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Chapter

Ontology in Quantum Mechanics
Gerard ’t Hooft

Abstract

It is suspected that the quantum evolution equations describing the micro-world
as we know it are of a special kind that allows transformations to a special set of
basis states in Hilbert space, such that, in this basis, the evolution is given by
elements of the permutation group. This would restore an ontological interpreta-
tion. It is shown how, at low energies per particle degree of freedom, almost any
quantum system allows for such a transformation. This contradicts Bell’s theorem,
and we emphasise why some of the assumptions made by Bell to prove his theorem
cannot hold for the models studied here. We speculate how an approach of this kind
may become helpful in isolating the most likely version of the Standard Model,
combined with General Relativity. A link is suggested with black hole physics.

Keywords: foundations quantum mechanics, fast variables, cellular automaton,
classical/quantum evolution laws, Stern-Gerlach experiment, Bell’s theorem, free
will, Standard Model, anti-vacuum state

1. Introduction

Since its inception, during the first three decades of the 20th century, quantum
mechanics was subject of intense discussions concerning its interpretation. Since
experiments were plentiful, and accurate calculations could be performed to com-
pare the experimental results with the theoretical calculations, scientists quickly
agreed on how detailed quantum mechanical models could be arrived at, and how
the calculations had to be done.

The question what the intermediate results of a calculation actually tell us about
the physical processes that are going on, remained much more mysterious. Opinions
diverged considerably, up to today, one hundred years later.

The historical events that led to this situation are well-known, and have been
recounted in excellent reports [1]; there is no need to repeat these here extensively.
It was realised that all oscillatory motion apparently comes in energy packets, which
seem to behave as particles, and that the converse should also be true: all particles
with definite energies must be associated to waves. The original descriptions were
somewhat vague, but the year 1926 provided a new landmark: Erwin Schrödinger’s
equation [2]. Originally, the equation was intended to describe just one particle at
the time, but soon enough it was found how to extend it to encompass many
particles that may be interacting.

Indeed, in his original paper, Schrödinger went quite far in discussing Hamilton’s
principle, boundary conditions, the hydrogen atom and the electromagnetic transi-
tions from one energy level to an other. One extremely useful observation was made
by Max Born [3]: the absolute square of a wave function, at some spot in position
space, must simply stand for the probability to find the particle there. This made a
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lot of sense, and it was rightly adopted as a useful recipe for dealing with the
equation.

But then, many more questions were asked, many of them very well posed, but
the answers sound too ridiculous to be true, and, as I shall try to elucidate, they are
too ridiculous to be true. I am not the only scientist who feels taken aback by the
imaginative ideas that were launched, ranging from the role of ‘guiding pilot’
adopted by the wave function [4] to steer particles in the right direction, to the idea
that infinitely many ‘universes’ exist, all forming parts of a more grandiose concept
of ‘truth’ called ‘multiverse’ or ‘omniverse’, an idea now known as the ‘many worlds
interpretation’ [5, 6].

In contrast, an apparently quite reasonable conclusion was already reached in
discussions among scientists in the 1920s, centred around Niels Bohr in Copenha-
gen, called the ‘Copenhagen Interpretation’. They spelled out the rules for formu-
lating what the equations were, and how to elaborate them to make firm
predictions. Indeed, we know very well how to use the equation. The properties of
atoms, molecules, elementary particles and the forces between all of these can be
derived with perplexing accuracy using it. The way the equation is used is nothing
to complain about, but what exactly does it say?

Paul Dirac for instance, advised not to ask questions that cannot be answered by
any experiment; such questions cannot be important. We know precisely how to
use Schrödinger’s equation; all that scientists have to do is insert the masses and
coupling parameters of all known particles into the equation, and calculate. What
else can you ask for? Many of my colleagues decided to be strictly ‘agnostic’ about

the interpretation, which is as comfortable a position to take as what is was for 19th

century scientists to stay ‘agnostic’ about the existence of atoms.
The Copenhagen verdict was:

“There are many questions whose answers will not be in the range of any experiment

to check; there will be no unanimous agreement on the interpretation of the

equations, so stop asking.”

The present author accepts all conclusions the Copenhagen group had reached,
except this last one. It will be important to ask for models that can elucidate the
events that take place in an experiment. We do wish to know which sensible models
can in principle explain the Schrödinger equation and which will not.

What happens to its wave function when you actually observe a particle? What
does it mean if the Schrödinger equation suggests that interference takes place
between different possible paths a particle can take? Those questions I can now
answer, but others are still way out of reach: the masses and coupling parameters of
the elementary particles have been determined by experiment, but we do not have
acceptable theories at all to explain or predict their values. If the history of science is
something to be taken to mind, it may be that asking unconventional questions will
lead to better insights.

The Schrödinger equation is simple and it works, but some of the explanations
why it works seem to get the proportions of a Hieronymus Bosch painting. This does
not sound right. Almost a full century has passed since the equation was written
down, and we still do not know what or whom to believe, while other scientists get
irritated by all this display of impotence [7]. Why is it that we still do not agree?

