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Chapter

Single-Period Capacity and
Demand Allocation Decision
Making under Uncertainty

Sangdo Choi

Abstract

The newsvendor model deals with a single-period capacity allocation problem
under uncertainty. The real world examples include perishable products (e.g., fish,
vegetable), holiday-related products (e.g., Easter, Christmas, Halloween), seasonal
products (e.g., fashion), and promotional products. This section addresses three
newsvendor models: traditional newsvendor, inverse newsvendor, and sequential
newsvendor models. The main decision under the traditional newsvendor setting is
capacity allocation (i.e., how much to order), whereas the main decision under the
inverse newsvendor setting is demand allocation (i.e., how many customers to be
served) under the fixed capacity. This section demonstrates how to compare profit
maximization approach to customer-oriented approach under the traditional
newsvendor. The inverse newsvendor applies to revenue management for the
hospitality industry. The sequential newsvendor model determines the optimal
sequence when the number of customers to be served (determined by the inverse
newsvendor model) is given. Normal distribution is considered for analytical
solution and numerical studies. In addition, a discrete distribution is considered for
numerical studies.

Keywords: Capacity Allocation, Demand Allocation, Newsvendor, Inverse
Newsvendor, Sequential Newsvendor

1. Introduction

How can an operations manager make a one-time decision that covers a fixed
future period if the manager cannot adjust the decision afterwards? A typical
approach to this question is the single-period newsvendor model [1-4]. Suppose the
operations manager herein is a newsvendor who would like to maximize profit or to
satisfy a probability of not running out of newspaper. The newsvendor must place
and receive an order before the start of each day to put on the newspaper stand. All
left-over newspapers will be salvaged through paper-collection companies after the
day, because nobody is interested in out-dated newspapers. The newsvendor is
supposed to know all demand history and is able to forecast demand distribution
properly, but not exact demand quantity on certain date. The newsvendor will not
be able to match supply with demand exactly, unless the newsvendor is lucky [1],
because only one demand scenario is realized during the selling period, i.e.,
P(demand quantity = order quantity) = 0 for a continuous demand distribution.
Similar examples include grocery products (e.g., fish, vegetable), holiday-related
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products (e.g., Christmas, Easter, Halloween), seasonal products (e.g., fashion),
and promotional products (e.g., T-shirts for a championship basketball or football
game) [3]. These products also have a single selling period and will be deeply
discounted after the selling season. If the newsvendor orders too much, left-over
(overage) inventory is salvaged or steeply discounted. Otherwise, the newsvendor
will forgo net profit because of lack of inventory (underage). Erlebacher et al. [5, 6]
address the multi-item newsvendor model for inventory optimization problem with
a capacity constraint. The newsvendor would like to keep balance between overage
and underage, depending on the importance of two opposing directions.

The main decision variable for the traditional newsvendor is how many orders to
be placed, which is a capacity allocation problem. Inversely, the newsvendor can
also make decision on demand size to take full advantage of capacity [7-11]. If the
newsvendor allocates too many demand, the resource is over-utilized (overusage).
Otherwise, the resource is under-utilized (underusage). The inverse newsvendor
would like to keep balance between overusage and underusage. A sequential
newsvendor can make sequencing decision, when the demand size is determined by
the inverse newsvendor [12]. Each customer is assigned to a slot in a sequence and
the expected service start time should be scheduled. The sequential newsvendor
would like to keep balance between earliness and lateness.

This chapter is organized as follows. Section 2 explains the traditional
newsvendor model. Section 3 addresses the inverse newsvendor model. Section 4
addresses the sequential newsvendor model. Section 5 concludes this chapter.

2. The traditional newsvendor model

The traditional newsvendor is supposed to deal with inventory control. The
newsvendor has to decide the order quantity to maximize the expected profit. If the
newsvendor orders one less than the desired quantity, the newsvendor will forgo unit
net profit owing to the lost sales. If the newsvendor order one more than the desired
quantity, the newsvendor will loose unit net loss owing to the left-over inventory.
Through the marginal analysis, the critical fractile determines the desired (or opti-
mal) quantity and is regarded as the customer service level (CSL) [1-4].

