms, 4-PA is further degraded to other metabolites 
that can be utilized by the cell in various biochemical processes [15]. Some micro-
bial vitB6 catabolic products such as 5-pyridoxic acid (5-PA), 5-pyridoxolactone 
[17] and 4-pyridoxolactone [17, 18] have been also discovered in human individuals 
under consumption of high amounts of vitB6. Several other PN derivatives have 
been identified in humans and/or other mammalian species, but their biochemical 
pathways and precise functions have not yet been unraveled.

For example, Coburn and Mahuren [19] detected pyridoxine 3-sulfate, pyridoxal 
3-sulfate and N-methylpyridoxine in the urine of domestic cats, and, interestingly, 
these chemicals were excreted at concentrations higher than 4-PA, even with mod-
erate intake of PN. Other studies reported the discovery of multiple PM derivatives 
in urine samples from PM-administered diabetic and obese rats [20, 21]. Moreover, 
at least nine unidentified vitB6 metabolites were detected in human urine after oral 
administration of radiolabeled PN [17, 19].

Oxidation of PN at the 5′ position, followed by sequential dehydrogenation to 
form 5-PA, is known to exist only in the PN catabolic pathway of some bacterial 
species like Pseudomonas IA and Arthrobacter Cr-7, where the enzymes catalyzing 
these reactions have been characterized [15]. Similar reactions have been proposed 
to occur in mammals based on experimental clues. The first one was provided by 
the study of Coburn and colleagues [22] who showed that healthy men who ingested 
a structural analog of PN, 4′-deoxypyridoxine, excreted 4’-Deoxy-5-pyridoxic acid 
in their urine. A similar experiment was carried out in guinea pigs [23], and the 
results indicated that these animals were also able to convert 4′-deoxypyridoxine 
to 4′-deoxy-5-pyridoxic acid. All together, these studies provided evidence for the 
possible existence of alternative but currently undiscovered catabolic routes of PN 
in humans and other mammals.

1.3 Vitamin B6 transportation across cellular membrane

Multiple experimental evidence suggests that, as with most water-soluble 
vitamins [24], the transportation of vitB6 across mammalian cell membrane is 
carrier-mediated. Studies in cultured human intestinal [12, 25], colonic [26], and 
renal cells [27] and animal-derived renal proximal tubular cells [28] demonstrated 
the presence of an efficient and specific carrier-facilitated mechanism for cellular 
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uptake of vitB6. Such a specific transporting membrane carrier was employed to 
produce a high affinity gene delivery system into cancer cells using a vitB6-coupled 
vector [29]. However, the molecular identity of vitB6 transporter protein in mam-
mals has remained elusive [12, 30]. Among eukaryotes, the only vitB6 transporters 
identified so far are the yeast transporters, Tpn1p [31] and Bsu1 [32], and, recently, 
PUP1 in plant species Arabidopsis (first to be identified in plants) [33].

1.4 Physiological roles of vitamin B6

PLP, the coenzymatically active form of vitamin B6, plays an important role in 
maintaining the biochemical homeostasis of the body [34]. In the human body, 
PLP is an essential cofactor for more than 140 distinct enzymatic activities, mainly 
associated with synthesis, degradation and interconversion of amino acids as well 
as with neurotransmitter metabolism [35–38]. PLP-dependent enzymes are also 
involved in a multitude of other cellular processes, including biologically active 
amine biosynthesis, lipid metabolism, heme synthesis, nucleic acid synthesis, 
protein and polyamine synthesis and several other metabolic pathways (Figure 4) 
[5, 6]. Furthermore, PLP is important in energy homeostasis through glycogen deg-
radation and gluconeogenesis, since PLP is a cofactor for glycogen phosphorylase 
and gluconeogenic transaminases [36, 41]. In folate-mediated one-carbon metabo-
lism (FOCM), PLP is required as a cofactor for the enzyme serine hydroxymethyl-
transferase, both its cytoplasmic (SHMT1) and mitochondrial (SHMT2) isoforms. 
FOCM is an important pathway that is involved in a number of physiological 
processes such as DNA methylation, redox homeostasis and purines and thymidine 
biosynthesis [36, 42].

As a coenzyme for the synthesis of several neurotransmitters including 
D-serine, D-aspartate, L-glutamate, glycine, γ-aminobutyric acid (GABA), 

Figure 4. 
The diverse cellular functions of PLP. Names in blue are the PLP-dependent enzymes involved in each 
metabolic process. Some enzymes can be implicated in mutiple processes. An example is branched-chain 
amino acid aminotransferase which can fall under amino acid and neurotransmitter metabolism. Glycine 
dehydrogenase can be classified under folate cycle and amino acid and neurotransmitter metabolism. (Based on 
[6, 39]; PLP chemical structure was retrieved from [40]).
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serotonin, epinephrine, norepinephrine, histamine and dopamine, PLP is an 
important vitamer for normal brain function [5, 43]. For example, GABA, the major 
inhibitory neurotransmitter in the central nervous system (CNS), is synthesized 
from L-glutamate by the PLP-dependent enzyme glutamate decarboxylase (GAD). 
Moreover, PLP is a cofactor for branched-chain amino acid aminotransferase 
(BCAT) which catalyzes the synthesis of L-glutamate, the major excitatory neu-
rotransmitter, from branched-chain amino acids like leucine and valine [5].

Another important PLP-dependent enzyme in the brain is aromatic L-amino 
acid decarboxylase (AADC), which catalyzes the final steps in the biosynthetic 
pathways of serotonin and dopamine (Figure 5) [5, 36]. These neurotransmitters 
also serve as precursors for other important compounds in the brain, specifically 
melatonin, norepinephrine and epinephrine (Figure 5) [5, 46].

In addition to its role as an enzymatic cofactor, PLP has been shown to play a 
role in preventing DNA damage [47] and in modulating the activity and expression 
of steroid hormone receptors [6, 48]. vitB6 has also been described as an efficient 
antioxidant in plants and fungi, with the ability of its different vitamers to quench 
reactive oxygen species [1, 49, 50].

