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Chapter

Evaluation of Landslide 
Susceptibility of Şavşat District of 
Artvin Province (Turkey) Using 
Machine Learning Techniques
Halil Akinci, Mustafa Zeybek and Sedat Dogan

Abstract

The aim of this study is to produce landslide susceptibility maps of Şavşat 
district of Artvin Province using machine learning (ML) models and to compare 
the predictive performances of the models used. Tree-based ensemble learning 
models, including random forest (RF), gradient boosting machines (GBM), and 
extreme gradient boosting (XGBoost), were used in the study. A landslide inventory 
map consisting of 85 landslide polygons was used in the study. The inventory map 
comprises 32,777 landslide pixels at 30 m resolution. Randomly selected 70% of the 
landslide pixels were used for training the models and the remaining 30% were used 
for the validation of the models. In susceptibility analysis, altitude, aspect, curva-
ture, distance to drainage network, distance to faults, distance to roads, land cover, 
lithology, slope, slope length, and topographic wetness index parameters were 
used. The validation of the models was conducted using success and prediction rate 
curves. The validation results showed that the success rates for the GBM, RF, and 
XGBoost models were 91.6%, 98.4%, and 98.6%, respectively, whereas the predic-
tion rate were 91.4%, 97.9%, and 98.1%, respectively. Therefore, it was concluded 
that landslide susceptibility map produced with XGBoost model can help decision 
makers in reducing landslide-associated damages in the study area.

Keywords: landslide susceptibility mapping, machine learning, RF, GBM, XGBoost, 
Şavşat

1. Introduction

Natural disasters cause displacement of people, injuries, loss of life, and 
 damage to infrastructure facilities and cultural heritage, which can directly give 
rise to extreme economic losses. According to the data from Emergencies Database 
(EM-DAT), managed by the Center for Research on the Epidemiology of Disasters 
(CRED), 11,755 people died worldwide due to 396 natural disasters that occurred 
in 2019; 94.9 million people were affected by these disasters and an economic loss 
of 103 billion dollars was suffered [1]. On the contrary, according to the report 
prepared by the AON company, which provides insurance and reinsurance broker-
age and risk management consultancy services, the damage caused by natural 
disasters in 2020 is estimated to be 268 billion dollars [2]. In the AON report 
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prepared in 2020, the value of total economic losses caused by natural disasters in 
the 2010–2019 period was calculated as 2.98 trillion dollars. In the same report, the 
economic losses in question were reported to be 1.1 trillion dollars higher than that 
in the 2000–2009 period [3].

Landslide is generally defined as the downward movement and displacement of 
the material forming a slope with the effect of gravity [4]. Rabby and Li [5] stated in 
their study that landslides are a very common phenomenon and account for 9% of 
disasters in the world. Landslides, especially those caused by rainfall, are the most 
damaging natural disasters in mountainous and rugged regions, resulting in loss 
of life, damage to property, and economic loss [6]. Landslide susceptibility maps 
are one of the important data needed to identify landslide-hazardous areas and to 
reduce losses due to landslides [7, 8]. Many different approaches and models have 
been implemented in the production of landslide susceptibility maps. Merghadi et al. 
[9] and Tang et al. [10] classified the modeling approaches into four categories: the 
heuristic, physically based, statistical, and machine learning (ML) models. Heuristic 
and physically based models (also known as deterministic models) have their own 
characteristics and disadvantages. Heuristic models are highly subjective and rely on 
experts’ opinions and experience on assigning weightage to landslide-conditioning 
factors [11–14]. In this approach, differences in expert opinions or insufficient infor-
mation about the study area may cause inconsistent results [15]. Physically based or 
deterministic models use laws of mechanics to analyze slope stability. The advantages 
of these models are that they do not require long-term landslide inventory data and 
are more useful in areas where landslide inventories are missing [15]. However, 
deterministic models are suitable for small areas where landslide types are simple 
and ground conditions are fairly uniform [14], but they require detailed geotechnical 
and hydrogeological data on these areas [13]. To overcome the disadvantages of the 
above two approaches and to produce reliable landslide susceptibility maps, statis-
tics-based models have been developed [14]. Statistics-based models evaluate the 
correlation between past landslides and the conditioning factors that had an impact 
on their occurrence [16] and they need landslide inventory data for this [17].

In recent years, machine learning (ML) techniques such as support vector 
machine [18, 19], decision tree [20, 21], generalized linear model [22, 23], logistic 
model tree [13, 16], artificial neural networks [6, 24, 25], and Naïve Bayes [26–28] 
have been widely applied for landslide susceptibility mapping (LSM). Sahin [29] 
and Merghadi et al. [9] stated that tree-based ensemble algorithms provide better 
prediction performance for LSM compared to any single model. In addition, Sahin 
[30] stated that ensemble learning techniques, such as random forest (RF), gradient 
boosting machine (GBM), and extreme gradient boosting (XGBoost), are efficient 
and robust for creating landslide susceptibility maps and that these algorithms 
would be preferred more frequently in the future for their robustness.