I think I know some of the answers, but almost everyone disagrees with me. I
have reached the conclusion that quantummechanics indeed describes a completely
deterministic world. Admittedly, I will leave some questions unanswered. The
origin of the symmetries exhibited by the equations is not well understood. More
advanced mathematics will have to be employed to answer such questions, as will
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be explained. Sharpening the scope of my claim, the point is that there is no mystery
with quantum mechanics itself. Just leave questions concerning symmetries aside
for the time being. In contrast with what others proclaimed, there is no logical
conflict. This will be explained (Section 5).

What are those masses and coupling strengths? Do particles exist that we have
not yet been able to detect? Isn’t it the scientist’s job to make predictions about
things we have not yet been able to unravel? These are questions that are haunting
us physicists. We have arrived at a splendid theory that accounts for almost any-
thing that could be observed experimentally. It is called the Standard Model of the
subatomic particles. But this model also tells us that particles and forces may exist
that we could not have detected today. Can we produce any theory that suggests
what one might be able to find, in some distant future? And as of all those particles
and forces that we do know about, is there a theory that explains all their details?

Today’s theories give us little to proceed further from where we are now. The
Standard Model explains a lot, but not everything. This is why it is so important to
extend our abilities to do experiments as far as we can. Recently, audacious plans
have been unfolded by the European particle physics laboratory CERN, for building
a successor of its highly successful Large Hadron Collider (LHC). While the exper-
imental groups working with the LHC have provided for strong evidence
supporting the validity of the Standard Model up to the TeV domain, theoreticians
find it more and more difficult to understand why this model can be all there is to
describe what happens further beyond that scale. There must be more; our present
theoretical reasoning leads to questions doubting the extent to which this model can
be regarded as ‘natural’ if more of the same particles at higher energies are allowed
to exist, while the existence of totally new particles would be denied.

Inspired by what historians of science are telling us about similar situations in the
past history of our field, investigators are hoping for a ‘paradigm shift’. However,
while it is easy to postulate that we ‘are doing something wrong’, most suggestions for
improvement are futile; suggesting that the Standard Model would be ‘wrong’ is
clearly not going to help us. The ‘Future Circular Collider’ is a much better idea; it will
be an accelerator with circumference of about 100 km, being able to reach a c.m.
collision energy of 100 TeV. The importance of such a device is that it will provide a
crucial background forcing theoreticians to keep their feet on the ground: if you have
a theory, it better agree with the newest experimental observations.

2. The generic realistic model

The central core of our theory consists of a set of models whose logic is entirely
classical and deterministic. Deterministic does not mean pre-deterministic: there is
no shortcut that would enable one to foresee any special feature of the future
without performing extremely complex simulation calculations using the given
evolution laws. There is no ‘conspiracy’. Also, we do not take our refuge into any
form of statistics. The equations determine exactly what is happening. Of course we
do not know today exactly what the equations are, but we do assume them to exist.

The equations will be more precise even than Newton’s equations for the motion
of the planets. Newton’s equations are given in terms of variables whose values are
determined by real numbers. But, in practice, it is impossible to specify these
numbers with infinite precision, and consequently, chaos takes place: it is funda-
mentally impossible, for instance, to predict the location of the dwarf planet Pluto,
one billion years from now, because such a calculation would require the knowledge
of the locations and masses of all planets in more than 20 digits accuracy today [8].
That’s a tiny fraction of a micron for Pluto’s orbit. Following Pluto during the age of
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the universe would require accuracies beyond 2000 digits, much tinier margins
than the Planck length. To describe Pluto’s position exactly would require an infinite
number of decimal places to be rigorously defined.

Our deterministic theory will be formulated in terms of integer numbers only,
which can be defined exactly without the need of infinitely many decimal places.
This kind of precision in defining theories may well be what is needed to under-
stand quantum mechanics.

For simplicity, we imagine a universe with finite size and finite time. As for their
mathematical structure, all deterministic models are then very much alike. All
finite-size discrete models must have finite Poincaré recursion times. There will be
different closed cycles with different periods, see Figure 1. Counting these cycles,
one finds that the rank of a cycle is physically a conserved quantity, almost by
definition. For simplicity, we constrain ourselves to time reversible evolution laws,
although it is suspected that one might be allowed to relax this rule, but then the
mathematics becomes more complex.

We now emphasise that the evolution law of such a deterministic system can be
exactly described in terms of a legitimate, conventional Schrödinger equation. We
say that quantum mechanics is a vector representation of our model: every possible
state the system can be in is regarded as a vector in the basis of Hilbert space. This
set of vectors is orthonormal. The classical evolution law will send any of these
vectors into an other one. Since these vectors are all orthonormal and since the
evolution is time-reversible, one can easily prove that the evolution matrix is uni-
tary. It contains only the numbers 1 and 0. There is only one 1 in each row and in
each column; all the other entries are 0, from which unitarity follows.

By diagonalising this matrix, one finds all its eigenvectors and eigenvalues.