1.5 PLP homeostasis and its importance for human health

PLP is a highly reactive compound because of its aldehyde group at the 4′ posi-
tion which can undergo spontaneous complexation with other molecules within the 
cell [1, 9]. It may bind with amino groups in proteins and disrupt their structure 
[6]. For example, it has been shown that PLP can react with the lysine residue in the 

Figure 5. 
Biosynthetic pathway for biogenic amine neurotransmitters and melatonin. The PLP-dependent enzyme, 
AADC, catalyzes a central step in this pathway. TH: tyrosine hydroxylase; TPH: tryptophan hydroxylase; 
L-dopa: levodopa; 5-HTP: 5-hydroxytryptophan; DβH: dopamine β-hydroxylase; MAO: monoamine 
oxidase; SNA: serotonin N-acetylase; HIOMT: hydroxyindole O-methyltransferase; COMT: catechol-O-
methyltransferase; ALDH: Aldehyde dehydrogenase; 3-OMD: 3-O-methyldopa; VLA: vanillactic acid; 
5-HIA: 5-hydroxyindole acetaldehyde; 5-HIAA: 5-hydroxyindoleacetic acid; 3-MT: 3-methoxytyramine; HVA: 
homovanillic acid; DOPAC: 3,4-dihydroxyphenylacetic acid. (Based on [44, 45]).
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active site of human DNA topoisomerase I, causing its inhibition [51, 52]. Through 
a chemical reaction known as Knoevenagel condensation, PLP can also react 
with intermediate metabolites like Δ1-pyrroline 5-carboxylate and Δ1-piperideine 
6-carboxylate, which form the molecular basis of PLP depletion in the neurometa-
bolic diseases ALDH7A1 deficiency and hyperprolinaemia type II, respectively [6]. 
Because of its high reactivity and to prevent toxic accumulation of this cofactor, the 
intracellular pool of free PLP is maintained at very low concentration (about 1 μM 
in eukaryotic cells) [1, 5, 6]. It is therefore likely that PLP production in the cell is 
tightly regulated [5], and experimental work indicates the presence of an efficient 
mechanism that maintains intracellular PLP levels within optimum levels [12]. 
However, how the concentration of PLP is controlled in mammalian tissues is not 
entirely understood [3, 34].

A number of mechanisms have been proposed that help in PLP homeostasis. 
First, both enzymes that produce PLP, PLK and PNPO, are inhibited by their 
product PLP and its rate of synthesis can, therefore, be controlled by this feed-
back inhibition [1, 5, 6]. Enzymes that degrade PLP and PL, like PLPase and 
AOX, respectively, have also been proposed as a mechanism that keeps free PLP 
at low level within the cell [1, 5, 6]. Proteins that are known to naturally bind 
PLP, like muscle glycogen phosphorylase, plasma albumin and hemoglobin in red 
blood cells, contribute to reducing the amount of free reactive PLP [6]. In addi-
tion to its catalytic role in PLP synthesis, a recent study [53] demonstrated that 
PNPO forms a tight a binding with PLP at a noncatalytic site in vitro. The study 
further showed that PLP-bound PNPO interacts with several PLP-dependent 
enzymes and hypothesized that it may serve as a safe carrier of the reactive 
cofactor to its dependent enzymes [53]. Another more recently proposed PLP 
carrier protein is known as PLPHP or PLP Homeostasis Protein (described in 
detail in Section 2.5).

Conditions that disrupt cellular PLP homeostasis can cause disease. For example, 
inactivation of PLPP in mice led to increase in PLP levels, anxiety and motor deficits 
[54]. In humans, intake of high doses of vitB6 is known to cause motor and sen-
sory neuropathies [1, 5]. Deficiency of PLP in the cell is also implicated in several 
pathologies, most notably the so-called vitB6-dependent epileptic encephalopathies 
[1, 5, 9, 37].

2. VitB6-dependent epileptic encephalopathies

VitB6-dependent epileptic encephalopathies (B6EEs) represent a clinically and 
genetically heterogeneous group of rare inherited metabolic diseases [55, 56]. These 
debilitating conditions are characterized by recurrent seizures in the prenatal, 
neonatal, or postnatal period, which are typically resistant to conventional anticon-
vulsant treatment but well-controlled by the administration of PN or PLP [56–59]. 
In addition to seizures, children affected with B6EEs may also suffer from devel-
opmental and/or intellectual disabilities, along with structural brain abnormalities 
[60]. The 5 principal types of B6EEs: PN-dependent epilepsy due to ALDH7A1 
(antiquitin) deficiency (PDE-ALDH7A1) (MIM: 266100), hyperprolinemia type 2 
(MIM: 239500), PLP-dependent epilepsy due to PNPO deficiency (MIM: 610090), 
hypophosphatasia (MIM: 241500) and PLPBP deficiency (MIM: 617290) [6, 9, 
60, 61] (Table 1). According to the underlying pathobiochemical mechanism, these 
forms of B6EEs can be categorized into: 1) defects in amino acid catabolic pathways 
causing buildup of byproducts that react with PLP (PDE-ALDH7A1 and hyperpro-
linemia type 2), 2) defects in the vitB6 salvage pathway (PNPO deficiency), and 3) 
defects in cellular uptake of PLP (hypophosphatasia) [6, 9] (Table 1). In the most 
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Disease name PN-dependent epilepsy 

(PDE-ALDH7A1)

PLP-dependent 

epilepsy

Hyperprolinemia type 2 Hypophosphatasia PLPBP deficiency

Affected gene ALDH7A1 PNPO ALDH4A1 ALPL PLPBP

Affected enzyme or 
protein/pathway(s)

