
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



1

Chapter

Virulence Factors of 
Uropathogenic Escherichia coli
Etefia Etefia

Abstract

Uropathogenic Escherichia coli (UPEC) strains are those that cause infections in 
the urinary tract. They acquired virulence factors which enable them to survive in 
the urinary tract and elicit pathogenicity. The virulence factors are classified into 
two categories: (i) bacterial cell surface virulence factors and (ii) bacteria secreted 
virulence factors. Adhesins, toxins and iron up-take systems are major groups of 
virulence factors. The variety of virulence factors of UPEC is presented in this 
chapter.

Keywords: extraintestinal E. coli, uropathogenic Escherichia coli, urinary tract 
infection

1. Introduction

Uropathogenic Escherichia coli (UPEC) is a type of extraintestinal pathogenic  
E. coli (ExPEC) responsible for urinary tract infection (UTI). It is reported to 
be the ExPEC with the greatest medical importance. This is so because UPEC is 
responsible for most of the UTIs and humans of all ages are affected [1, 2]. These 
bacteria are associated with both asymptomatic bacteriuria and symptomatic UTIs. 
UTIs are categorized based on the parts of the body which the infections occur. 
These are cystitis which occurs in the bladder and pyelonephritis which occurs in 
the kidney [3–6]. UPEC strains have a lot of virulence factors which are responsible 
for the pathogenicity associated with symptomatic UTIs [7, 8]. The virulence factors 
are classified into two categories: (i) bacterial cell surface virulence factors and 
(ii) bacteria secreted virulence factors [9–11]. Many of virulence-associated genes 
can be found on pathogenicity islands (PAIs) [12, 13]. Though the mechanisms 
of asymptomatic bacteriuria are still not clear, studies have reported that UPEC 
becomes nonadherent and nonhemolytic resulting to asymptomatic bacteriuria 
[14–16]. Thus, this chapter will elucidate on the important UPEC virulence factors 
which are responsible for UTIs.

2. Adhesins of uropathogenic Escherichia coli

Adhesins are adhesive organelles, notably fimbriae, that promote bacterial 
colonization. Some adhesins also promote bacterial invasion of the host cell. 
Adhesins are thought to be the most important virulence-associated molecules 
which function in UPEC pathogenicity. The adhesins can also directly trigger host 
and bacterial cell signaling pathways. They can also facilitate the delivery of other 
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bacterial products to the host tissues [17]. Prominent bacterial cell surface virulence 
factors, which play significant roles in UPEC pathogenicity include type 1 fimbriae 
[11]; Class I, Class II, and Class III of P-fimbriae [18–20]; Dr. family of adhesins for 
binding to the decay-accelerating factor (DAF) [21]; Curli fimbriae which functions 
as binding factor and biofilm producer [22]; and S-fimbriae [14, 23, 24]. Type 1 
fimbriae have the most significant effects in UTIs as they enhance bacterial survival 
and growth, enhance inflammatory reaction at the mucosa, bacterial invasion, and 
control biofilm production [7]. P-fimbriae have the second most prominent role 
in UPEC-associated pathogenesis of human ascending UTIs and pyelonephritis. 
They promote UPEC adherence to the matrix of the mucosa and tissues and trigger 
cytokine production [25–30].