Within one cycle, the eigenvalues of U tð Þ are e�2πint=T, where t is time, T is the
period, and n is an integer. The formal expression for the eigenvectors is easily
obtained:

ont kjnh iE ¼ 1
ffiffiffiffi

N
p e�2πink=N , (1)

where ∣kiont are the ontological states, labelled by the integer k, and ∣niE are the
energy eigenvectors. We read off in the basis formed by the states ∣niE that the
Hamiltonian takes the values.

Hnm ¼ 2πnδnm=T: (2)

At first sight, this does not look like quantum mechanics; the series of eigen-
values (2) seems to be too regular. In [9] it was proposed to add arbitrary additive

Figure 1.
Generic evolution law for a realistic model with different periodicities. In this example we see 5 cycles, with
ranks 2, 3, 6, 8 and 11.
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energy renormalization terms, depending on the cycle we are in, but the problem is
then still that it is difficult to see how this can reproduce Hamiltonians that we are
more familiar with. The energy eigenstates seem to consist of large sequences of
spectral lines with uniform separations. A more powerful idea has been proposed
recently [10, 11]. More use must be made of locality. We wish the Hamiltonian to be
the sum of locally defined energy density operators,

H ¼
X

x
!
Hðx!Þ : (3)

Now this is really possible. The price to be paid is to add fast fluctuating, localised
variables, called ‘fast variables’ for short. They replace the vague ‘hidden variables’
that were introduced in many earlier proposals [12].

The fast variables, 0≤φiðx
!Þ< 2π, are basically fields that rapidly repeat their

values with periodicities Tiðx!Þ, which we choose all to be large and mostly different.
To reproduce realistic quantum mechanical models, we need these periods to be
considerably shorter in time than the inverse of the highest energy collision
processes that are relevant.

To a good approximation, the fast variables will be non-interacting. This means

that the energy levels will take the form E ¼ 2π
P

i,x
!niðx!Þ=Ti, where the ni are all

integer, and it implies that there is one ground level, E0 ¼ 0, while all excited states
have energies E≥ 2π=Ti. Clearly, our conditions on the fast variables were chosen
such that their excited energy levels exceed all energy values that can be reached in
our experiments.1

Note that energy is exactly conserved. Therefor we may assume that, if an initial
state is dominated by the state ∣E ¼ 0i, it will stay in that state.

Now consider the quantummodel that we wish to mimic. Let that have a basis ofN
states, ∣αi, ∣βi, ⋯, with 1≤ α, β, ⋯<N, to be called the slow variables. Their inter-
actions are introduced as classical interactions with the fast variables, as follows:

Two states ∣αi and βi are interchanged whenever the fast variables in the
immediate vicinity of states α and β simultaneously cross a certain pre-defined
point on their (fast) orbits.

Here, the ‘vicinity’ must be a well-defined notion for these states. In the case of
non-relativistic particles, it means that we defined the states as the particle(s) in the

coordinate representation ∣x
!

tð Þi. In the relativistic case we take the basis of states

specified by the fields ϕiðx
!Þ. This does imply that, in both cases, we regard the

particles and/or fields to undergo exchange transitions that eventually will generate
the desired Schrödinger equation or field equations.

One can describe these classical interchange transitions in terms of a ‘quantum’

perturbation Hamiltonian.

Hint ¼ π

2

X

α, β, s

σ α,β½ �
y δ

φα,φ
sð Þ
α
δ
φβ,φ

sð Þ
β

, (4)

where σ α,β½ �
y is one of the three Pauli matrices σx, σy, σz, acting on the

two-dimensional subspace spanned by the two states ∣αi and ∣βi.

1 More precisely, we talk of energies that can be associated to single quantum particles at isolated points

in space–time.

5

Ontology in Quantum Mechanics
DOI: http://dx.doi.org/10.5772/intechopen.99852



Some special points on the orbits of the fast variables φα and φβ will be indicated

as φ
sð Þ
α and φ

sð Þ
β . If the fast variables φα and φβ reach their special positions simulta-

neously then the corresponding classical states ∣αi and ∣βi are interchanged.
In Eq. (4), we used a discretised notation, where the time unit is chosen such

that it is the time needed to advance the fast variables by only one step in their
(discretised) orbits. One may check that the factor π=2 is crucial to guarantee that, if
the special point is reached, the equation.

e�
πi
2σy ¼ �iσy ¼

0 �1

1 0

� �

(5)

describes a classical interchange, without generating superpositions. The minus
sign is unavoidable but causes no harm.We chose the Pauli matrix σy because, when
combined with the factor i in the Schrödinger equation, the wave function will be
propagated as a real-valued quantity. One might desire to generate one of the other
Pauli matrices also using classical physics. This can be done by adding a dummy
binary variable, as described in [11] (the binary variable also propagates classically).