α-AASA dehydrogenase/
lysine catabolism pathway

PNP oxidase/vitB6 
salvage pathway

P5C dehydrogenase/Proline 
catabolism pathway

TNSALP/Extracellular 
dephosphorylation of PLP, Bone 
mineralization

PLPHP/PLP 
homeostasis

Pathophysiological 
mechanism of PLP 
deficiency

Accumulating lysine 
metabolite, P6C, reacts with 
and inactivates PLP

PNPO is required for 
intracellular production 
of PLP from PNP/PMP

Accumulating proline 
metabolite, P5C, reacts with 
and inactivates PLP

TNSALP is required for 
extracellular conversion of PLP to 
PL to enable its cellular uptake

PLPHP is required for 
maintaining cellular 
PLP homeostasis

Main clinical features Neonatal seizures, DD/ID Neonatal seizures, DD/
ID

Infantile seizures, DD/ID, 
ataxia

Rickets, Osteomalacia, Neonatal 
seizures

Neonatal seizures, 
DD/ID

Biomarkers (biofluid) High α-AASA (U/P), P6C 
(P), PIP (P)

High PM, PM/PA ratio 
(P)

High proline (P), P5C (U) Low ALP (P), high PLP (P), high 
PEA (U)

No specific biomarker

Commonly used vitB6 
treatment

PN PLP PN PN PN

References [9, 60, 62] [9, 57, 63] [6, 60, 63, 64] [9, 60, 65, 66] [7, 67, 68]

Abbreviations: α-AASA: α-aminoadipic semialdehyde; P6C: ∆1-piperideine-6-carboxylic acid; DD: developmental delay; ID: intellectual disability; U: urine; P: plasma; PIP: pipecolic acid; P5C: pyrroline 
5-carboxylic acid; ALP: alkaline phosphatase; PEA: phosphatidylethanolamine GPI: glycosyl phosphatidylinositol.

Table 1. 
Summary of the genetic, biochemical and clinical features of B6EEs.
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recently discovered type, PLPBP deficiency, the exact mechanism that disrupts PLP 
homeostasis is not fully understood [7].

2.1 PN-dependent epilepsy (ALDH7A1 deficiency)

2.1.1 Disease mechanism

PN-dependent epilepsy (PDE-ALDH7A1) is caused by homozygous or com-
pound heterozygous mutations in the ALDH7A1 gene (also known as antiquitin, 
ATQ ). ALDH7A1 codes for α-aminoadipic semialdehyde dehydrogenase, an enzyme 
that functions within the lysine catabolism pathway in the brain and peripheral 
tissues [62]. In PDE-ALDH7A1, loss of the enzyme’s function leads to the accumula-
tion of three upstream lysine catabolites: ∆1-piperideine-6-carboxylic acid (P6C), 
α-aminoadipic semialdehyde (α-AASA) and pipecolic acid (PIP) [60] (Figure 6). 
Through a chemical reaction known as Knoevenagel condensation, accumulating 
P6C spontaneously conjugates with PLP, forming inactive complex products and 
causing cellular deficiency of this important cofactor [62] (Figure 6). Seizures are 
thought to occur because PLP is required for neurotransmitter metabolism, particu-
larly for the synthesis of GABA from glutamate [71].

2.1.2 Clinical features

The main clinical manifestation of PDE-ALDH7A1 is recurrent perinatal-onset 
seizures that are resistant to conventional anticonvulsant treatment, but which 
show remarkable response to the administration of high doses of PN [60, 72]. 
Seizures usually relapse when PN treatment is discontinued, either incidentally 
or for diagnostic purposes [60]. In some cases, the mother of an affected child has 
described abnormal fetal movements during pregnancy, suggestive of pre-natal 
onset of seizures [55, 73–75]. In atypical cases, seizure onset can be delayed to up 
to 3 years of age [60], and in one exceptional case, Srinivasaraghavan et al. [76] 
reported an Indian female with genetically proven PDE-ALDH7A1 in whom seizures 
did not start until the age of 17 years (juvenile onset).

In addition to seizures, most PDE-ALDH7A1 patients (about 75%) also suf-
fer from developmental delay and moderate to severe intellectual disability 
[60, 72, 77]. In addition, as revealed by neuroimaging analysis, a spectrum of 
structural brain defects have been described in affected children with anomalies of 
corpus callosum (agenesis/hypoplasia/dysplasia) and white matter being common 
features [75, 77–79]. Motor deficits (hypotonia/hypertonia/dystonia), irritability, 
autism spectrum disorder (ASD), attention-deficit hyperactivity disorder (ADHD) 
and anxiety are additional features reported in patients [75, 77, 80].

The phenotypic spectrum of PDE-ALDH7A1 may also include non-neuronal 
features, but these are less frequently observed in patients. Reported examples are 
ocular problems, hypoglycemia, hypothyroidism, lactic acidosis, profound elec-
trolyte disturbances, diabetes insipidus, coagulopathy, anemia, respiratory distress 
and hypotension [60, 77, 79, 81, 82].

2.1.3 Biochemical features and diagnostic biomarkers

In PDE-ALDH7A1, blockade of the ATQ-catalyzed step in the lysine catabolism 
pathway leads to accumulation of 3 upstream metabolites, P6C, α-AASA and PIP, 
as discovered by screening of patients’ body fluids. Presence of these metabolites 
in supraphysiological levels is considered the hallmark biochemical feature of ATQ 
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deficiency and have been utilized as diagnostic biomarkers [72]. Recently, two addi-
tional lysine metabolites discovered to accumulate in patients have been suggested 
as novel biomarkers. The first one is 6-oxopipecolate (6-oxo-PIP), which was found 
to be present in large concentrations in plasma, urine, and CSF of ATQ deficiency 
patients [83, 84]. By means of an untargeted metabolomics approach, Engelke et al. 
[83] identified another novel metabolite, 6-(2-oxopropyl)piperidine-2-carboxylic 
acid (2-OPP), that accumulated in biofluids of affected individuals.