3. Toxins of uropathogenic Escherichia coli

UPEC secrete several virulence toxins which are responsible for the damage of 
the host cells and host inflammatory response. α-hemolysin (HlyA) is the most 
virulent toxin produced by UPEC. The effects of HlyA in UTIs are dependent on its 
dosage produced by UPEC. At high concentration, HlyA destroys the erythrocytes 
and allow UPEC to break through the mucosal barriers, damage immune system, 
and depletes iron stores of the host [31–34]. At low concentration, HlyA induces cell 
death in the bladder using proinflammatorycaspase-1/caspase-4. This causes kidney 
damage and scarring; oscillations of Ca2+; ascension and colonization of ureters 
and kidney parenchyma in the renal tubule epithelia resulting in the disruption of 
normal flow of urine [35–38]. The stimulation of in vitro production of actin stress 
fibers and membrane ruffle in a Rho GTPase-dependent manner is enhanced by 
cytotoxic necrotizing factor 1 (CNF1) produced by many strains of UPEC. This 
also facilitates the invasion of UPEC into the kidney cells [39, 40]. However, the 
extensiveness of CNF1 activities in causing invasion-associated pyelonephritis is 
not well understood and it has different schools of thoughts [41]. CNF1 also causes 
polymorphonuclear phagocytosis to trigger apoptosis and scarring of the epithelia 
of the bladder [42]. The uropathogenic specific protein (Usp) is important in the 
movement of UPEC from the urinary tract to the bloodstream. High prevalence 
of Usp has been reported UPEC isolated in cystitis, pyelonephritis, and prostatitis 
[43]. Serine-autotransporter toxin (Sat) secreted by UPEC is toxic to the cell lines 
of bladder or kidney origin thereby enhancing pathogenesis of UTI [44, 45]. Also, 
cytolethal distending toxin (CDT) is another toxin secreted by UPEC which is 
virulent in UTIs [46, 47].

4. Iron uptake systems of uropathogenic Escherichia coli

Urinary tract has limited iron. However, UPEC are able to produce small iron 
chelator molecules, known as siderophores, to scavenge ferric iron (Fe3+) in the 
host. The most prominent ones are yersiniabactin, salmochelin, and aerobactin 
[48, 49]. The yersiniabactin and its receptor, FyuA, are encoded in a PAI [50, 51]. 
It has also been reported that for efficient biofilm formation by UPEC, FyuA is 
required [52]. UPEC also secretes another important hydroxamate siderophore 
called aerobactin. This is produced from the condensation of two lysine and a 
citrate molecules. During UPEC invasion, the bacterium secretes salmochelin. 
Its outer membrane siderophore receptor (IroN) transports different catechol 
siderophores, including N-(2,3-dihydroxybenzoy)-L-serine and enterochelin 
also called enterobactin [53]. Enterobactin has less solubility and stability than 
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aerobactin [54–56] but has higher iron affinity than aerobactin in aqueous  
[55, 57]. UPEC also uses enterobactin for Fe3+ scavenging in the urinary tract 
[9]. However, enterobactin can be inactivated by the host proteins such as serum 
albumin and siderocalin thereby preventing its uptake [58]. UPEC overcomes this 
instability by modifying the enterobactin to salmochelin by glucosylation through 
the enzymatic action of glucosyltransferase and prevents it from being recog-
nized by the host proteins [9]. Also, UPEC has another iron acquisition system 
called haemin uptake system consisting of Ton-B dependent receptor (ChuA) and 
heavy metal associated (Hma) receptor that takes part in direct upregulation of 
haem receptors from free iron during UPEC infection. This system has also been 
reported to play significant role in the formation of biofilm [59–61]. The expres-
sion of ChuA is controlled by other regulatory proteins. It has been reported that 
the production of ChuA is triggered as RfaH increases [62]. However, Hma does 
not depend on ChuA and it is controlled by Tyr-126. Both Hma and ChuA are 
associated with haem uptake for optimal kidney utilization [63]. Figure 1 shows 
the diagram of UPEC-associated fitness and virulence factors.

5. Lipopolysaccarides of uropathogenic Escherichia coli

Lipopolysaccharide (LPS) is a major part of the cell wall which has highly con-
served lipid A-core and repeating O-antigen subunits which vary in different strains 
of E. coli depending on the sugar residues and their linkage patterns within the 
repeating subunits [41, 65]. LPS is very prominent in activating the host immune 
response and the stimulation of nitric oxide and cytokine (IL-1, TNF-α) for inflam-
matory response [11, 66]. Also, it triggers the production of specific antibodies to 
the somatic antigen and the humoral immune response to other antigens of the 
pathogen [31]. Several antigenic types of LPS help UPEC to escape being killed by 
the host serum [31]. A study on animal models has reported that LPS-associated 
acute renal failure is due to the response of the host to the LPS and not based on the 
expression of TLR4 (LPS receptor) in the kidney [66].