The Hamiltonian describing the evolution of the slow variables is now derived
by assuming that the fast variables never get enough energy to go to any of their
excited energy states. Their lowest energy states are ∣0iE obeying

ont kj0h iE ¼ 1
ffiffiffiffi

N
p , (6)

so that the expectation value of a Kronecker delta is

0jδ
φα,φ

sð Þ
α
j0

D E

¼ 1

N
, (7)

where N is the number of points on the fast orbit of this variable.
Eq. (5) could als be used if we had only one Kronecker delta in Eq. (4), but this

would cause exactly one transition during one period of the fast variable, which
makes the effective Hamiltonian too large to be useful. Choosing two Kronecker
deltas causes one transition only to take place after much more time, making the
insertion (4) of the desired order of magnitude to serve as a contribution in the
effective Hamiltonian of the slow variables.

By adding a large number of similar transition events in the orbits of all fast
variables, causing transitions for all pairs of (neighbouring) slow variables, we can
now generate any desired contributions to the effective Hamiltonian elements Hαβ

causing transition among the slow variables. The result will be.

Hint
αβ ¼

π

2
σ α,β½ �
y

N s½ �

N α½ �N β½ �
, (8)

where the numbers N α½ � and N β½ � are the total numbers of points on the orbits of

the fast variables α and β, and the numbers Ns indicate the numbers of the special
transition points on the donut formed by the orbits of the pair α, β.

We encounter the restriction that the matrix elements will come with rational
coefficients in front. The fundamental reason for the coefficients to be rational is
that, eventually, all discretised classical models have finite Poincaré recursion times.
In practice one may expect that this problem goes away when, for realistic classical
systems, the Poincaré recursion times will rapidly go to infinity.
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We have now achieved the following. Let there be given any Hamiltonian with
matrix elements Hαβ in a finite-dimensional vector space, and given a suitably
chosen basis in this vector space, preferably one where every state can be endowed

with coordinates x
!
. Then we have defined slow variables ∣αi describing the physical

states, and we added fast variables whose excited states are beyond the reach of our
experiments. We found classical interactions, prescribed as exchanges between the
classical states, such that the effective Hamiltonian will approach the given one.

The system obeys the Schrödinger equation dictated by this Hamiltonian, and,
by construction, all probabilities evolve as is mandated by the Copenhagen doctrine.
The reader may ask how to obtain the diagonal elements of the Hamiltonian, and
how to make it contain complex numbers. The answer is that these can also be
generated by using an additional binary degree of freedom as mentioned above.

In principle, one could have used any orthonormal basis of states to be used in
our construction, but in practice we would like to recover locality in some way. The
demand of locality in the classical system implies that we should demand locality for
the fast variables and the slow ones. This appears to be straightforward. For non-
relativistic particles, one may use the basis of states defined by the position opera-

tors x
!
. In the relativistic case, one needs the field operators φi x

!
� �

and their

quantum eigen states to start off with.
The theory we arrive at appears to be closely related to Nelson’s ‘stochastic

quantummechanics’ [13]. We think our construction has a more solid mathematical
foundation, explaining how the quantum entanglement arises naturally from the
energy conservation law, associated to time translation invariance.

3. Symmetries and superpositions

The interpretation of the Schrödinger equation that we obtained is that it merely
describes the evolution of the probability distribution for the slow variables, after
averaging over the positions of the fast variables. The fast variables dictate the
evolution, but they act too fast for us to observe this directly. The new thing in our
procedure is that we have the choice to also describe the fast variables using
quantum mechanics as a tool: fast and slow variables together go into a vector
representation of what happens.2

In statistical treatments of moving variables, with well-determined
evolution laws, it should be completely clear that the probability distributions of the
final state are the result of our choices for the probability distributions of the initial
states.

At first sight, the group of rotations can also be regarded as pure permutations,

and, although the lattice structure of our local coordinate space x
!
will be severely

affected, one might suspect that our present understanding of physics comes from
smearing the lattice back into a continuum; this may be a reasonable approach
towards understanding rotational symmetry.

However, more severe problems arise if we consider the notion of spin in a
particle. We need to take spin into account when analysing Bell’s theorem. In the
treatment displayed in the previous section, the spin variable of a particle would be
a discretised variable s, with integer spacings ranging from �S to S, where S is the

2 Do keep in mind that the distinction between fast variables and slow variables is a feature of our

simplified models, but possibly unnecessary in the real world. All variables are real, evolving classically

according to the same or similar classical laws.
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total spin quantum number, being integer or half-odd-integer. These would be
promoted to the status of classical variables, and then we can set up exactly the right
Schrödinger equation for particles like the Dirac particle. What happens with its
ontological interpretation if we rotate that?

It is clear that, in this case, rotation transformations transform the ‘real states’ ∣si
into superpositions. In doing so, the rotation group can serve as the prototype of
many symmetry considerations in quantum mechanics. How do we analyse the
Stern-Gerlach experiment?

The superimposed states obey exactly the same Schrödinger equations as the
basis elements do, and we had chosen the latter at will. So one possible answer could
be: it does not matter which of the states we call real; there is no experiment to help
us make the distinction. But this is debatable. The Stern-Gerlach experiment in its
vertical orientation distinguishes particles with spin up from particles with spin
down, these have different orbits. Remember that, in this chapter, we focus on
going beyond the usual statistical interpretation of quantum mechanics, aiming at a
description of pure, real states. The only accepted probabilities are 1 and 0.