The most common natural disasters in Turkey are landslides and floods. Artvin 
is one of the provinces in Turkey that experiences the most frequent natural disas-
ters. Landslides occur almost every year in the province of Artvin, especially due to 
meteorological conditions (extreme rainfall) and anthropogenic activities, such as 
agricultural activities, excessive irrigation, and road excavations. Şavşat is one of 
the districts of Artvin where landslides are most common. Şavşat, a Cittaslow city, 
stands out with its historical and natural beauties and has a high tourism potential. 
For this reason, it is very important to evaluate the landslide susceptibility to reduce 
the landslide-associated damages in the district. The aim of this study is to produce 
landslide susceptibility maps of Şavşat district of Artvin Province using RF, GBM, 
and XGBoost ML models and to evaluate the performances of the models. Eleven 
factors commonly used in LSM studies were used in the study. The produced 
landslide susceptibility maps were validated using the validation dataset.
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2. Study area and data used

Şavşat, like other districts of Artvin, is a district with a rugged terrain. Şavşat, 
spreading on a 1272.27 km2 land, is located between 41°05′11″ and 41°30′56″ north 
latitudes and 42°04′30″ and 42°35′47″ east longitudes (Figure 1). In the study 
area, the altitude varies between 590 and 3005 m with the average altitude being 
1789.14 m. The average slope of the study area is 21.17°, whereas the maximum slope 
is 72.53°. The slope is over 20° in ~55% of the study area.

According to the data from the Turkish Statistical Institute (TURKSTAT), the 
total population of Şavşat district in 2020 is 17,024. Of this population, 6,123 live 
in the town and 10,901 live in villages [31]. There is a transitional climate between 
the Black Sea climate and the continental climate in the district. While semi-humid 
climatic conditions are observed in the low valley floors, cold humid climatic 
conditions are observed in the higher elevations. In addition, winters are very long 
in places with high altitudes. According to the data (November 2012–March 2021) 
from the General Directorate of Meteorology, sum of monthly average rainfall in 
the study area is 715.60 mm. The monthly average rainfall is minimum in February 
with 27.8 mm and maximum in May with 111.03 mm. In the study area, the monthly 
average temperature was maximum at 32.8°C in August and minimum at −7.4°C in 
December [32].

Şavşat is located in the eastern part of the Eastern Pontides and the southern 
part of Transcaucasia. In the study area, intrusive, volcanic, and volcano-
sedimentary facies have developed due to the magmatic activities that took place 
in the Dogger, Late Cretaceous, and Eocene ages. In the north and northwest part 
of the region, units representing the same stratigraphic unity surfaces in a range 
extending from the Liassic to the Early-Middle Eocene. In the southern part, units 
representing two separate stratigraphic units are surfaced. The sequence in the west 
of the southern section is characterized by units of Early-Middle Jurassic and Late 

Figure 1. 
Study area.
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Cretaceous age, and the sequence in the east of the southern section is characterized 
by units of Late Cretaceous and Middle Eocene age. Tertiary units surfacing in the 
eastern and southeastern parts of the region are considered as common units [33]. 
According to the earthquake zone map of Turkey, Şavşat district is located in the 
third degree earthquake zone. However, the most common natural disaster in the 
district is landslide [34]. The landslides occurring in the study area are mostly of 
complex type. Landslides are observed in larger areas with respect to Quaternary 
alluvium and slope debris [33].

2.1 Landslide inventory map

To reliably predict future landslides, reliable landslide inventory maps contain-
ing information about past landslides are needed [16]. As stated by Parise [35], 
landslide inventory maps represent the spatial distribution of landslides and pro-
vide information about the location, typology, and activity status of landslides. In 
this study, the landslide inventory map produced by Artvin Provincial Directorate 
of Disaster and Emergency was used. The landslide inventory map contains 85 
landslide polygons. The area of the smallest landslide polygon in the study area is 
0.01 ha (99.34 m2), and the area of the largest landslide polygon is 325.97 ha. The 
average area of the landslide polygons is 34.75 ha. Landslides cover ~3% of the 
study area. The lengths of the landslides in the region vary between 13 and 3100 m 
and their widths vary between 10 and 2780 m. According to their activities, 28 of 
these landslides are active, 32 are stalled, and 25 are inactive landslides. According 
to Varnes [4] classification of mass movements, 6 of the landslides were classified 
as slide, 2 as lateral spread, 20 as flow, and the remaining 57 as complex.