6. Capsule of uropathogenic Escherichia coli

Capsule is made up of polysaccharides and it covers and protects UPEC from 
various harsh environmental conditions [66]. The capsule helps UPEC to resist 

Figure 1. 
UPEC-associated fitness and virulence. Adapted from the work by Servin [64].
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phagocytosis and bactericidal effects of complements in the host. It also confers 
antimicrobial resistance and antiserum activity to UPEC [54, 61]. Capsules like 
K1 and K5 interfere with the proper response of the humoral immunity of the 
infected host [66]. The K1 polysaccharide plays a significant role in intracellular 
bacterial community (IBC) development and the pathogenesis of several UTI 
stages [54, 67].

7. Other virulence factors of uropathogenic Escherichia coli

Toll receptor (TIR)/interleukin1 (IL-1) receptor domain-containing protein 
(TcpC) is a novel class of virulence factors that destabilize TIR signaling for UPEC 
to survive during UTIs [68]. Interaction of TcpC with myeloid differentiation 
primary response 88 (MyD88) found in the host ends the downstream signaling 
pathways mediated by TLRs [69].

UPEC produces outer membrane protease T (OmpT) that catalyzes plasminogen 
activation to plasmin [70]. OmpT helps UPEC to persist in the urinary tract when 
protamine and other cation peptides cleave with antibiotic activity [71, 72]. UPEC 
also decreases cytokines production by blocking nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-ĸB) [68]. In Table 1, prominent UPEC virulence 
factors, their role and genetic markers are presented.

Virulence factor Role Genetic markers/gene 

name

References

Afimbrial adhesions Binding factor afa [23, 24, 54]

Cytotoxic necrotizing 
factor 1

Toxin cnf1 [38, 39]

Curlifimbriae Binding factor csgA-G [22]

Dr family of adhesions Binding factor drb [21]

Haemin Iron uptake and biofilm 
formation

hmn, chuA [59–61]

Type 1 fimbriae Binding factor fimH [8]

Ferric yersiniabactin 
uptake receptor

Iron uptake and biofilm 
formation

fyuA [62]

α-hemolysin Lyses red blood cells hlyA [33]

Salmochelin Siderophore receptor iroNE. coli [51]

Aerobactin Iron chelation and uptake iucD, iutA [50]

Outer membrane protease 
T

Outer membrane protease 
production to degrade 
protamine peptides

ompT [73, 74]

Uropathogen specific 
protein

Movement of UPEC from the 
urinary tract to the bloodstream

usp [42]

Class I, Class II, and Class 
III P-fimbriae

For binding to the uroepithelial 
cells

papGJ96, papGAD/IA2, 

and prsGJ96

[18, 20, 21]

Serine-protease 
autotransporter toxin

Vacuolation and tissue damage sat [73, 74]

S-fimbrial family Binding factor sfa [8, 23, 24]

Table 1. 
Virulence factors of uropathogenic Escherichia coli and their functions.
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8. Conclusion

Apart from possessing virulence factors, for the medical importance of  
E. coli strains the ability to form biofilms is also significant. Biofilms play a major 
role in urology. Biofilms are namely usually associated with pyelonephritis and 
chronic or recurrent infections [75]. Biofilm formation is a complex process that 
may involve multiples adhesins and factors [76]. Biofilm contributes to bacterial 
resistance [60, 77–81]. Studies have reported that biofilm production mediated by 
co-expression of curli and cellulose facilitates in E. coli helps UPEC to survive in 
the urinary tract for a long time through the production of an inert, hydrophobic 
extracellular matrix which surrounds the organism [60, 77, 78].

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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