The real physical states we work with form a basis of Hilbert space, and the
equations we work with ensure that any state that starts off being real, occurring
either with probability 1 or with probability 0, continues to be a real state forever.
This must also hold for any Stern-Gerlach set-up or any of the other paradoxical
contraptions that have been proposed over the years. Real state in ¼ real state out.
This was called the ‘law of ontology conservation’ [14].

At first sight it seems that a Stern-Gerlach experiment, after a rotation over an
arbitrary angle, turns into a superposition of several real states. This is true in the
mathematical sense. It is the easiest way to visualise what the rotation group stands
for. However, if we physically rotate a Stern-Gerlach experiment, by undoing and
re-arranging nuts and bolts, We do something else. The new experiment again goes
into one of the realistic states; the nuts and bolts also go into new physical states, so
this is not quite the same kind of rotation.

Notice however, that if a particle with spin leaves one Stern-Gerlach instrument
and continues its way in an other, rotated, device, then, as we know from standard
quantum mechanics, it emerges in a superposition, or more accurately, in a proba-
bilistic distribution. Where does this stochastic behavior come from? What happens
if we do interference experiments with the various emerging beams of particles?

Figure 2.
The periodic orbits of the fast variables. Points where interactions take place are indicated. If these occur in the
orbit of a single fast variable (a), they will be difficult to miss, but in the case of two or more (b), the special
points will be hit much less frequently, so that the interactions become slow. The orbit takes the shape of a
(multidimensional) torus (c).
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Apparently, there are other variables that play a role. We can blame the fast
variables for this. The fast variables for the rotated device do not coincide with the
previous fast variables. In specifying the state of the particle in the first device, we
forgot to observe where exactly the fast variable was. We couldn’t observe this, as it
was moving too fast. The transformation (in this case that is the rotation), formally
involved the excited energy modes of the fast variables. In practice, we know that
the energies of the quantum particles in both devices are too low to detect the
excited modes, but in formulating the interactions, using the special points in
Figure 2b and c, the excited modes do play a role because the interaction points are
localised.

From these considerations, we claim that whatever is left of the various para-
doxes should be nothing to worry about.

4. On Bell’s theorem

Yet, this conclusion is often criticised. To set the stage, let us recapitulate J.S.
Bell’s theorem [15]: a source is constructed that emits two entangled photons simul-
taneously. Such sources exist, so no further justification of its properties is asked
for. If �z is the direction of the photons emitted, then the helicities are in the xy
direction. Entanglement here means that the 2-photon state is.3

∣ψisource ¼
1
ffiffiffi

2
p j00iþj11ið Þ , (9)

where the 0 stands for the x polarisation and 1 stands for the y polarisation. Alice
and Bob use polarisers to analyse the photons they see. Alice rotates her polariser to
an angle a and Bob chooses an angle b, and these choices are assumed to be totally
independent. The two photons “do not know” what the angles a and b are; they are
assumed to emerge with a polarisation angle λ. According to the usual view of what
hidden variables are, the probability that both Alice and Bob are detecting their
photon is written as P a, bð Þ; the probability that a photon with orientation λ is
detected by Alice is assumed to be pA λ, að Þ, and the probability that Bob makes an
observation is written as pB λ, bð Þ. One then writes.

P a, bð Þ ¼?
ð

dλ � ρ λð Þ � pA a, λð Þ � pB b, λð Þ: (10)

All probabilities p and P are assumed to be between 0 and 1. ρ λð Þ is also positive
and integrates to one. Bell would argue that this expression should apply to theories

such as ours, simply by merging the fast variables φi x
!

� �

with the parameter λ.

Figure 3 shows what assumptions go in Eq. (10). It seems to be obvious that
observers in regions 1 and 2 may choose any setting a and b to identify their photon.

Writing a ¼ a� 90∘, photons obey:

P að Þ þ P að Þ ¼ 1 : (11)

The correlation between Alice’s and Bob’s measurement is then written as.

3 Alternatively, a source emitting two spin 1=2 particles could be used. The angles of the polarisation will

then be twice the angles of the photon orientation discussed here, and there will be other modifications

due to the fact that these particles are fermions.
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E a, bð Þ ¼ P a, bð Þ þ P a, b
� �

� P a, b
� �

� P a, bð Þ : (12)

Standard quantum mechanics allows one to choose the entangled photon state
(9) as if it is oriented towards either Alice or Bob, since it is rotation independent.
The outcome is then.

Equant a, bð Þ ¼ 2 cos 2 a� bð Þ � 1 ¼ cos 2 a� bð Þ : (13)

In the fashionable hidden variable language, Eq. (10) is assumed to be valid,
which implies that the photon must take care of giving Alice and Bob their mea-
surement outcome whatever their choices a and b are, and these outcomes are
found to obey the CHSH inequality [16], derived directly from Eq. (10). One then

finds that Eq. (5) conflicts with Eq. (10). There is a mismatch of at least a factor
ffiffiffi

2
p

,
realised when ∣a� b∣ ¼ 22:5∘ or 67:5∘.