2.2 Landslide-conditioning factors

Evaluation of landslide susceptibility in a region depends on determining 
the factors that are effective in the formation of landslides in that region and on 
collecting spatial data related to these factors [36]. Yi et al. [8] stated that there is 
no widely accepted procedure for the selection of factors used in LSM. Yanar et al. 
[37], on the contrary, stated that the main limitation in determining the factors 
to be used to create landslide susceptibility maps is the availability of data. In this 
study, 11 factors including altitude, aspect, curvature, distance to drainage net-
work, distance to faults, distance to roads, land cover (CORINE 2018), lithology, 
slope, slope length, and topographic wetness index (TWI) were used based on the 
availability of data, geo-environmental conditions of the study area, and literature 
survey. Spatial data on these factors are collected from different sources (Table 1). 
Landslide-conditioning factor maps were generated using ESRI ArcGIS 10.5 and 
SAGA GIS 7.9.0 software and were converted into raster format with 30 m spatial 
resolution.

2.2.1 Altitude

Altitude is associated with various geomorphological and meteorological factors 
such as weathering, weather conditions, wind effect, and precipitation, which 
are effective in the formation of landslides [6]. For this reason, it has been used in 
almost all LSM studies. The digital elevation model (DEM) of the study area was 
created using 10-m-interval contours on the topographic maps and it was converted 
to raster format with 30-m spatial resolution. The altitude map of the study area 
was generated from this DEM. The altitude in the study area varies between 590 and 
3005 m. DEM was reclassified into 10 classes at 240 m intervals (Figure 2a).
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2.2.2 Aspect

Aspect has an important role in landslide formation as it affects factors such 
as exposure to sunlight and the intensity of solar radiation, wind, rainfall and, 
soil moisture [38, 39]. For this reason, aspect is widely used in LSM studies  
[6, 26, 36, 40]. The aspect map used in this study was produced from DEM and 
divided into nine classes (flat, north, northeast, east, southeast, south,  
southwest, west, and northwest) (Figure 2b).

2.2.3 Curvature

Curvature, which is widely used in geomorphometric analysis, is one of the 
basic terrain parameters and reflects the shape of the land surface [23, 41]. In 
curvature map, positive curvature values indicate that the surface is convex, 
negative curvature indicates that the surface is concave, and zero indicates that 
the surface is flat [42]. In this study, curvature map was derived from DEM using 
ArcGIS 10.5 software and divided into three subclasses, i.e., concave, flat, and 
convex (Figure 2c).

2.2.4 Distance to drainage network

The distance to the drainage networks is one of the important conditioning 
factors used in landslide susceptibility studies, since the pore water pressure 
that causes the formation of landslides increases in areas close to the drainage 
networks [23]. Drainage networks in the study area were generated from DEM 
using functions in ArcHydro toolbox in ArcGIS 10.5 software. The distance to the 
drainage networks was calculated using the Euclidean distance tool in ArcGIS 10.5. 

Original data Factors Data type Scale Data provider

Landslide 
inventory

Landslide 
locations

Polygon 1/25,000 Artvin Provincial Directorate 
of Disaster and Emergency

Geological map Lithology Polygon 1/100,000 General Directorate of Mining 
Research and Exploration 

(GDMRE)Distance to 
fault lines

Polyline 1/100,000

Topographical 
map

Altitude GRID 1/25,000 General Directorate of 
Mapping

Slope GRID 1/25,000

Slope length GRID 1/25,000

Aspect GRID 1/25,000

Curvature GRID 1/25,000

TWI GRID 1/25,000

Distance 
to drainage 

network

GRID 1/25,000

Road network Distance to 
roads

Polyline 1/25,000 Basarsoft Information 
Technologies Inc.

CORINE 2018 Land cover Polygon 1/100,000 European Union Copernicus 
Land Monitoring Service

Table 1. 
Data and data sources.
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The maximum distance to the drainage networks in the study area has been 
 calculated as 1830.98 m. The distance to the drainage networks is reclassified into 
10 subclasses with equal intervals of 180 m (Figure 2d).

2.2.5 Distance to faults

Areas close to faults are highly susceptible to landslides as the strength decreases 
due to tectonic fractures [28]. Ba et al. [43] stated that landslides tend to occur 
around faults due to fractures in the rock mass. For this reason, the distance to the 

Figure 2. 
The landslide conditioning factor maps: a) altitude b) aspect c) curvature d) distance to drainage network.
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faults is taken into account in the landslide susceptibility analysis [14, 40, 44]. In 
this study, the distance to the faults was obtained using the Euclidean distance tool 
of ArcGIS 10.5 software. The maximum distance to the faults in the study area has 
been calculated as 13,016.61 m. The distance to the faults was classified into 10 
subclasses with 1200 m intervals and used in the landslide susceptibility analysis 
(Figure 3a).