On the contrary, the newsvendor may be interested in improving CSL than
maximizing internal profit. For example, the newsvendor might want to make 90
percent sure of not running out of inventory, even though the critical fractile to
maximize the expected profit is 0.7. The newsvendor would expand the market size
in the long run while sacrificing the short-term maximum profit.

2.1 Mathematical model and solution approach

Let p be price; ¢ order cost; s salvage, respectively. Demand D has mean of y and
standard deviation 6. Our decision variable is order quantity, 4. The objective
function is to maximize the expected profit. The profit function z(g) is defined as
follows:

max z(¢) = pE[min (¢, D)] —cq +sE[(D —q)"], 1)

where min (g, D) is the realized sales out of demand and (D — ¢)™ is left-over
inventory, respectively. The profit maximization problem 7(q) reduces to the
equivalent problem 7(g) to minimize the expected sum of underage and overage as
follows:
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min(q) = ’E[(q — D)"] +¢"E[(D — )], (2)

where ¢ = p — ¢, net profit and ¢’ = ¢ — s, net loss, respectively. The optimal
solution to either z(q) or 7(q),q* can be obtained by first and second necessary
conditions or through marginal analysis as follows [1, 2, 4]:

F(q*)—L (3)

ot 40’

where F(-) is the cumulative distribution function of demand D. In addition,
F(q*) is the probability that you are able to cover all demand up to ¢*, CSL for
order quantity, q*.

2.2 Numerical example of discrete demand

The newsvendor is supposed to sell Christmas trees between Halloween and
Christmas Eve, this year. Suppose that the newsvendor has such a long sales history
to build a reasonable demand forecast. Table 1 shows the demand forecast based
upon the historical data.

The newsvendor has to place and receive an order before Halloween, which is
supposed to be the first day of selling season. The newsvendor sets the selling price
to $25 per unit and promises to pay $10 per unit to a farmer. A local mulch firm will
collect left-over trees for $3 per unit to cut them into small pieces for mulch after
Christmas. Note that the underage penalty ¢ = 25 — 10 = 15 per unit and the
overage penalty ¢ = 10 — 3 = 7 per unit. The newsvendor tends to order more than
the average 260, which is close to median, because ¢* > ¢, i.e., the newsvendor

wants to avoid underage rather than overage. The critical fractile is % = 0.68. The

optimal order quantity should be 300 because of F(250) < 0.68 < F(300). However,
if the newsvendor sets CSL to 90 percent, the order quantity should be 350 because
of F(350) > 0.9, of which profit is lower than the profit of the optimal order
quantity 300.

Table 2 provides the expected profit of three order quantities: 250, 300, and
350. Order quantity of 300 is (at least) a local optimum. Note that the profit
function z(g) is convex function, i.e., increasing-then-deceasing [1, 2, 4]. If the
newsvendor would compute the expected profit for all other order quantities, the
newsvendor can recognize that order quantity of 300 is global optimal. If the
newsvendor orders too much (e.g., 350), salvages are larger than the optimal

Demand quantity Probability Cumulative probability
100 0.03 0.03
150 0.07 0.10
200 0.10 0.20
250 0.25 0.45
300 0.30 0.75
350 0.20 0.95
400 0.05 1.00
Table 1.

Demand forecast with probability and cumulative probability for Christmas tree.
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Demand Probability Revenue Cost Salvage Profit
Order = 250 Exp. Profit = 3,387
100 0.10 100 x 25 250 x 10 150 x 3 450

150 0.10 150 x 25 250 x 10 100 x 3 1,550

200 0.15 200 x 25 250 x 10 50 x 3 2,650

250 0.15 250 x 25 250 x 10 0x3 3,750

300 0.25 250 x 25 250 x 10 0x3 3,750

350 0.15 250 x 25 250 x 10 0x3 3,750

400 0.10 250 x 25 250 x 10 0x3 3,750
Order = 300 Exp. Profit = 3,642
100 0.10 100 x 25 300 x 10 200 x 3 100