Because P6C inactivates PLP and causes cellular depletion of this enzymatic 
cofactor, a number of biochemical abnormalities occur that are associated with 
secondary deficiencies of PLP-dependent enzymes, mainly affecting amino acid 
metabolism. Table 2 lists some amino acid changes reported in PDE-ALDH7A1 
patients and possible links to PLP-dependent enzymes in their metabolic 
pathways.

Figure 6. 
Pipecolic acid (left) and saccharopine (right) pathways for L-lysine catabolism in mammals. The two 
pathways converge at the step of α-AASA/P6C synthesis. ALDH7A1 catalyzes the step indicated by the red “X”. 
Inactivation of the enzyme in PDE-ALDH7A1 causes buildup of its two substrates, P6C and α-AASA, as well 
as of PIP (the 3 biomarkers in patients). Accumulating P6C condenses with PLP, forming an inactive product 
and leading to depletion of the cofactor. *The nature of the first step of pipecolic acid pathway is undetermined. 
AASS: aminoadipic semialdehyde synthase; LKR: lysine-ketoglutarate reductase; SDH: saccharopine 
dehydrogenase; AADAT: 2-aminoadipate aminotransferase; KR: ketimine reductase; CRYM: Mu-crystallin 
homolog; PIPOX: pipecolic acid oxidase; P5CR: piperideine-5-carboxilic reductase. (Based on [69, 70]).
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2.1.4 Treatment and its outcome

In patients with PDE-ALDH7A1, seizures are effectively controlled by PN treat-
ment in about 90% of cases [6]. Patients require life-long intake of pharmacological 
doses of PN for seizure control as PN withdrawal leads to seizure recurrence [60]. 
In a subset of patients with ATQ deficiency, better seizure control is achieved when 
folinic acid is added to the PN regimen (known as folinic acid-responsive seizures 
or FARS) [60]. The subset of FARS patients can be distinguished by the appear-
ance of a characteristic peak (Peak X) on CSF biogenic amine neurotransmitter 
 analysis [60, 89].

Despite effective control of seizures with PN, treatment outcome is usually still 
poor, and a large proportion of children with PDE-ALDH7A1 have neurodevelop-
mental impairments [77]. It has been suggested that PN treatment alone cannot 
prevent the accumulation of high levels of lysine metabolites (P6C, α-AASA and 
PIP) in the brain which may have neurotoxic effects [90].

To limit the accumulation of these metabolites, substrate (lysine) reduction 
therapies have been implemented. These consisted of lysine-restricted diet [91], 
arginine supplementation [92] and triple therapy [93]. Arginine is a natural antago-
nist of lysine because the two amino acids use the same transporter (known as the 
y + system) for their transportation across the BBB. Therefore, it was suggested that 
arginine could compete with lysine and limit its entry to the brain [72, 92]. Triple 

Amino acid 

(tissue/fluid, 

change)*

Implicated PLP-dependent enzyme(s)** Enzyme’s function**

Glycine (CSF & 
plasma, ↑)

Glycine dehydrogenase (decarboxylating) Important component of the 
glycine cleavage system

Threonine  
(CSF, ↑)

Glycine C-acetyltransferase Catalyzes the second step in the 
pathway that converts threonine 
to glycine

Threonine deaminase Catalyzes the first step in 
the catabolic pathway of 
threonine [85]

Serine  
(plasma, ↑)

• Serine dehydratase

• Serine hydroxymethyltransferase [86]

Involved in breakdown/
conversion of serine to other 
metabolites

Alanine (CSF & 
plasma, ↑)

• Alanine-glyoxylate aminotransferase

• Alanine transaminase

Involved in breakdown/
conversion of alanine to other 
metabolites

Phenylalanine 
(CSF, ↑)

Aromatic L-amino acid decarboxylase Converts phenylalanine to 
phenethylamine

Arginine  
(CSF, ↓)

Ornithine δ-aminotransferase Catalyzes the formation of 
ornithine, an indirect precursor 
for arginine synthesis [57, 87]

Histidine  
(CSF, ↑)

Histidine decarboxylase Converts histidine to histamine

*Amino acid changes were retrieved from the case series of Mills et al. [75] and Yuzyuk et al. [85].
↑: elevated, ↓: lowered.
**Unless another source is specified, information on PLP-dependent enzymes and their catalytic activities were 
collectively retrieved from the review of Wilson et al. [6] and KEGG pathway database [88].

Table 2. 
Amino acid changes in PDE-ALDH7A1 and related PLP-dependent enzymes.
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therapy refers to a combination therapy of lysine-restriction and arginine supple-
mentation (in addition to PN treatment, therefore it was termed “triple therapy”) 
[93]. Clinical trials using these dietary therapies reported reduction in lysine 
metabolite levels and improvements in the neurodevelopmental outcome in most 
treated patients [79, 85, 91, 93–96].

2.2 PLP-dependent epilepsy (PNPO deficiency)

2.2.1 Disease mechanism

PNPO catalyzes the rate-limiting step in the biosynthetic pathway of PLP from 
other vitB6 vitamers (salvage pathway, Figure 2). Patients affected with pathogenic 
variants in its encoding gene, PNPO, have reduced activity of PNPO which leads 
to dysfunction of the salvage pathway and inability of the patients to produce 
adequate amounts of PLP [86].

2.2.2 Clinical features

Similar to PDE-ALDH7A1, PNPO deficiency is characterized by early onset, 
drug-resistant epileptic encephalopathy [87]. Since the disease gene discovery in 
2005 [57], about 90 cases of PNPO deficiency have been reported in the medical 
literature with a phenotypic spectrum that extends from early postnatal lethality 
to milder forms with well-controlled seizures and normal neurodevelopmental 
outcome [88, 97–99]. Prematurity is observed in about 50% of the PNPO defi-
ciency cases [88]. Seizures usually start very early after birth (within the first day 
of life in about 60% of the cases), but can also have a later onset within the first 
6 months of life [86, 88]. In utero onset of seizures have been suspected in some of 
the documented cases [87]. PNPO-deficient patients may also suffer from variable 
degrees of morphological brain defects, most commonly diffuse brain atrophy, and 
neurodevelopmental deficits [88] as well as systemic co-morbidities such as lactic 
acidosis, hypoglycaemia, coagulopathy, anemia and ocular and cardiac problems 
[6, 37, 86, 98].