Figure 3. 
The landslide conditioning factor maps: a) distance to faults b) distance to roads c) land cover d) slope.
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2.2.6 Distance to roads

Road construction, which is considered to be one of the most important anthro-
pogenic factors, destabilizes the slopes, so the probability of landslides along a road 
increases [43]. Roads built on slopes in areas with rough topography cause loss of 
toe support, change in topography, increase in tension behind the slope, and devel-
opment of tension cracks [45, 46]. For this reason, distance to the road has been 
considered as one of the important conditioning factors in many studies [14, 17, 47]. 
The road network in the study area was supplied in digital format from Başarsoft 
Information Technologies Inc., which collects road data for the production of naviga-
tion maps in Turkey. Distance to roads was calculated using the Euclidean distance 
tool in ArcGIS 10.5 and reclassified into 10 subclasses at 450 m intervals (Figure 3b).

2.2.7 Land cover

Land cover maps, in general, represent what physical classes or materials (e.g., 
forest, pasture, field, lake, and wetland) the Earth’s surface is spatially covered 
with. Land use or land cover maps are usually used in LSM studies for taking into 
consideration the effects of anthropogenic activities on rugged slopes on landslide 
formation [5]. In this study, CORINE 2018 land cover (CLC 2018) data provided 
by Copernicus Land Monitoring Service, one of the European Union’s Earth 
Observation Programme services, were used. According to this dataset, the study 
area includes 14 different land cover classes (Figure 3c).

2.2.8 Slope

The slope angle, one of the most important factors governing the stability of 
slopes, is closely related to the shear forces acting on the slopes. As the angle of 

Figure 4. 
The landslide conditioning factor maps: a) slope length b) TWI.
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inclination increases, the shear stress in the materials forming the slope generally 
increases [48]. For this reason, slope angle has been used in all LSM studies, as is the 
case for the lithology parameter [18, 40, 49–51]. The slope in the study area varies 
between 0° and 72.53°. In this study, the slope was divided into 10 classes with 5° 
spacing, and a slope map of the study area was produced (Figure 3d).

2.2.9 Slope length

Slope length is one of the important topographic factors that affect the formation 
of landslides [6]. Kavzoglu et al. [18] defines the slope length as “the distance along a 
slope subject to uninterrupted over land flow.” Slope length affects hydrological pro-
cesses and soil loss, especially in mountainous areas [23]. This factor is closely related 
to the formation of landslides, because the potential for the materials forming the 
slopes to be carried downhill also increases with the increase of the slope length [52]. In 
this study, slope length was produced from DEM using SAGA GIS software and it was 
reclassified into 10 classes using the natural break classification method (Figure 4a).

2.2.10 Topographic wetness index (TWI)

TWI is an index generally used to characterize the spatial distribution of soil 
moisture [53] and is considered as an important factor contributing to the occur-
rence of landslides. Yanar et al. [37] stated that TWI indicates the locations and 
size of the water-saturated regions. For this reason, TWI has been used in many 
landslide susceptibility studies [26, 54, 55]. The following equation is used to 
calculate TWI:

 ln
s

A
TWI

tanβ
 

=  
 

 (1)

In the Eq. (1), As is the specific basin area and β is the slope in degrees. TWI 
index in the study area, varying between 1.002 and 24.160, was produced using 
SAGA GIS software. TWI index values were divided into 10 subclasses using the 
natural break classification method and used in sensitivity analysis (Figure 4b).

2.2.11 Lithology

Kavzoglu et al. [18] stated that lithology is one of the main factors that have a 
direct impact on the formation of landslides, as lithological and structural varia-
tions lead to changes in the strength and permeability of rocks and soils. For this 
reason, lithology has been one of the most important conditioning factors used 
in all landslide susceptibility evaluation studies. In this study, 1/100,000 scaled 
digital geological map obtained from General Directorate of Mineral Research and 
Exploration (GDMRE) was used to produce the lithological map of the study area. 
The geological map of the study area includes 16 lithological units (Figure 5).

3. Methodology

3.1 Random forest

First proposed by Breiman [56], RF is an ensemble learning method that cre-
ates multiple decision trees from the training dataset and combines the results of 
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the decision trees to improve the predictive ability of the model [57]. According to 
Arabameri et al. [44] and Merghadi et al. [9], one of the most important advantages 
of RF is that it avoids the risk of overfitting, which is a common problem in other 
decision tree models. In the study conducted by Sahin [29], it is stated that requir-
ing less hyperparameter tuning, compared to gradient boosting algorithms, was 
RF’s main advantage. To create a classification model in RF, two parameters must 
be defined: ntree parameter, which refers to the number of decision trees generated 
by RF, and mtry parameter, which refers to the number of factors or variables used 
in each node of the decision tree. In this study, “rf” method of the “caret” package 
[58] was used in R 3.6.3 to apply the RF model. In the study, the ntree parameter was 
set to 100 and the mtry parameter to 8, and a 10-fold cross validation approach was 
used to reduce the variability of the model results.