Several ‘loopholes’ were proposed, having to do with the limited accuracy of the
experiments, but these will not help us, since we claim that our theory exactly
reproduces quantum mechanics, and therefore Eq. (13) should be reproduced by
our theory. It violates CHSH. How can this happen?

Our short answer is that we have a classically evolving system that exactly
reproduces the probability expressions predicted by the Schrödinger equation,
including Eq. (13), in a given basis of Hilbert space. The model is local and allows
for any initial state; it does not require any kind of ‘conspiracy’ or ‘retrocausality’,
or even non-locality.

This should settle the matter, but it is true that the violation of the CHSH
inequality is quite surprising.

The difficulty resides in assumption (10). Bell derives it directly from causality.
If no signal can travel from the space–time point where Alice does her measurement
to the point where Bob does his experiment, and vice versa, then Eq. (10) just
follows. Nevertheless, an assumption was made.

It amounts to the statement that the variables λ, a, and b, are mutually indepen-
dent. However, in [9], we computed the minimal non-vanishing correlations
between the angles a, b and λ that could reproduce the quantum expression (13)
exactly. We found4:

P a, b, λð Þ ¼ C∣ sin 2 aþ b� 2λð Þ∣ , (14)

where C normalises the total probability to one (its value depends on the
integration domain chosen). This expression shows a non-vanishing 3-variable cor-
relation, without any 2-variable correlations as soon as one averages over any of the
three variables. An equation such as (14) should replace (10).

Figure 3.
Bell’s definition of locality. 1 and 2 are two small regions of space–time, space-like separated. “Full specification
of what happens in region 3 makes events in 2 irrelevant for predictions about 1 if local causality holds”.

4 This outcome is model dependent, and if we choose the model to be physically more plausible, the

correlations become even stronger.
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One can read this to mean that the settings a and b have an effect on λ, but one
can also say that the choice of λmade by the photon, affected the settings chosen by
Alice and Bob.5 Perhaps the best way to interpret this strange feature is that it be an
aspect of information: the fact that the fast variables occupy all states in their orbits
with equal probabilities is expressed by saying that they live in their energy ground
states. The choice of the phases here is a man-made ambiguity that may propagate
backwards in time. It is not an observable ‘spooky signal’, since nothing propagates
backwards in time in the classical formulation.

When we say that the photons (together with the fast variables) ‘affect’ the
settings chosen by Alice and Bob, it implies that Alice and Bob have no ‘free will’. Of
course they haven’t, their actions are completely controlled by the equations. We
can’t change setting a without changing what happens in region 3 of Figure 3.

It is important then to realise that our theory is not a theory about statistical
distributions. If we include the fast variables, everything that happens in region 3,
occurs with probability 1, or, if it does not happen, it has probability 0. There is no
in-between. Remember that we reproduce the Schrödinger equation in a given basis
of Hilbert space. The probabilities of the Schrödinger equation emerge exactly, but
only if we start with the right basis elements.

We can add to this an important observation when the classical degrees of
freedom are considered: even a minute change of the setting a will require an initial
state in Figure 3, region 3 that is orthogonal to what it was before that adjustment. This
is because the settings are classically described. The required rotation of the fast
variable erases the information as to where its transition point was located (see
Figure 2).

We note that this aspect of our scenario implies the absence of ‘free will’ for
Alice and Bob in choosing their settings. Alice and Bob are forced to obey classical
laws, such that the rule ontology in ¼ ontology out is obeyed. The same can be said of
Schrödinger’s cat. Eventually, what we see when inspecting the cat is its classical
behaviour. Only after adding the (in practice invisible) fast variables, we can per-
form a basis transformation to quantum states to say that the cat is superimposed.
The statement belongs in the world of logic generated by the vector representation,
but means nothing as long as we hold on to the classical description.

5. Where are the fast variables and the slow variables in the standard
model?

At first sight we may seem to be a long way from describing quantum field
theories such as the Standard Model. In principle, one may expect something
resembling a cellular automaton, where we may be able to project the various field
variables as data on a cellular lattice. However, as described in Section 3, we have to
deal with the question how continuous and discrete symmetry patterns, essential
for the Standard Model to work, can be introduced. As is well-known, once we have
all local and global symmetries in place, the entire Standard Model is almost fixed,
with only a few dozen interaction parameters to be determined. We make a gentile
attempt at finding some sign posts that could indicate to us where to start.

In a very important paper [17], F. Jegerlehner describes the Standard model as a
minimalistic outcome of an algebraic structure whose basic interaction properties

5 This then would be an example of the ‘butterfly effect’. It is not as crazy as it sounds. As soon as we

include the fast variables in the discussion, the dynamics becomes invariant under time reversal, and the

statement that a later photon is correlated with settings chosen earlier is then not strange at all.
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are essentially natural near its ultimate cut-off scale, the Planck length, except that
the Higgs field self coupling happens to vanish, or almost vanish, at that scale. It
seems as if the universe is metastable, or perhaps just at the edge of stability. When
we scale towards the TeV scale, using the renormalization group equations, one
discovers that the Higgs self-coupling slowly grows towards its present value, and
this appears to explain the recently observed Higgs mass remarkably well.