2.2.3 Biochemical features and diagnostic biomarkers

PNPO deficiency is associated with a number of biochemical alterations most 
commonly affecting biogenic amine neurotransmitters. The PLP-dependent 
enzyme, AADC, plays a central role in the biosynthetic pathway of these neu-
rotransmitters (Figure 5). A number of amine neurotransmitter metabolites 
in this pathway were found to be present at abnormal levels in PNPO-deficient 
patients, suggesting an impaired flux through the AADC catalyzed step. For 
example, elevated levels of 3-O-methyldopa (3-OMD) and vanillactic acid (VLA) 
have been frequently detected in patients’ CSF and urine samples, respectively 
[6, 88]. Both compounds are metabolites of L-dopa, the direct precursor of 
dopamine, which are generated upstream of AADC [44] (Figure 5). On the other 
hand, low CSF concentrations have been detected for metabolites downstream 
to AADC, namely, homovanillic acid (HVA) and 5-hydroxyindoleacetic acid 
(5-HIAA) [88, 100], the catabolic products of dopamine and serotonin, respec-
tively (Figure 5) [44].

The biochemical spectrum of PNPO deficiency also includes amino acid and 
vitB6 vitamer perturbations. Elevated concentrations of threonine, glycine, 
histidine and taurine and low concentrations of arginine in CSF and/or plasma 
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have been all reported in patients [6, 10, 88]. Unlike PDE-ALDH7A1, systemic 
PLP deficiency is a typical finding in PNPO deficiency as evidenced by the detec-
tion of low PLP levels in pre-treatment patient samples (CSF and/or plasma) 
[37, 88, 101]. Another common vitamer finding is the accumulation of PM, the 
precursor of PNPO substrate, detected in both pre- and post-treatment plasma 
samples [101, 102].

Currently there is no specific diagnostic biomarker for PNPO deficiency 
and genetic testing of the PNPO gene is required to establish diagnosis [86]. 
Altered biogenic amine profile along with low PLP and/or elevated PM in patient 
biofluids have been proposed as indicators of PNPO deficiency [6, 10, 88]. In a 
small cohort of patients, Mathis et al. [101] noted a consistently elevated plasma 
PM/PA ratio irrespective of vitB6 treatment status. This distinct vitamer profile 
was only observed in PNPO-deficient patients but not in other vitB6EE forms 
and was therefore suggested to be a candidate biomarker for PNPO deficiency, 
but this is yet to be validated in a larger cohort of patients [101]. Recently, a new 
and rapid mass spectrometry-based method has been developed for diagnosis of 
PNPO deficiency in dried blood spots which relies on measurement of enzyme 
activity [103].

2.2.4 Treatment and its outcome

Seizures are usually controlled by supplementation of pharmacological doses 
of PLP or PN. Based on early reports [57, 104, 105], PNPO deficiency has for some 
time been viewed as a disease that is only treatable by PLP but not PN (and hence 
was given the name “PLP-dependent epilepsy”). This was also consistent with the 
notion that the defective enzyme, PNPO, in these patients is unable to convert 
supplemented PN to PLP which explains the lack of response to PN treatment. 
However, it was later found that a subset of affected children (about 40% of cases 
[6]) show better clinical response to PN while PLP may in fact exacerbate their sei-
zures [87, 106]. Mills et al. [87] suggested that certain genotypes (namely R225H/C 
and D33V) seem to be more likely to benefit from PN treatment. This was attributed 
to possible residual enzyme activity that is associated with these PNPO mutations 
and that PN may also have a chaperone-like stabilizing effect on the mutant protein. 
PLP, on the other hand, may exert an inhibitory effect on the protein and abolish 
its presumed residual activity leading to more deleterious consequences [106, 107]. 
Based on treatment response, PNPO-deficient patients appear to fall into at least 3 
groups; patients who respond to PLP but are refractory to PN, patients who respond 
to both vitamers (PLP and PN) and patients who respond to PN but decline upon 
switching to PLP [86].

In some patients, better seizure control was achieved by adjunct treatments like 
anti-seizure drugs [106] and/or riboflavin [108] in combination with vitB6 therapy. 
Riboflavin is a precursor of flavin mononucleotide (FMN), the cofactor of PNPO, 
and therefore may enhance residual enzyme activity [87]. There were multiple 
reports of liver problems in patients receiving PLP treatment, and these were linked 
to possible toxic effects of chronic PLP administration, an observation that war-
rants careful mentoring of PLP-treated patients [109–111].

Neurodevelopmental outcome is still poor in a large proportion of affected 
children. A recent literature survey of 87 cases of PNPO deficiency [88] found 
that 56% of patients suffered developmental and/or intellectual deficits in spite 
of adequate seizure control with vitB6 therapy. Other reports suggested that early 
diagnosis and initiation of treatment could lead to normal developmental outcome 
[4, 109, 112].
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2.3 Hyperprolinemia type 2

2.3.1 Disease mechanism

The genetic cause of hyperprolinemia type 2 (HP2), first identified in an Irish 
traveler family [64], was found to be due to recessive mutations in ALDH4A1. The 
gene codes for pyrroline 5-carboxylate dehydrogenase (P5CD), an enzyme that 
catalyzes an intermediate step in the proline degradation pathway [6] (Figure 7). In 
a pathobiochemical mechanism similar to PDE-ALDH7A1, deficiency of P5CD leads 
to accumulation of pyrroline 5-carboxylate (P5C), an intermediate metabolite that 
undergo a spontaneous Knoevenagel type of reaction with PLP leading to reduced 
bioavailability of the cofactor (Figure 7) [63].