3.2 Gradient boosting machine (GBM)

GBM [59] is a ML technique that combines multiple different models through 
boosting and regression trees to increase prediction precision [60]. The main 
feature of GBM is that it combines multiple weak learners to improve their perfor-
mances. GBM, an ensemble learning method, combines multiple decision trees to 
create a more powerful model that can be used for classification or regression. In 
GBM, unlike RF, each tree tries to correct the error of the previous tree [61]. For this 
purpose, the residual errors calculated as a result of the prediction of the previous 
tree are minimized and the next tree is obtained, and these processes continue until 
the prediction results are stable or until the maximum number of trees is reached. 
In practice, the number of trees is chosen to be 100 or greater. There are four param-
eters that must be set by the user during the execution of the GBM, namely number 
of trees (n.trees), shrinkage, number of levels of trees (interaction.depth), and the 
minimum number of observations in trees’ terminal nodes (n.minobsinnode). For 

Figure 5. 
Lithological map of the study area.
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low-variance and accurate predictions, the learning rate is chosen so that it con-
verges to the optimum value with small steps in the right direction. The number of 
levels of trees is chosen between 8 and 32. In this study, GBM was performed using 
the “gbm” method in R 3.6.3.

3.3 Extreme gradient boosting (XGBoost)

XGBoost, developed by Chen and Guestrin [62], is based on the gradient boost-
ing approach. XGBoost is based on the efficient and effective implementation of the 
gradient boosting algorithm. For this purpose, it interprets the approximate greedy 
algorithm with the Newton–Rapson method. XGBoost uses several classification 
and regression trees and integrates them using gradient boosting [63]. It produces 
fast and accurate solutions with univocal regression trees, weighed quantile 
approach, and sparsity aware split finding. It is trained very quickly, and since it 
is suitable for parallel learning technique, XGBoost increases the overall accuracy 
(performance) of the model by avoiding the overfitting problem during the train-
ing process [64]. XGBoost uses two additional techniques called shrinkage and 
column (feature) subsampling to avoid overfitting [62]. Wang et al. [61] noted that 
the computational speed and accuracy of XGBoost has been significantly improved 
compared to GBM. In this study, the XGBoost model is implemented in R 3.6.3 using 
the “xgbTree” method of the “caret” package.

3.4 Preparation of training and validation dataset

“Landslide (or positive)” and “non-landslide (or negative)” samples are needed 
in the study area during the training and validation of the models used to create 
landslide susceptibility maps. The ratio of 70:30 has been commonly used in the 
literature to produce training and validation datasets [6, 8, 65, 66]. In particu-
lar, 70% of the landslide inventory data is used for training the models and the 
remaining 30% is used for the validation of the models. Huang and Zhao [67], 
on the contrary, stressed that the number of positive and negative samples in the 
training and validation datasets should be equal, i.e., having a ratio of 1:1. For this 
reason, as many negative samples as the number of positive samples are selected 
in the study area. In this study, 85 landslide polygons on the inventory map were 
converted to 30 m × 30 m resolution raster format and 32,777 landslide pixels were 
obtained. A value of “1” was assigned to positive or landslide pixels in the study 
area. Then, 32,777 non-landslide pixels were randomly selected in the study area 
in the R program and the value of “0” was assigned to these pixels. Randomly 
selected 70% of the landslide and non-landslide pixels (45,888 pixels in total) were 
used for training the models and the remaining 30% (19,666 pixels) were used for 
the validation of the models.

3.5 Multicollinearity analysis for landslide-conditioning factors

One of the important steps of LSM is to control the multicollinearity between 
landslide-conditioning factors [8]. Multicollinearity is an important analysis used 
to determine the conditional independence between the factors during the selection 
of the conditioning factors to be used in susceptibility models, and thus, to prevent 
the models from producing erroneous predictions [9, 68]. Commonly used indica-
tors for multicollinearity analysis are tolerance (TOL) and variance inflation factor 
(VIF). A TOL value less than 0.1 or a VIF value greater than 10 indicates multicol-
linearity [8, 16, 44]. TOL and VIF values calculated using the training dataset for 
this study are shown in Table 2. The results show that there is no multicollinearity 
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among the landslide-conditioning factors used in the study. Therefore, all selected 
factors were used to produce landslide susceptibility map of the study area.