150 0.10 150 x 25 300 x 10 150 x 3 1,200

200 0.15 200 x 25 300 x 10 100 x 3 2,300

250 0.15 250 x 25 300 x 10 50 x 3 3,400

300 0.25 300 x 25 300 x 10 0x3 4,500

350 0.15 300 x 25 300 x 10 0x3 4,500

400 0.10 300 x 25 300 x 10 0x3 4,500
Order = 350 Exp. Profit = 3,567
100 0.10 100 x 25 350 x 10 250 x 3 —250

150 0.10 150 x 25 350 x 10 200 x 3 850

200 0.15 200 x 25 350 x 10 150 x 3 1,950

250 0.15 250 x 25 350 x 10 100 x 3 3,050

300 0.25 300 x 25 350 x 10 50 x 3 4,150

350 0.15 350 x 25 350 x 10 0x3 5,250

400 0.10 350 x 25 350 x 10 0x3 5,250

Table 2.

Expected profit for three order quantities: 250, 300, and 350.

quantity and revenues are also larger than the optimal quantity. However, larger
ordering cost affects more on the expected profit. The expected profit of 350 is
lower than the maximum. If the newsvendor orders too little (e.g., 250), the
newsvendor can save salvages compared to the optimal quantity and revenue is not

large.

2.3 Numerical example of normally distributed demand

Now take into account a continuous demand distribution. Suppose that the
demand distribution is normally distributed with mean of 275 and standard
deviation of 50. It is hard to compute the revenue and salvage for each order,
because there are infinite scenarios of order quantity. The newsvendor can compute
the expected profit, starting from the expected lost sales, which is expressed as

follows:

E[(D—q)"] = oL(2),

(4)
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Step Item Profit-based CSL-oriented

1 Critical Fractile (or CSL) 0.68 0.9

2 Order Quantity 298.6 339.1

3 Expected Lost Sales 7.4 5.0

4 Expected Sales 267.6 270.0

5 Expected Left-over 31.0 69.1

6 Expected Profit 3,797.5 3,566.0
Table 3.

Expected profit for two approaches: Profit maximization vs. CSL-oriented.

where L(z) = ¢(z) —2(1 — ®(2)) [2]. Note that ¢(z) is normal probability
distribution and ®(z) is cumulative distribution, respectively.

1. Compute the critical fractile, or CSL.

2.Compute the associated quantity with CSL, norm.inv(CSL, u, o).
3.Compute the expected lost sales, 6L (z).

4.Compute the expected sales: = expected demand - expected lost sales.
5.Compute the expected left-over: = order quantity - expected sales.

6. Compute the expected profit: = ¢ x expected sales - ¢’ x expected left-over.

The newsvendor can take two perspectives: internal profit maximization vs.
higher CSL. Table 3 shows computational steps to get the expected profits of both
profit-based and CSL-oriented approaches, respectively. For profit-based approach,
the critical fractile is computed and its associated order quantity is determined
accordingly. The expected profit is $3,797.5. For CSL-oriented approach, the
newsvendor is supposed to determine the desired CSL first. Suppose that the
newsvendor would like to guarantee 90% probability of not running out, i.e., 90%
of demand will be covered by the order quantity. Because of higher CSL, the order
quantity is far larger than the optimal order quantity; lower expected lost sales;
larger left-over. Henceforth, the expected profit is lower. The newsvendor can
choose either order quantity based on your strategic direction.

3. The inverse newsvendor model

The inverse newsvendor model applies to revenue management, which deals
with fixed capacity and has to determine demand allocation [7, 8, 10, 11]. Airline
industry uses quantity (i.e., number of seats) for capacity, whereas hospital may use
time unit for capacity. Time-based inverse newsvendor model can be addressed for
time-sensitive service industries such as hospital and law-firm.

The inverse newsvendor can take into account both identical and non-identical
service durations. When the inverse newsvendor takes into account all identical
service durations, the decision reduces to the number of allocation, i.e., how many
customers will be assigned. When the inverse newsvendor takes into account
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heterogeneous service durations, the decision reduces to setting priority problem.
Who should be allocated first and who can be next on? [9].

