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Chapter

Artificial Intelligence and Big Data
Analytics in Vineyards: A Review

Nathaniel K. Newlands

Abstract

Advances in remote-sensing, sensor and robotic technology, machine learning,
and artificial intelligence (AI) — smart algorithms that learn from patterns in com-
plex data or big data - are rapidly transforming agriculture. This presents huge
opportunities for sustainable viticulture, but also many challenges. This chapter
provides a state-of-the-art review of the benefits and challenges of Al and big data,
highlighting work in this domain being conducted around the world. A way for-
ward, that incorporates the expert knowledge of wine-growers (i.e. human-in-the-
loop) to augment the decision-making guidance of big data and automated algo-
rithms, is outlined. Future work needs to explore the coupling of expert systems to
Al models and algorithms to increase both the usefulness of Al, its benefits, and its
ease of implementation across the vitiviniculture value-chain.

Keywords: Artificial Intelligence, Big data, Climate change, Decision support,
Expert knowledge, Vitiviniculture, Risks

1. Introduction

Viticulture is at the front line of climate change as grape production is highly
sensitive to changing environmental conditions. Growers, producers, and investors
plan and anticipate risks far into the future with long time horizons (i.e., 7-11 years
or more) for investing, establishing, and attaining positive net income and returns
on investment. Growers are grappling with unpredictable, rapidly changing
weather patterns and more frequent and intense extreme events such as spring
frosts, floods, droughts, heatwaves, and wildfires. Seasonal climate changes of
hotter and longer summers and warmer winters are shifting areas suitable for
growing grapes further north in the Northern Hemisphere (NH), and south in the
Southern Hemisphere (SH), from historical cultivation latitudes of 4° and 51° (NH)
and 6° and 45° (SH) [1]. This is driving wine makers to move vineyards to higher
elevations that provide colder nighttime temperatures and less frequent and intense
peak daytime temperatures to ripen grapes, while preventing over-ripening [2, 3].
Climate change warming scenarios project that grape cultivar diversity may buffer
wine-growing regions from losses resulting from both the reduction of suitable
areas for growing grapes and attainable yields. In a recent global study using data on
long-term French records to extrapolate globally for 11 cultivars (varieties),
increasing cultivar diversity more than halved future, projected losses of current
wine-growing areas and decreasing areas lost (56 to 24%) under a 2°C warming
scenario, and reducing areas lost by a third (85% versus 58%) under a 4°C warming
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scenario [4]. These warming scenarios combine daily temperature and precipitation
from a large ensemble of the Community Earth System Model (CESM), alongside
winegrape phenology and global variety-level planting data [5, 6], projecting geo-
graphical shifts of areas suitable for grape varieties as well as phenological shifts in
the timing of grape ripening (veraison). The resulting loss of suitability of areas is
primarily attributed to shifting temperature regimes, and greater accumulations of
temperatures above 25°C, and number of days above 40°C. Precipitation was found
to have a buffering effect, both reducing the number of varieties that were lost over
time, while increasing the capacity for cultivar turnover [4]. While growing diverse
cultivars that are more heat-tolerant and drought-resistant can reduce area and
yield loss due to climate change impacts, the industry still faces the uncertainty and
complexity associated with fulfilling the stringent consumer demands for quality,
novelty, cost and sustainability of this agricultural product.

Big data (BD) is data that is machine-readable as opposed to human-readable.
There is no official size that makes data “big”. It consists of massive amounts of
digital information, collected from all sorts of sources that are too large, raw, or
unstructured for analysis using conventional relational database and techniques.
The internet-of-things (IoT) (i.e., the network of physical objects that exchanging
data between devices, software, and systems over the Internet) continues to create
BD and expand globally. Artificial intelligence (AI) refers to the simulation of
human intelligence in machines that are programmed to think, learn and problem-
solve like humans and mimic their actions. Machine learning (ML) is a sub-set of Al
where machines learn from data without being explicitly programmed. Deep learn-
ing (DL) is a subset of ML in which artificial neural networks (ANNs) mimics the
structure of the human brain, to adapt and learn from vast amounts of data.
Algorithms are procedures that are implemented in computer code that use data,
and are, in general, distinguished from models, which comprise many algorithms.
BD needs to be of sufficient high quality to reliably train, validate, and indepen-
dently test and/or reproduce algorithmic and model output at reported levels of
accuracy and reliability. Here the goal is to design Al algorithms with a fast and
efficient learning speed, fast convergence to a solution, good generalization ability
and ease of implementation.