4. Results and discussion

4.1 Landslide susceptibility mapping

In this study, RF, GBM, and XGBoost models were successfully applied and 
landslide susceptibility index (LSI) maps were produced via R 3.6.3 using the 
training data set for each model. Then, landslide susceptibility maps were obtained 
by reclassifying the LSI maps into five classes: very low, low, medium, high, and 
very high, using the natural breaks (Jenks) classification method in ArcGIS 10.5 
software (Figure 6).

The spatial distributions (in percentages) of the susceptibility classes for each 
model are given in Figure 7. It has been determined that the study area is highly or 
very highly susceptible to landslides by 27.27%, 11.13%, and 16.89% according to 
the GBM, RF, and XGBoost models, respectively (Figure 7).

The significance degrees of the landslide-conditioning factors used in the study 
are presented in Figure 8. It has been observed in all models that the lithology is 
the most important parameter. After lithology, the most important or most effec-
tive parameters in the study area were determined to be altitude, distance to faults, 
slope, and land cover parameters. Slope length and curvature were the least signifi-
cant parameters in all models (Figure 8). The findings related to the parameters 
found to be effective in terms of landslide are explained in the following sections.

When Table 3 is examined, ~76% of the landslides in the study area can be 
seen to have occurred at altitudes between 1070 and 2030 m. In respect of altitude, 
1070–1310, 1310–1550, 1550–1790, and 1790–2030 m altitude classes were found to 
be susceptible to landslides (Table 3). The main reason why these altitude classes 
are susceptible to landslides is that more than 90% of the village settlements in 
the study area are located between these altitudes. Uncontrolled excavations and 
uncontrolled agricultural activities in villages are the most important factors that 
trigger landslides. In the study by Erener et al. [34], conducted in Şavşat district and 

Landslide conditioning factors Statistics

TOL VIF

Altitude 0.4713 2.1217

Aspect 0.9770 1.0235

Curvature 0.7879 1.2692

Distance to drainage network 0.7916 1.2633

Distance to faults 0.7786 1.2844

Distance to roads 0.5552 1.8011

Land cover 0.7206 1.3877

Lithology 0.8763 1.1412

Slope 0.5373 1.8610

Slope length 0.7345 1.3615

Topographic Wetness Index 0.4595 2.1761

Table 2. 
Multicollinearity analysis of landslide-conditioning factors.
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covering a more limited (small) region compared to this study, the altitude class 
between 1500 and 2000 m was found to be susceptible to landslides.

When the study area is examined in terms of slope, it is seen that 0°–5°, 5°–10°, 
10°–15°, and 15°–20° slope classes are more susceptible to landslides (Table 3). In 
these slope classes, 82.31% of the landslides occurred in the study area. The fact that 
complex mass movements (creeping and spreading) in the study area are generally 
seen in areas with low slope degrees (approximately in the range of 7°–12°) have 
provided these results in terms of slope.

Figure 6. 
Landslide susceptibility maps produced using a) GBM b) RF c) XGBoost.
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When Table 3 is examined, it is seen that ~55% of the landslides in the study 
area occur on slopes with north, northeast, and northwest aspects. When the 
frequency ratios in Table 3 are examined, it is clearly seen that the slopes with 
these aspects have the highest frequency ratio value, and therefore, they are more 
susceptible to landslides. In the study conducted by Akıncı and Zeybek [69], in 
the Ardanuç district, which is adjacent to the Şavşat district and has similar topo-
graphical and geomorphological characteristics with the study area, the slopes with 
north, northwest, and northeast aspects were determined to be more susceptible to 
landslides.

Within the first 3600 m margin of the faults, 74% of the landslides occurred 
in the study area (Table 3). In the study area, the landslide susceptibility tends to 
decrease with distance from the faults. Although the region most susceptible to 
landslides in terms of distance to faults is 4800–6000 m, it is seen that distance 
classes of 0–1200, 1200–2400, and 2400–3600 m are also susceptible to landslides 
(Table 3). Althuwaynee et al. [70] stated that the probability of landslide decreases 
as the distance to the faults increases. Also in the LSM study conducted by Akinci 
et al. [40] in the area covering Arhavi, Hopa, and Kemalpaşa districts of Artvin 
Province, the areas within the first 2000 m distance to the faults were determined to 
be more susceptible to landslides.

Considering the CORINE 2018 land cover data, it was determined that ~56% 
of the landslides in the study area occurred in agricultural areas (Table 3). 

Figure 7. 
Percentage distributions of susceptibility classes.