3.1 Mathematical model for identical service durations

Let & be the given and fixed capacity in hour. Each customer requires service
duration, T which follows normal distribution with mean of x and standard devia-
tion o. Assume that all customers are homogeneous, i.e., they have the same mean
and standard deviation. The inverse newsvendor has to decide the number of
customers to be served, x to minimize the sum of expected overusage and
underusage. Consider the unit overusage penalty, ¢¢ and unit underusage penalty,
¢’. The objective function p(x) is defined as follows:

. +
<h - Tk> .
k=1

)

> 71T also follows normal distribution with mean of xu and variance of xc?.
Letz = h\/ﬁ”‘ Overusage E[(Zk T — h)ﬂ and underusage E[(h — Zzlek)ﬂ are
defined as follows [12]:

mln px +’E

®)

E (fjn—h) ]=<¢<z>—z<1—cb<z>>>a, ®)
k=1

ol-5n)

Figure 1 depicts a graphical representation of an inverse newsvendor problem
with y = 2,6 = 0.8, and & = 9. The optimal solution to (5), x* is defined as
follows [9]:

= (9(z) +20(z))0. @)

x* = |%] or[%], 8)
2
— 2 -2
wherefc:< 20 + /2“0 +4,uh> . )
2u
Fu(x® 2" =—% —o (10)
N( XX )_Cf—l—cg_ (Z)’

For the case of Figure 1, the optimal allocation can be either 4 or 5 by
visualization and analytical solution, (8) and (9).

3.2 Numerical example for identical service durations

Consider an operating room (OR) with 8 or 9 hour capacity. When each patient
requires 2 hour service durations on average, how many patients would be assigned
in the OR daily? Overusage penalties would cover overtime pay to the attending
surgeon(s), nurses, anesthesiologist, and other staff. Underusage penalties would
cover opportunity cost when the OR is under-utilized, but be hard to measure. The
inverse newsvendor can determine the optimal demand size if the newsvendor
knows parameters of service duration and two penalties. Numerical studies show
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Figure 1.

Graphical vepresentation of an inverse newsvendor model. The objective function for the case of p = 2,6 = 0.8,
and h = 9. The overusage is an ever-increasing function of x, whereas the underusage is an ever-decreasing
function of x. Hence, the objective function is a decrease-then-increase function.

Scenario 1 2 3 4 5 6 7 8

u 2 2 2 2 3 3 3 3

c 0.2 0.2 0.8 0.8 0.3 0.3 1.2 1.2
h 8 8 8 8 9 9 9 9
el 0.1:0.9 0.9:0.1 0.1:0.9 0.9:0.1 0.1:0.9 0.9:0.1 0.1:0.9 0.9:0.1
x 4.26 3.75 5.17 3.10 3.23 2.79 4.03 2.23
p(lx]) 0.16 0.20 0.32 0.25 0.21 0.30 0.42 0.33
p([x]) 0.20 0.16 0.41 0.64 0.30 0.21 0.61 0.83
x* 4 4 5 3 3 3 4 2

Table 4.

Patient allocation under different cost ratios, service durations and capacity.

impact of cost ratio and parameters on patient allocation. Consider the following
data set in Table 4.

Table 4 summarizes numerical studies with varying mean, standard deviation,
cost ratios, and capacity values. The inverse newsvendor can take into account two
capacity levels: 8 or 9. Hospital may operate 8 hours each day or 9 hours if the
inverse newsvendor expects high possibility of overtime. Each surgery duration
requires 2 or 3 hours. Take into account two levels of standard deviation for each
service duration. Two extremely different cost ratios are considered.
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The ratio of capacity to the mean service duration, f—j can be a base scenario.

Actual allocation can be the base scenario, one more allocation, or one less allocation
from the base scenario. For example, scenarios 1-4 have the ratio of 4 and scenarios
5-8 have the ratio of 3. When the inverse newsvendor has a non-integer value of
ratio, the newsvendor can use either floor or ceiling value of the ratio. Actual
allocations are 3, 4, or 5 for scenarios 1-4; 2, 3, or 4 for scenarios 5-8, respectively.