2.3.2 Clinical features

The clinical manifestation of HP2 is variable [114] and asymptomatic cases 
have been described [115]. Seizures are the most common clinical fining in HP2 
which occur in about 50% of the cases [6, 114]. They are often triggered by febrile 
illness and have variable age of onset; commonly occurring during infancy or 
childhood but can also be up to late adulthood (63 years in one HP2 case [116]) 
[6, 114, 117, 118]. Intellectual and neuropsychiatric abnormalities have also been 
described in some HP2 patients. In the original HP2 Irish traveler family, 9 out of 
the 13 affected individuals developed seizures and two of them had intellectual dis-
ability [118]. Van de Ven [119] reported 5 HP2 patients; all presented with seizures, 
3 had intellectual disability and 4 suffered behavioral problems.

2.3.3 Biochemical features and diagnostic biomarkers

The key biochemical features of HP2 are elevated plasma and urinary levels 
of proline (about 10–15 folds higher in plasma) and P5C. A combination of 
both biomarkers is diagnostic of HP2 and distinguishes it from hyperpro-
linemia type 1 [119, 120]. Walker and Mills [121] identified a new metabolite, 

Figure 7. 
L-Proline metabolic pathway. In HP2, inactivation of P5CD causes accumulation of the upstream metabolite 
P5C (red arrows). P5C spontaneously condenses with the enzymatic cofactor PLP leading to the formation 
of inactive adducts and depletion of the cofactor. GSA: glutamic-gamma-semialdehyde, ORN: ornithine, 
NAD(P): nicotinamide adenine dinucleotide (phosphate), POX: proline oxidase, P5CR: P5C reductase, P5C: 
pyrroline 5-carboxylate, OAT: ornithine aminotransferase, P5CD: P5C dehydrogenase, P5CS: P5C synthase. 
(Based on [63, 113]).
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N-(pyrrole-2-carboxyl) glycine, that accumulated in urine of HP2 subject. They 
subsequently confirmed the presence of this compound in another 4 patients 
and suggested its use as a diagnostic biomarker for HP2. Other metabolic altera-
tions reported in HP2 patients include increased plasma concentrations of lactate 
[116, 119], glycine [115, 120], ornithine [120], and alanine [119] and urinary 
xanthurenic acid; probably secondary to PLP deficiency [59]. VitB6 was previously 
analyzed in 5 HP2 patients [59, 116, 119] and found to be decreased in 3 patients 
and at low normal levels in the other two.

2.3.4 Treatment and its outcome

VitB6 supplementation has been used to treat HP2 associated seizures with vari-
able response. Most of the case studies reported effective control of seizures with 
vitB6, either alone or in conjugation with anti-seizure medications [59, 114, 116], 
while few described irresponsiveness to vitB6 therapy [119]. Van de Ven et al. [119] 
assessed the long-term clinical outcome in 4 HP2 patients treated with vitB6 and/or 
anti-seizure medications. Seizures resolved spontaneously in 3 patients by the age 
of 12–18 years, however, neurobehavioral problems were persistent in most patients 
despite therapy. The clinical course was non-progressive and did not correlate with 
the vitB6 dose and vitB6 therapy [119].

2.4 Hypophosphatasia

2.4.1 Disease mechanism

Hypophosphatasia (HPP) results from autosomal recessive or dominant muta-
tions affecting ALPL, the gene encoding tissue nonspecific alkaline phosphatase 
(TNSALP). TNSALP is an ecto-enzyme that is highly expressed in bone, liver, 
kidney and developing teeth [122, 123]. The enzyme catalyzes extracellular 
dephosphorylation of multiple substrates including inorganic pyrophosphate (PPi), 
phosphoethanolamine (PEA), and PLP (Figure 3) [122, 124]. On the osteoblast 
membrane, TNSALP hydrolyzes PPi into inorganic phosphate (Pi). Together with 
calcium ions (Ca2+), Pi is required for the synthesis of hydroxyapatite (HA) which 
is the major inorganic constituent of bones and teeth. In HPP, TNSALP deficiency 
leads to extracellular accumulation of PPi which impairs the formation of HA and 
proper bone mineralization leading to an array of skeletal abnormalities [122, 123]. 
TNSALP is also required for the extracellular hydrolysis of PLP to PL to facilitate its 
entry into the cell which explains the occurrence of intracellular PLP deficiency and 
vitB6-dependent seizures in some forms of HPP [123, 124].

2.4.2 Clinical features

There is a remarkable heterogeneity in the clinical presentation of HPP and 5 
principal clinical types have been recognized based on skeletal disease features 
and age of onset. In order of escalating severity, these types are “odonto”, “adult”, 
“childhood”, “infantile”, and “perinatal” HPP [124, 125]. The severe forms (infantile 
and perinatal) show autosomal recessive inheritance, while in the milder forms 
both autosomal dominant or recessive inheritance has been described [124, 126]. 
Defective mentalization of bone and/or teeth is the clinical hallmark feature of HPP 
in all of these types [127]. Seizures are the most well described extra-skeletal feature 
of HPP and are exclusively observed in the infantile and perinatal types [128]. 
According to a recent metanalysis [128], seizures occurred in about 20% of patients 
with pediatric-onset HPP.
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Odonto-HPP is the mildest form and can manifest at any age. It involves minor 
dental problems like premature shedding of deciduous teeth without any other 
symptoms [123, 124]. Adult HPP typically manifest during middle age or later and 
can cause debilitating symptoms like osteomalacia leading to bone fractures, chon-
drocalcinosis, musculoskeletal pain and loss of dentition. Some patients also suffer 
from pseudogout due to increased extracellular concentrations of PPi [123, 126]. 
Childhood HPP presents after the age of 6 months and common features include 
rickets and premature loss of deciduous teeth. Severe forms are also associated 
with muscle weakness causing delay in walking and abnormal gait [125]. Infantile 
HPP is a severe type and can lead to death in about 50% of affected infants [123]. It 
is diagnosed before 6 months of age and features delayed postnatal development, 
failure to thrive, hypotonia along with rachitic deformities [125]. Hypercalcemia 
and hypercalciuria are frequently seen and may lead to renal failure [126]. In 
rapidly progressive cases, rickets causes thoracic deformity and death may ensue 
due to respiratory insufficiency [125, 129]. VitB6-dependent seizures may develop, 
sometimes preceding the skeletal features, and usually predict a fatal outcome 
[123, 125]. Perinatal HPP is the most severe type in which the symptoms start 
in utero or at birth and almost always lead to lethal outcome. Skeletal hypominer-
alization is profound and causes deformities such as caput membranaceum, wide 
fontanels and short limb dwarfism [123, 125, 130]. Chest malformation followed by 
pulmonary compromise is also a common fatal consequence of the rachitic disease 
[126]. Additional features described in this extreme form of HPP comprise vitB6-
dependent seizures, apnea, irritability, myelophthisic anemia and intracranial 
hemorrhage [123].