2. Review objective and methodology

This review explores the benefits and challenges of BD and Al to sustainable
viniviticulture through the lens of recent research findings and insights. Detailing
all the different Al methodologies and their implementation is beyond the scope of
this review that focuses on their domain application. For background reading of
state-of-the-art Al methods and solution techniques, we direct interested readers to
an article that features how vineyards are making use of BD [7], a recent introduc-
tory methodological reviews of ML in agriculture [8], and DL [9]. In the review
conducted and reported here, recently published and highly relevant scientific
journal articles were searched and selected using the University of Victoria (UVic) ‘s
Summons 2.0 search engine, which includes a wide range of scientific databases,
including the Scopus, ScienceDirect and PubMed databases. A total of 59 articles
were selected that met the required, minimal criteria that they assessed, applied,
adapted, or developed an Al method/algorithm and addressed a main aspect linked
with viniviticulture. This search approach was selective rather than exhaustive or
systematic. The resulting sample size is similar to the 40 articles selected as part of
another recent Al review which also employed online search of major scientific
databases [8].
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A systems overview of vitiviniculture interactions and drivers of change was
first constructed. This was used to distinguish 10 major aspects under which a range
of use-cases could be identified and linked across the selected works. This was
informed, in part, by a broad review of vineyard ecosystems, their multifunc-
tionality, and ecosystem services, applied the Common International Classification
of Ecosystem Services (CICES) highlights the need to better identify and under-
stand interactions within vineyards, identifying six ecosystem services (or aspects)
that are most studied, namely: i) cultivated crops, ii) filtration and sequestration,
iii) storage and accumulation, iv) pest and disease control, v) heritage and cultural
services, and vi) scientific services (e.g., studying vineyard agronomy) [10]. Chal-
lenges identified and described within the selected articles were next extracted,
compiled, and synthesized into a summary Table. A depiction or simplified design
of a novel BD value chain informed by an ES comprising expert knowledge and
providing an ES system with an ability to learn is presented. This is structured to
encompass all the identified aspects and potentially capable of addressing current
research challenges.

3. Al in Vitiviniculture

Viticulture is at the front line of technological disruption driven by automated,
Al algorithms that integrate and learn from large complex data obtained from
diverse sources both old and new. New technologies and data sources include
satellite and drone remote-sensing, field sensors, and automated weather stations
which are increasingly being deployed and used to enhance decision-making
because of their increased availability, affordability, and reliability. For example,
Palmaz vineyards in California’s Napa Valley are early-adopters of BD and Al,
bringing innovation and invention to the ancient art of making wine. They use
monitoring and geospatial technology for guidance and decision support. This
includes VIGOR (Vineyard Infrared Growth Optical Recognition) to monitor and
adjust conditions in the vineyard and an intelligent wine-making assistant, FILCS
(Fermentation Intelligent Logic Control System), nicknamed Felix, and STAVES
(Sensory Transambiental Variance Experiment) to monitor wines as they age in the
barrel [11]. New decision-support tools have also been developed that use BD and
Al technology provided by Sippd™ and Vitiapp™ [12, 13]. There are aspirations
even to build an Al system (i.e., a Turing Al taster) that can out-perform a wine
expert? [14]. Sippd offers a commercially-available, personal sommelier that uses
Al to help consumers discover wines based on taste and budget, with personalized
wine recommendations. VitiApp™ is a pre-commercial web-based application for
supporting decisions about vineyard management. It includes environmental data
(weather, soil) to describe conditions influencing grape yield and fruit composition,
cloud computing to integrate multiple data streams from a diversity of vineyard
sensors and weather forecast data. It provides vineyard patch-specific awareness of
weather-based risks for each selected management issue: botrytis/powdery/downy
disease, and frost/chilling/heat accumulation, wind, rainfall, soil moisture and/or
spraying conditions.

While often used interchangeably, viti-culture refers to the science, study, and
production of grapes, whereas vini-culture is specific to grapes for winemaking;
when combined is vitiviniculture. According to the International Organization of
Vine and Wine (OIV), sustainable vitiviniculture is a d4€ceglobal strategy on the
scale of the grape production and processing systems, incorporating at the same
time the economic sustainability of structures and territories, producing quality
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products, considering requirements of precision in sustainable viticulture, risks to
the environment, products safety and consumer health and valuing of heritage,
historical, cultural, ecological, and landscape aspectsi€ (see [15] and references
therein). While sustainable wines are currently a niche market, they are increasing
in number, and consumers are willing to pay a premium for sustainably produced
wines. Actions and guidance need to incorporate uncertainty and be fine-tuned to
the local conditions and impacts. Grapevines phenotype (terroir), canopy micro-
climate, vine growth and physiology, yield, and berry composition all contribute
various attributes to wine and the degree to which it reflects its varietal origins and
signature characteristics or typicity [1]. Vitiviniculture management is likely to
become more complex. There are also stringent rules and regulations linked with
production certification schemes and labelling systems for vineyards that apply
organic, sustainable, biodynamic practices that include reducing environmental
risks. The Summerhill Pyramid Winery based in Kelowna, British Columbia,
Canada, for example, was certified in both organic under Canadian organic
standards (PACS # 16-077, COR Section 345) in 1988 and Demeter biodynamic
certification in 2012. Timely, suitable, and cost-effective adaptation strategies and
enhanced foresight are crucial to support the complex dynamics and management
of vitiviniculture.