When & >¢ (ie., overusage is more penalized than underusage), the inverse
newsvendor tends to allocate less patients (than the base) to avoid overusage pen-
alty. On the contrary, when d>c (ie., underusage is more penalized than
overusage), the inverse newsvendor tends to allocate more patients (than the base)
to avoid underusage penalty. Allocating one more patient or one less patient would
affect a lot on the objective function. As a matter of fact, allocating more (less)
patients means ONE more (less) patient than the base scenario.

Variance may amplify impact of cost-ratio, which means there must exist inter-
active effect between variance and cost-ratio. When ¢¢ < ¢! (e.g., scenarios 1, 3, 5
and 7), the larger variance, the more allocated patients. When ¢f > c (e.g., scenarios
2, 4, 6, and 8), the larger variance, the less allocated patients. For lower variance
examples (scenarios 1, 2, 5, and 6), cost-ratio would not affect on allocation much.

3.3 Mathematical model for non-identical service durations

Suppose that there are N customers, of which index isi =1,2,---,N€.7,
respectively and that individual service time T; of customer i has mean of y; and
standard deviation ¢;. New decision variable x; is a binary variable, 1 if customer i is
served, O otherwise. The number of customers to be served is > _x;. The total
service time is defined as ) _x;T;. The inverse newsvendor problem with non-
identical service durations can be represented as follows:

+ +

N N
min ¢E| (> wTi—h| |+E| (A=) xTi| | (11)
i=1 i=1

Xi,1E S

The inverse newsvendor should evaluate 2" — 1 possible combinations to find
the optimal number of customers to be served. To find the optimal solution based
on numerical evaluation of (11), the inverse newsvendor can reformulate it using
Stochastic Programming with discrete scenarios w € Q. The inverse newsvendor can
adopt the sample average approximation (SAA) approach to get a close approxima-
tion [13]. Let T be the service time for customer i under scenario w; #“ underusage
under scenario w; 0” overusage under scenario w; p® probability of scenario w,
respectively. SAA formulation is given as follows:

min clu“’p“’ + o”p” (12)
N
s.t. inTg” +u” >h,weQ (13)
i—1
N
inTf’ —0” <h,weQ (14)
i—1

The inverse newsvendor can get the optimal solution of the SAA approach [9].
However, it is hard to derive a certain (intuitive) rule for the optimal allocation of
customers. A heuristic to get a near-optimal solution in a reasonable time limit is
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prescribed: smallest-variance (SV) first, which is close to the optimal solution [9].
The heuristic is based on the discussion that partial expected values are associated
with variability rather than central location measure such as mean or median.

Take advantage of the results from the case of identical service durations from
Subsection 3.1. Suppose that # customers are about to be served. Let iz be the sample
average service time for # customers; & the standard deviation of the sample average
service times for # customers, respectively. If 7 is equal to the solution of (8) and (9)
with 77 and &, the inverse newsvendor can stop adding customers to be served. The
detail procedure of the heuristic with the SV selection rule is described as follows [9]:

* Initialization. Let A = A* = {}, N' = {1,2,---, N}, and Z,,; = oo.
* Step 1. Select i with the smallest variance. Remove i from N and add i to A.
* Step 2. Compute the sample mean z and sample standard deviation & of the set .A.

e Step 3. Plug 7z and & into (8) and (9) to compute the optimal number of
customers to be served, say x *.

* Step 4. Compute the objective function value, say Z.,,,. If Zc, < Zop, let
A* — ./4 and Zopt — Zcuw.

* Step 5. If x* <|A"| and V' # {}, go to Step 1. Otherwise, go to Step 6.

* Step 6. Let A" be the set of optimally assigned customers and Z,,; be the
heuristic results.

The inverse newsvendor can show how the SV heuristic works with the follow-
ing example. The inverse newsvendor can use cost ratio of 0.5:0.5; 120 min blocks
without loss of generality. Table 5 shows all parameter values of ten customers: u
and o. The SV heuristic will select customers as the following order: 10 -7 — 9 —
6 —8— - — 2

The followings are detail steps resulted from the SV selection rule.