2.4.3 Biochemical features and diagnostic biomarkers

HPP can be diagnosed by the presence of pathognomonic skeletal radiographic 
changes along with characteristic biochemical features. The most commonly used 
biochemical marker for HPP is low serum alkaline phosphatase activity which 
consistently observed in all forms of HPP [126]. Other reported biochemical find-
ings in HPP include increased levels of TNSALP substrates PPi and PEA in urine, 
elevated Pi in plasma, hypercalciuria and/or hypercalcemia and high urinary levels 
of phosphoserine [6, 123, 124, 126]. These features can only be used to support the 
diagnosis of HPP because they may not be present in all HPP forms and are some-
times observed in other skeletal diseases. A more sensitive and specific biomarker 
for HPP is elevated serum levels of PLP, which has been detected even in the mildest 
form of HPP (odonto-HPP) and the degree of PLP elevation seems to correlate with 
disease severity [123, 131].

2.4.4 Treatment and its outcome

HPP-related seizures are usually responsive to PN supplementation [56, 129]. 
Effective treatment against the skeletal manifestations was lacking until the 
advent of Asfotase alfa, an enzyme-replacement therapy that was approved in 
2015 [124, 126]. Asfotase alfa is recombinant, fusion protein consisting of the 
catalytic ectodomain of human TNSALP, the Fc fragment of human immuno-
globulin G1 (IgG1) and a deca-aspartate motif for bone targeting [123, 131, 132]. 
Clinical trials have demonstrated the long-term safety and efficacy of Asfotase 
alfa in preventing life-threatening complications of HPP [123, 132, 133]. HPP 
patients, including those with severe forms, treated with Asfotase alfa showed 
marked improvements in all clinical aspects (radiography, pulmonary, neurode-
velopmental and motor functions) along with resolution of pain and disability 
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[123, 126, 133]. At the biochemical level, Asfotase alfa therapy was associated with 
normalization of plasma levels of PPi and PLP [133].

2.5 PLPHP deficiency

2.5.1 Disease mechanism

PLPHP deficiency is the latest addition to B6EEs that is caused by recessive 
mutations in PLPBP, a gene previosly known as proline synthetase co-transcribed 
homolog (PROSC) [7]. The product of this gene, known as PLP homeostasis protein 
(PLPHP), belongs to a highly conserved family of proteins known to bind PLP. The 
function of these PLP-binding proteins in humans as well as other species is poorly 
understood. Their structures have remarkable similarity with a bacterial enzyme 
known as alanine racemase [134]. An insight into the function of this protein came 
from ananlysis of samples from PLPHP-deficient pateints which showed a widely 
deranged vitB6 vitamer profile. It has therefore been suggeseted that this protein 
plays an imprtant role in vitB6 homeostasis [7, 68]. However, the exact mechanism 
of how PLPHP dysfunction disrupts PLP homeostasis and leads to the observed 
epileptic encephalopathy is still unknown. Darin et al. [7] hypothesized that PLPHP 
is a PLP-carrier that protects the reactive cofactor from binding to other cellular 
molecules, shields it from degradative enzymes like phosphatases and securely 
delivers it to PLP-dependent enzymes.

2.5.2 Clinical features

The general clinical picture of PLPHP deficiency remarkably overlaps with that 
of ALDH7A1 deficiency and PNPO deficiency which is dominated by pharmaco-
resistant seizures that respond to vitB6 treatment. Seizures typically manifest 
during the first week of life [7, 67, 68, 135] with possible prenatal onset in some 
cases [68] and a recent report of late onset at 14 months of age [136]. Johnstone 
et al. [68] reported two patients who presented with fatal mitochondrial encepha-
lopathy and a patient with unique movement disorder who lacked epileptic seizures. 
Developmental delay, intellectual disability, acquired microcephaly and structural 
brain abnormalities are common co-morbidities observed in this form of B6EEs 
[7, 67, 68, 137–139]. Systemic features like metabolic acidosis, anemia and gastroin-
testinal problems have been also described in PLPHP-deficient pateints [7, 67].

2.5.3 Biochemical features and diagnostic biomarkers

Biochemical investigations performed in patient samples revealed amino acid 
and neurotransmitter abnormalities, reflecting the pleiotropic metabolic effects 
associated with altered PLP homeostasis. Among amino acids, elevated glycine 
in plasma and/or CSF was the most frequent alteration identified [7, 67, 68]. The 
enzyme that breaks down glycine, glycine cleavage system, requires PLP as a cofac-
tor [140]. Abnormal monoamine neurotransmitter profile was detected in some 
patients, possibly due to suboptimal activity of the PLP-dependent enzyme AADC. 
Reported changes included low CSF levels of HVA (marker of low dopamine) and 
raised concentrations of 3-OMD, L-dopa, 5-HTP (CSF) and VLA (urine) indicating 
accumulation of AADC substrates [7, 67, 86]. Low PLP levels were detected in pre-
treatment plasma [68] and CSF [7] samples from two patients. Johnstone et al. [68] 
described accumulation of high levels of PNP in patient fibroblasts and PLPHP-
deficient HEK293 cells. There is currently no established biomarker for this disease.
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2.5.4 Treatment and its outcome

Seizures typically respond well to vitB6 treatment (PN in majority of cases). 
In cases with inadequate response to PN, switching to PLP led to better seizure 
control [67]. About half of the cases required additional anti-seizure medications 
for optimal seizure control [7, 67]. The addition of folinic acid resulted in improved 
seizure control in one patient [68].