There are important new questions that may be raised in connection with the
present work. One is where in the cellular automaton this copious algebra is gener-
ated; and of course we want to know how any kind of fast oscillating variables can
arise. Previously, this author was just thinking of very heavy virtual particles such
as the vector bosons that represent the remaining grand unification symmetry, but
there is a problem with that: as described in Section 2, Figure 2, the dynamical fast
variable must have the geometry of a multi-dimensional torus, whereas fields have a
more trivial topological structure if they indeed form vector representations of the
unifying algebra, see Section 2.

This perhaps can be done better [18]. The general philosophy that might be
useful here starts from a fundamental observation. Fields that describe data at the
Planck scale, can only propagate as fields at much more conventional scales (from
milli-electronVolts to nearly a TeV), if there is a mechanism that prevents them
from obtaining effective mass terms. To be precise, the dynamical field equations
must allow them to be shifted by a constant with only minor effects on the energy of
the state. At our scale of physics (to be referred to as the SM scale), fields can be
shifted in any way, depending on space and time, such that energies also change
within the energy domain of our SM scale. This means that the effective mass term
must be at the SM scale. When we move towards the Planck scale, this mass term
must rapidly approach to zero. Physically, the only mechanism that can do this is
the Goldstone mechanism:

Only if a field effectively describes a symmetry transformation, and if, at the
Planck scale, our world is invariant under this symmetry transformation, then we
can understand how this field can propagate all the way to the SM scale.

Since the Standard Model has a rich spectrum of possible fields (fermionic
and bosonic), this would force us to suspect that each of these fields must
represent a symmetry transformation under which the Planck-scale theory is
either exactly invariant (when the mass term vanishes) or invariant in a very
good approximation (when the mass is of SM scale or smaller). Indeed, this
should also hold for the fermionic fields, and this points towards supersymmetry
at the Planck scale.

In short, every field component in the SM represents a generator for an almost
exact symmetry of the Planck scale model. If we would be dealing with only scalar
fields in the Standard Model, this would give us all the symmetry transformations,
including estimates on how well the system is invariant.

Unfortunately, the real situation will be a lot more complicated. We have fer-
mionic fields that transform as spinors under rotation, and we have vector fields
that themselves again obey local gauge symmetries. How do we deal with that? It
would be a great assignment for a team of PhD students to design and elaborate a
logically coherent mathematical scheme.

This scheme might eventually produce logical guidelines for setting up cellular
automaton models in such a way that their behavior at SM scales indeed reproduce
the SM. But this is not all. The resulting automaton will still be a quantum automa-
ton. What we now need is a set of variables that can play the role of fast variables.
These are fields, but they cannot live on a flat field-space, they must form toruses as
in Section 2. Now it would be tempting to consider the gauge groups. All group
parameters of the local gauge groups SU 2ð Þ, SU 3ð Þ, and U 1ð Þ, form toroidal spaces
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or spheres. What’s more, we know that the physical quantum states are invariant
under these group transformations, so regardless their time-dependence, our world
should be in the invariant state, just like the energy ground state. This could be an
alley towards understanding how quantum behaviour could follow from a classical
cellular automaton.

6. General relativity and black holes

Finally, there is General Relativity. This theory must be regarded as just an other
theme of the general concept of local gauge theories. It represents a non compact
gauge group of curved coordinate transformations and it may well be that it can be
handled similarly. It is important to remember that this theory is not renormalizable
when presented in its usual form. We do observe that the addition of one further
interaction term, the square of the conformal Weyl curvature term Cμναβ, restores
renormalisability at the cost of negative energy modes [19]. Perhaps this mode can
serve as a fast variable, but much more work will be needed to remedy various
difficulties.

Theories for quantum mechanics that also aspire to include General Relativity,
must address the fundamental black hole question. Black holes that are sufficiently
large and heavy compared to the Planck scale of units, can be perfectly well
described by classical, i.e. unquantised Einsteinian laws. However many researchers
appear to arrive at the conclusion that there is something wrong with the black hole
horizon, which might even involve the larger black holes. The origin of this suspi-
cion is the emergence of ‘firewalls’ forming a curtain of destruction against particles
entering (or leaving) the horizon. The firewalls originate from the Hawking parti-
cles that are expected to emerge in the more distant future.

The present author found that there exists a unique procedure to neutralise the
firewalls, but it does not happen automatically. To see what may well happen, one
should compute the effects that particles entering a black hole have on the Hawking
particles leaving. It is not an act of destruction but a precisely calculable effect of
repositioning those rays of out going material. The bottom line is that the positions of
the out going particles are effected by the momenta of the in-going ones, and,
because of quantum duality relating position to momentum, the same relation is
found when going backwards in time: the momenta of the out-going particles are
linked to the positions of the in-going ones.

These findings allow one to construct a unique expression for the black hole
evolution matrix, only requiring very basic knowledge of the mathematics of GR
and QM.