Initial Step. A = A" = {}; N ={1,2,3,--:,10};Zyr = o0

Iteration 1. A = {10};7 = 10.3;5 = 1.80;x* = 12> |A* | =1;Z, =
54.87; Zop: = 54.87; A* = {10}

Iteration 2. A = {10,7}; 5 = 18.79;5 = 3.07;x* = 6> |A™| = 2; Z,4r =
4121, Z,y = 4121; A" = {10,7}

Iteration 3. A = {10,7,9}; 7 = 16.38;5 = 4.09;x* =7>|A"| = 3;Z.yy =
35.43; Zyp = 3553 A* = {10,7,9}

Customer 1 2 3 4 5 6 7 8 9 10

U 18.5 27.9 24.9 28.5 26.8 27.5 27.3 19.8 11.6 10.3

o; 6.5 21.7 17.3 7.5 18.8 5.7 3.9 6.4 5.6 1.8
Table 5.

Customer service duration information.
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o Iteration 4. A = {10,7,9,6}; = 19.16;5 = 4.55;x* = 6> |A*| = 42,y =
21.67; Zop = 21.67; A* = {10,7,9,6}

e Iteration 5. A = {10,7,9,6,8}; = 19.3;6 = 4.97;x* = 6> |A"| = 5;Z.yy =
11.82; Z, = 11.82; A* = {10,7,9,6,8}

e Iteration 6. A = {10,7,9,6,8,1};i = 19.16;5 = 5.27;x* =6 = | A" |; Zoyr =
5.53; Zopt = 5.53; A" ={10,7,9,6,8,1}

e Iteration 7. A = {10,7,9,6,8,1,4}; i = 20.51;6 = 5.64;x* = 6<|A"| =
7s Zwrw = 1215, Zyp = 553 A" = {10,7,9,6,8,1}. Stop.

4. The sequential newsvendor model

A sequential newsvendor has to determine the sequence of assigned customers
and their arrival times, when the newsvendor already knows the total number of
customers to be served in a fixed duration [12]. Once the sequential newsvendor
determines the sequence, the arrival time of each customer can be the cumulative
expected service time of all prior customers without loss of generality. Basically,
this is a block scheduling problem that determines the starting times of blocks.

The sequential newsvendor model applies to time-sensitive service industries as
the inverse newsvendor. The inverse newsvendor may decide the strategic level
decision, whereas the sequential newsvendor decides the tactical level decision and
relies on the inverse newsvendor decision. The newsvendor may use identical
service durations for the strategic decision (e.g., capacity size, demand size) and
non-identical durations for the tactical decision (e.g., setting priority).

4.1 Mathematical model and solution approach

Suppose that the sequential newsvendor has to serve |I| customers (or customer
groups) and that each customer i €1 requires different service duration T}, of which
mean is y; and its standard deviation is 6;. The sequential newsvendor has to
determine its sequence and starting time of each patient 7.

Use map A : I — K to represent a set of sequences (or permutations), each of
which 6 € A assigns each customer to one and only one sequence position, hence

|K| = |I|. Use subscripts [k] for k" block sequence position and i for customer to
avoid potential confusion.

Decision variables must prescribe planned block durations and block sequence,
5. The sequential newsvendor determines the planned end time of block in the k™
position, given a sequence §, prescribed by y‘fk}. The planned end time of the block
corresponds to the end of service durations and is important in deciding the number
of hours that the server will be required to work. Define Bfk]:T‘fl] + -+ T‘fk] as the
random end time to complete all services assigned to blocks [1] through [k] and
compare it with the decision variable y‘fk] .

Assume that one service begins as soon as the previous one ends [14-16]. This
assumption appears to be reasonable because each customer can be prepared well in
advance of his/her scheduled start time and successive services within each block is
likely to be performed by the same server so that s/he would be available as well.
However, expediting efforts is required if a planned service ends earlier than the
planned end time. The sequential newsvendor can penalize the earliness.