While seizures and secondary metabolic alterations are usually normalized 
with vitB6 therapy, a major fraction of patients still develop some form of neu-
rodevelopmental disability. A recent review of 45 published PLPHP deficiency 
cases found that 65% of the patients suffered from intellectual disability [67]. The 
underlying pathophysiological mechanism is not well understood, and currently 
there is no effective treatment against the neurodevelopmental phenotype of this 
disorder.

3. Other vitB6-responsive conditions

The therapeutic effect of vitB6 supplementation have been also described in 
other disease conditions. The following section outlines some examples.

3.1 Hyperphosphatasia with mental retardation syndrome

Hyperphosphatasia with mental retardation (HPMR) syndrome (OMIM 
Phenotypic Series: PS239300) refers to a group of congenital disorders caused by 
defects in the biosynthetic pathway of glycosyl phosphatidylinositol (GPI) anchor. 
GPI-anchor is a glycolipid that is required for tethering of TNSALP and several 
other proteins (more than 150 in total) to the cell surface and at the blood–brain 
barrier (BBB) [6, 61]. Six subtypes of HPMR syndrome have been identified to date 
with variable phenotypic spectrum that extends from mild nonsyndromic intel-
lectual disability (ID) to more complex forms with severe ID, seizures, increased 
serum alkaline phosphates and dysmorphic features [141–143]. Low serum PLP has 
been detected in some patients which may be ascribed to the elevated serum level 
of alkaline phosphate [144]. Seizures in some HPMR subtypes like PIGV defi-
ciency [144] and PIGO deficiency [143] have been shown to respond to pyridoxine 
treatment.

3.2 PL kinase deficiency

PL kinase (PLK) is an important enzyme in the vitB6 salvage pathway 
(Figure 2). It is responsible for phosphorylating different vitameric compounds 
which is a pre-requisite step for their subsequent conversion to the active cofac-
tor PLP (Figure 2). Biallelic mutations in the gene encoding PLK (PDXK) have 
been recently shown to cause an autosomal recessive disorder that is character-
ized by axonal peripheral polyneuropathy and optic atrophy [145]. Affected 
subjects had low plasma PLP and treatment with PLP supplementation was 
associated with biochemical and clinical improvements [145].

3.3 Molybdenum cofactor deficiency

Molybdenum cofactor (MoCoF) deficiency is a severe inherited metabolic 
disease that causes intractable seizures, developmental delay and structural brain 



B-Complex Vitamins - Sources, Intakes and Novel Applications

20

defects. It is due to recessive mutations in either MOCS1, MOCS2 or GPHN, all 
of which are important genes in the MoCoF biosynthetic pathway [146]. MoCoF 
deficiency impairs the activity of three MoCoF-dependent enzymes; sulfite 
oxidase, xanthine dehydrogenase and aldehyde oxidase [146, 147]. Patients with 
MoCoF deficiency excrete elevated levels of a number of metabolites, most notably 
sulfite and α-AASA [147] (the latter is the same metabolite that accumulates in 
PDE-ADLH7A1). In vitro experiments [147] demonstrated that sulfite inhibits 
the activity of ADLH7A1 which explains the accumulation of α-AASA in MoCoF 
deficiency. It is postulated that increased α-AASA, and consequently its cyclic form 
P6C, may lead to nonenzymatic trapping of PLP [148], in a mechanism analogous 
to that seen in PDE-ADLH7A1 (Figure 6). In line with this, Footitt et al. [149] 
described low CSF PLP levels in two MoCoF deficiency patients. Struys et al. [148] 
reported pyridoxine-responsive seizures in two patients with MoCoF deficiency due 
to MOCS2 mutations.

3.4 Defects in PLP-dependent enzymes

In addition to its coenzymatic role, binding of PLP to its apo-enzymes may also 
be required for proper folding and correct subcellular targeting of these enzymes 
[6, 150]. Several inborn errors affecting PLP-dependent enzymes have been 
described to benefit from PN therapy. Examples are homocystinuria (cystathionine 
β-synthase deficiency), X-linked sideroblastic anemia (δ-aminolevulinate synthase 
deficiency), primary hyperoxaluria type I (alanine: glyoxylate aminotransferase 
(AGT) deficiency), ornithine aminotransferase deficiency and AADC deficiency 
[6, 9, 150]. The therapeutic effect of PN supplementation could to be attributed 
to the chaperone-like, stabilizing action of PLP on these mutated proteins [150]. 
In primary hyperoxaluria type I, it has been hypothesized that at high concentra-
tion, PLP promotes AGT dimerization and inhibit the accumulation of monomeric 
protein species which are mistargeted to the mitochondria [6, 150]. A recent addi-
tion to this category of PN-responsive disorders came from the discovery of GOT2 
mutations in patients who presented with a novel form of epileptic encephalopathy 
and serine deficiency [151]. GOT2 encodes the PLP-dependent enzyme glutamate 
oxaloacetate transaminase (mitochondrial isoform). PN supplementation, either 
alone or in combination with serine, led to seizure control in these patients [151].

3.5 Other epileptic disorders

High-dose vitB6 treatment has been used for seizure control in several other epi-
leptic disorders not related to vitB6 metabolism or its dependent enzymes; such as 
channelopathies [152–154] and West syndrome [155–157]. The specific mechanism 
of vitB6-repsosivness in these types of seizure disorders is not well recognized. 
Some authors [6, 154] suggested that vitB6 may have anticonvulsant effects because 
of the ability of PLP to block P2 purinoceptor 7 (P2X7 receptors), as demonstrated 
in vitro [158].
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