However, we also hit upon a more sobering difficulty, The region behind the
horizon has to be used to describe the time reverse of the region normally visible,
otherwise the evolution matrix (actually a quantum evolution matrix) fails
completely to be unitary. For someone familiar with the Schwarzschild metric and
its generalisations that have charge and angular momentum, there is no surprise
here, but for the quantum physicist, this presents a problem. If we reverse the time
direction, we also change the signs of all energies of the matter particles. Yet
quantum field theories became successful precisely because they ensure the posi-
tivity of the energy of all particles. Can we allow ourselves a theory with such
apparently conflicting properties?

The only answer that we could find is that we should act in a way similar to what
P.A.M. Dirac did in order to overcome the negative energy problem in the Dirac
equation. Now in a black hole, we have bosons and electrons alike, but we can
achieve the same result by assuming that the entire band of energy eigenstates in a
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field theory should be bounded from below and from above! In that case, we can
interpret the energy states beyond the horizon to be filled with particles completely,
if the region at our side of the horizon is empty, and the other way around. The
name anti-vacuum was coined, describing the completely filled state.

The region beyond the vacuum then represents a CPT inversion of the region at
our side of the horizon. This picture appears to make perfectly sense, and we believe
it to be likely that it resolves the energy inversion problem in black hole physics.

This solution of the energy inversion problem replaces the infinite energy spec-
trum of all harmonic oscillators generated by the fields outside the horizon, with a
spectrum of evenly separated energy levels that have both a beginning and an end,
the end being the highest possible energy level. We note that this is not only the
energy spectrum of an atom with finite spin inside a homogeneous magnetic field
(the Zeeman atom), but it also represents the energy levels of a periodic system
with finite time steps δt in its evolution law, see the beginning of Section 2.

Indeed, we find that black holes may be telling us something about the origin of
quantum mechanics.

7. Conclusions

Our aim was to rescue the concept of ontology as opposed to epistemology in
quantum mechanics. This tells us that the atoms, molecules, electrons and other
tiny entities are features of things that really exist. They evolve into different states
or objects that also exist, according to universal physical laws. We find that this
makes perfect sense if what we now perceive as quantum mechanics is understood
as a vector representation of the states as they exist and evolve. Vector representa-
tions themselves allow superposition, and one finds that the superpositions of
‘ontological’ states evolve through the same Schrödinger equations as the original
states themselves. This in turn implies that one may ignore everything that is said
about ontological existence as long as we use Born’s dictum that the absolute squares
of the superposition coefficients represent probabilities. The reason why we never-
theless attach much importance to our ontological interpretation is that it implies a
severe restriction for the evolution laws; asking for the existence of an ontological
representation forces us to redesign the set of elementary basis elements of Hilbert
space, which might implicate new constraints on what kinds of Standard Model we
may suspect to describe our world.

An ontological interpretation is also of great help in resolving the numerous
‘paradoxes’ that have been around confusing scientists as well as young students as
to what ‘reality’ really is about. Questions such as the physical process that seems to
be associated to the ‘collapse of the wave function’, the ‘measurement problem’, as
well as the difficulties raised in the EPR paper as well as Bell’s theorem, questions
surrounding the features of entanglement, and the Greenberger - Horne - Zeilinger
(GHZ) paradox, all become much less counter intuitive and mysterious than what
they look like in their original quantum settings.

The explanation of these features is that the real thing that is happening is the
classically evolving collection of microscopic objects, of which the fastest periodi-
cally moving things automatically enter into a completely featureless, even
distribution over all of their possible states.

Remarkably, the reason why the states of the fastest moving objects stay in an
even distribution is better understood in the quantum formalism than when using
the original classical picture: the highest energy excitations are difficult or almost
impossible to excite, simply because the energy needed for that is usually
unavailable to us: in our accelerators we can only reach a dozen or so TeVs, and in
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cosmic rays the highest detectable energies are still well below the Planck scale.
Therefore, the excited modes are only virtually present, and may well be ignored in
practice. And, since all superposition coefficients for the ground state are equal, the
distribution is featureless, in practice – according to Born.

Thus, what we really find is that the lowest energy states of the slow variables
become entangled due to their interactions with the fastest variables. Quantum
mechanics ensues; it is mathematically inevitable.

Our work is far from finished. Fresh young minds should probe the remaining
mysteries; in particular, the Standard Model is built from fundamental symmetry
principles. There are more symmetries than one might have expected from ‘just
any’ classical system: there are many continuous symmetries, and also non-compact
symmetries such as Lorentz invariance and general coordinate transformation
invariance, and there are exact local gauge invariances as dictated by the gauge
fields in the Standard Model.

Finally, a natural place must be found where we can put and understand the
black hole solutions of Einstein’s equations. They too must obey the laws of quan-
tum mechanics, before we can embrace these remarkable systems in our overall
picture of nature. Data obtained from the observations of cosmologists must also be
incorporated. What we are searching for is nothing less than a grand picture of the
evolution laws shaping our physical world.
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