Figure 8. 
Importance of landslide-conditioning factors for a) GBM b) RF c) XGBoost.
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Factor Subclasses Pixels in domain Pixels with landslide Percentage of landslides (%) Percentage of domain (%) FR

Altitude (m) 590–830 16659 0 0.00 1.34 0.0000

830–1070 65715 928 2.83 5.28 0.5363

1070–1310 129711 3488 10.64 10.42 1.0212

1310–1550 202140 5893 17.98 16.24 1.1071

1550–1790 242416 7455 22.74 19.48 1.1679

1790–2030 188846 8231 25.11 15.17 1.6552

2030–2270 140243 1174 3.58 11.27 0.3179

2270–2510 120268 2402 7.33 9.66 0.7585

2510–2750 121891 1687 5.15 9.79 0.5256

2750–3005 16840 1519 4.63 1.35 3.4255

Slope (degree) 0–5 86650 3307 10.09 6.96 1.4493

5–10 156262 10914 33.30 12.55 2.6524

10–15 160085 8205 25.03 12.86 1.9464

15–20 160639 4554 13.89 12.91 1.0766

20–25 174982 2652 8.09 14.06 0.5756

25–30 194812 1656 5.05 15.65 0.3228

30–35 176843 1069 3.26 14.21 0.2296

35–40 96265 302 0.92 7.73 0.1191

40–45 28481 98 0.30 2.29 0.1307

45–72.53 9710 20 0.06 0.78 0.0782
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Factor Subclasses Pixels in domain Pixels with landslide Percentage of landslides (%) Percentage of domain (%) FR

Aspect Flat 4416 49 0.15 0.35 0.4214

North 148077 6845 20.88 11.90 1.7555

Northeast 151999 5873 17.92 12.21 1.4673

East 148757 3387 10.33 11.95 0.8647

Southeast 161166 2816 8.59 12.95 0.6635

South 162974 2667 8.14 13.09 0.6215

Southwest 161749 2269 6.92 12.99 0.5327

West 155008 3680 11.23 12.45 0.9016

Northwest 150583 5191 15.84 12.10 1.3091

CORINE 2018 112 861 45 0.14 0.07 1.9848

131 333 0 0.00 0.03 0.0000

211 927 275 0.84 0.07 11.2657

222 408 0 0.00 0.03 0.0000

242 133175 7439 22.70 10.70 2.1213

243 130192 10747 32.79 10.46 3.1348

311 46639 241 0.74 3.75 0.1962

312 340177 3839 11.71 27.33 0.4286

313 96234 82 0.25 7.73 0.0324

321 278125 6054 18.47 22.34 0.8266

324 149283 2678 8.17 11.99 0.6812

331 1380 0 0.00 0.11 0.0000

332 4746 181 0.55 0.38 1.4483

333 62249 1196 3.65 5.00 0.7296
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Factor Subclasses Pixels in domain Pixels with landslide Percentage of landslides (%) Percentage of domain (%) FR

Distance to faults (m) 0–1200 353573 10042 30.64 28.41 1.0786

1200–2400 311578 8822 26.92 25.03 1.0752

2400–3600 198557 5463 16.67 15.95 1.0448

3600–4800 132651 2932 8.95 10.66 0.8394

4800–6000 91279 3955 12.07 7.33 1.6454

6000–7200 62754 1563 4.77 5.04 0.9459

7200–8400 43119 0 0.00 3.46 0.0000

8400–9600 25977 0 0.00 2.09 0.0000

9600–10800 14205 0 0.00 1.14 0.0000

10800–13016.61 11036 0 0.00 0.89 0.0000
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Factor Subclasses Pixels in domain Pixels with landslide Percentage of landslides (%) Percentage of domain (%) FR