10
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+
The objective function penalizes the expected earliness E {(y[&k} - Tfk}) } and

+
expected lateness E [(T‘fk] - y‘[sk]> } of each block k € K. The sequential newsvendor

imposes earliness penalty ¢¢ and lateness penalty ¢/, respectively. The former repre-
sents the cost of expediting the start time of the next surgery; and the letter, the cost
of delaying the start time of the next surgery. The sequential newsvendor can build
a schedule that balances the expected costs of earliness and lateness associated with

each block, defining objective function f, (y‘[sk]) ykeK,6eA

fi (yfkl) :CKE{(VFH C T‘fk]” +c'E

(7% %) +] : (15)

The sequential newsvendor has to determine the optimal planned end time j/‘[sk] of

the k™ block, k € K and the optimal block sequence . Figure 2 depicts a graphical
representation of the sequential newsvendor model. For each sequence § € A, the

objective function ),  x f (y‘fk]> should be minimized. The sequential newsvendor

has to find the best solution out of all minimized solutions. The sequential
newsvendor problem can be defined as follows:

min min Z S (y‘fk]) (16)

0€ A ylyk Koy
s.t. y‘fM Syfk]kzz,-~-,|K|,6eA (17)
Vil >0 keK,5eA (18)

Fix a sequence é to find the optimal planned end time. Suppress this superscript
for the sake of simplicity. (16) is separable with respect to y, [12]:

min { f (M) +f (M) + ot fiwg) (y[IKI]>} (19)

z fiar (¥faa)

keK

Z fix (3’5;]()

keK

Figure 2.
Graphical representation of a sequential newsvendor model. For each sequence 6 € A, the objective function
should be minimized.

11
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= min fiy (yyy ) + min fiy (3 ) + -+ minfie (v ) (20)

Let fij) = pp) + pp + -+ + py) be the mean of the random end time By, and

O = \/ ofy + 0%y + - + o7, be the standard deviation of By, respectively. Random

end time B, k € K is also normally distributed as follows:
By =T+ Ty + =+ Ty ~ N (p[k]’ 354) (21)

Henceforth, the optimal planned end time y, of k™ block can be obtained as
follows [17]:

Vi = Fi) + 20 (22)
Cl

D(z) = . 2

@)= 23)

The optimal objective function value for k" block is given as follows [12]:

Olk)

fi (ﬂk]) = (¢ +¢) \/—2—7[6‘22- (24)

(24) is an increasing function of 6. Hence, smallest-variance first rule is the
optimal sequencing rule.

5. Conclusions

Three newsvendor models are addressed to match supply with demand, or vice
versa. The traditional newsvendor model can answer how much to order, given that
the newsvendor knows demand distribution. The inverse newsvendor model
applies to the strategic level decision, e.g., how many customers should be allocated
in a fixed capacity. Time-based newsvendor model has been used for service-
oriented settings (e.g., operating rooms, law firm). The sequential newsvendor
model determines the sequence of the assigned customers by the strategic inverse
newsvendor model, and prescribes the corresponding expected arrival times of the
customers. The optimal sequence should be a variability-based rule, because the
objective function elements involve partial expected values: overage vs. underage,
overusage vs. underusage, or earliness vs. lateness. The smallest-variance-first
assignment rule is optimal to minimize the expected earliness and lateness when the
newsvendor takes into account normally distributed service durations.

All newsvendor models keep balance between surplus (i.e., supply > demand)
and deficit (supply < demand), accepting the fact that the newsvendor cannot
match supply with demand all the time. Supply chain professionals may face with
either case of surplus or deficit, not matched. When a product is highly profitable
(or net profit is greater than net loss), the newsvendor tends to order more than the
average to avoid the lost sales in the long run. On the contrary, when net loss is
greater than net profit, the newsvendor tends to order less than the average in the
long run. However, if the newsvendor is myopic, the newsvendor tends to order
average demand without respect to cost structure or demand shape, so-called
pull-to-center [18]. To avoid pull-to-center bias, supply chain professionals must
understand how to get optimal decision considering cost structure and demand
parameters for long-term perspective.
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