Lithology Lake 915 0 0.00 0.07 0.0000

e-10-s 625072 7853 23.96 50.22 0.4771

e-18-s 64071 1795 5.48 5.15 1.0639

e-V2 15193 6 0.02 1.22 0.0150

Jbmclm 524 0 0.00 0.04 0.0000

k2–10-s 19698 77 0.23 1.58 0.1484

k2–2-k 256 0 0.00 0.02 0.0000

k2-pn-8-s 29136 1800 5.49 2.34 2.3461

k2-V16-V15-V13 189788 942 2.87 15.25 0.1885

plQ-V13-V2 163657 6297 19.21 13.15 1.4612

plQ2-V17-V16 41251 1883 5.74 3.31 1.7335

pn-19-s 10873 383 1.17 0.87 1.3377

Q-21-k 6144 16 0.05 0.49 0.0989

Q-23-k 23921 4063 12.40 1.92 6.4502

Q2–21-k 434 0 0.00 0.03 0.0000

Q2–23-k 50601 7359 22.45 4.07 5.5229

Q2m-20-ks 3195 303 0.92 0.26 3.6014

Table 3. 
Spatial relationship between landslide-conditioning factors and landslides.
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Non-irrigated arable lands (CORINE land cover code 211), agricultural areas within 
natural vegetation (243), mixed agricultural areas (242), discontinuous urban 
structure (112), and bare rocks (332) were determined as landslide sensitive areas. 
The scattered settlements in the villages cause uncontrolled excavations, which in 
turn triggers landslides. In the landslide susceptibility study conducted by Erener et 
al. [34] in Şavşat district, it was reported that landslide activity increased in areas 
where the original vegetation was removed or changed. In the same study, it was 
determined that farming areas, irrigated or dry, were more susceptible to landslides. 
Researchers attributed this to the deforestation in agricultural areas.

4.2 Validation and comparison of landslide susceptibility models

Thi Ngo et al. [7] stated that it is important to identify landslide-prone areas 
with high accuracy and to use an appropriate metric for the performance evalu-
ation to produce a reliable landslide susceptibility map. The performances of the 
models used in the production of landslide susceptibility maps are mostly evaluated 
using the receiver-operating characteristics (ROC) curve [28, 38, 45, 60, 71–73]. 
Therefore, in this study, the receiver-operating characteristic-area under the curve 
(ROC-AUC) approach was applied to evaluate and measure the performances of 
ML models. The ROC curve is a graph showing the true positive rate (TPR or sen-
sitivity) on the vertical axis and the false positive rate (FPR or 1-specificity) on the 
horizontal axis. In the ROC curve, the most important indicator used to evaluate the 
accuracy or performance of the susceptibility model is the AUC. AUC takes values 
between 0.5 and 1 [71]. An AUC value close to 1.0 indicates high performance of 
the model and close to 0.5 indicates low performance of the model. On the contrary, 
Chen et al. [74] and Wang et al. [17] stated that the AUC value can be classified 
in five classes: poor (0.5–0.6), moderate (0.6–0.7), good (0.7–0.8), very good 
(0.8–0.9), and excellent (0.9–1.0).

In the study, success rate and prediction rate curves were created using training 
and validation data sets, respectively. The success rate curve is used to understand 
how well the models used to produce landslide susceptibility maps to classify exist-
ing landslide areas [74]. In this study, the AUC values of the success rate curves for 
the GBM, RF, and XGBoost models were calculated as 91.6%, 98.4%, and 98.6%, 
respectively (Figure 9a). Since the success rate curve is produced using the training 

Figure 9. 
a) Success rate b) prediction rate curves for ML models.
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data set, it is not an appropriate indicator to evaluate the predictive capabilities 
of the models [21, 42]. The prediction rate curve should be used to evaluate the 
prediction capabilities of the models [75]. The prediction rate curve shows how well 
the models predict unknown or probable future landslides [5]. The AUC values of 
the prediction rate curves produced for the GBM, RF, and XGBoost models were 
calculated as 91.4%, 97.9% and 98.1%, respectively (Figure 9b). AUC value being 
close to 1.0 in three models show, according to the classification made by Chen et al. 
[74] and Wang et al. [17], that their performances, i.e., their prediction capacities, 
are excellent.

5. Conclusions

In this study, RF, GBM, and XGBoost algorithms were used for landslide suscep-
tibility mapping of Şavşat district of Artvin Province. The performances of these 
models were evaluated using success rate and prediction rate curves. According 
to the AUC values, the models used in the study showed excellent performance. 
However, the XGBoost model outperformed the other two models in landslide 
susceptibility mapping of the study area. Therefore, it was concluded that the 
susceptibility map produced by the XGBoost model can help decision makers and 
planners in reducing the risks caused by landslides in the region and in land use 
planning. In this study, 11 factors—altitude, aspect, curvature, distance to drainage 
network, distance to faults, distance to roads, land cover, lithology, slope, slope 
length, and TWI—were used based on the availability of the data, geo-environ-
mental conditions of the study area, and literature survey. As a result of the study, 
it was concluded that the main factor governing the landslides in the study area in 
all three models is lithology. The artificial factors that trigger landslides across the 
province of Artvin, as in Şavşat district, are uncontrolled excavation works (usually 
road widening), uncontrolled explosive excavations, and uncontrolled agricultural 
land irrigation. In this respect, providing basic disaster awareness trainings to 
citizens residing in areas susceptible to landslides in the study area and trainings 
on the causes, effects, and consequences of landslides will be beneficial in terms 
of risk reduction. Similarly, taking into account landslide susceptibility maps in 
selecting dwelling zones in rural areas and in determining the routes through which 
infrastructure facilities such as drinking water, natural gas, electricity, and sewer-
age will pass, will be effective in reducing the risks associated with landslides in the 
study area.
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