4. Al learning algorithms and model types

There are three main types of learning: supervised that learns known patterns,
unsupervised that learns unknown or hidden patterns, and reinforced that learns rules
or actions in data to learn a pattern or decision process and can be value-, policy-, or
model-based in how it optimizes its solution to a given complex problem. Classifi-
cation and regression problems are supervised, clustering and anomaly detection
are unsupervised. Learning algorithms differ according to the problem and their
ability to be trained on different types and amounts of data without being
overfitted. Overfitting is a concept in Al and data science, which occurs when a
statistical model fits exactly against its training data because it memorizes the noise
and fits too closely. Deep double descent is the phenomenon where performance
improves, then gets worse as the model begins to overfit, and then finally improves
more with increasing model size, data size, or training time. Essentially, there is a
given level of complexity where models are more prone to overfitting, but if enough
complexity is captured in the model, the larger the model and data, the better.
Learning can be sequential, in which one part of a task is learnt before the next, or
incremental, in which an algorithm learn from scratch and gradually obtains more
knowledge with an increasing amount of training inputs or examples by adjusts
weights of an observation based on the last classification. How algorithms are
trained on data differs as well. Bagging (i.e., bootstrap aggregating) generates
additional data for training a model by resampling a given dataset through repeat-
edly re-combinations to produce multi-sets of the original data. Learning can also be
ensemble-based (termed batch learning or stacking) that combines several base
models in order to produce one optimal predictive model. Bagging is suitable for
high variance, low bias problems, boosting is suitable for low variance, high bias
problems, and stacking combines different models to learn some parts of a problem,
in solving the whole space of a complex problem. Popular ML algorithms differ in
terms of how they find solutions and partition a given problem space. A Support
Vector Machine (SVM) uses hyperplane partitioning, Random Forest (RF) uses
tree-based ensemble partitioning, and Gradient Boosting (GB) use an ensemble of
weak prediction decision trees. Adaboost or Adaptive Boosting assigns higher
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weights to incorrectly classified data and Stochastic Gradient Boosting uses
statistical bootstrapping of data to generate samples for implementing boosting.
XGBoost is a boosting algorithm that benefit from ‘regularization’ that penalizes
various parts of the algorithm to improve its performance by reducing overfitting.

ANNs comprise a collection of connected units or nodes called artificial neurons
aggregated into different layers which transmit and process signals between their
connections (edges). The signal of a given node is prescribed by a mathematical
‘activation’ function. Signals travel from a first ‘input’ layer, through one or more
intermediate or ‘hidden’ layers, to an ‘output’ layer. Nodes in the hidden layer have
values that are unknown and determined mathematically from their input and
output signals as a network learns. Different layers may perform different trans-
formations on their inputs. Connections can exist between nodes in different layers
or between nodes within a given layer. Feedforward neural networks (FNNs) are a
type of ANN having no memory, whereby signals only move in one direction from
the input through to the output layer, never being processed by a node more than
once. An extreme learning machine (ELM) is a FNN with a one or many hidden
layers whose nodes can signal randomly, never update, or inherit previous signals
without requiring any tuning of the mathematical function parameters of its node
activation functions, or the weight values that alter the strength of how its inputs
are connected within the network. A wide range of different DL model structures
have evolved from FNNs. Recurrent neural networks (RNNs) are FNNs with
memory whose nodes process signals in loops/feedbacks/cycles that considers cur-
rent inputs and also what it has learned from previous inputs. Long-short-term-
memory (LSTM) are a type of RNN that uses special units that include a &€ memory
cellae™ that maintains information in memory for longer periods of time.
Convolutional neural networks (CNNs) have several layers whose nodes are
sparsely connected (i.e., nodes are not fully connected) whose flexibility is particu-
larly useful for image recognition and object classification. A CNN typically com-
prises four types of layers, namely, the convolution layer, rectifier (ReLU) layer,
pooling, and fully connected layers. Every layer has its own functionality and
performs feature extractions and discovers hidden patterns in input data. RNNs can
use sequential information, while CNNs cannot.

Restricted boltzman machines (RBM) consist of a two-layer network of fully
connected nodes with both forward and backwards connections (i.e., a cycle) that
can share weights (i.e., bidirectional). This two-layer network was originally
designed to better determine good starting weights (i.e., pretraining) of FNNs. A
deep belief network (DBN) consists of RBMs which are sequentially connected,
comprising multiple hidden layers, with connections between hidden units are in
separate layers. Deep q-learning networks (DQLNs) use reinforcement learning to
make a sequence of decisions through trial and error within an interactive environ-
ment involving ‘agents’ that have ‘states’ that change, learn, and adapt over time.
Q-learning is a specified form of reinforcement learning (i.e., values-based learn-
ing) that is model-free i.e., does not require a model of the environment. It learns
expected values of future rewards for actions of agents that are in a given state with
a given ‘value’. It uses g-learning (i.e., learning from delayed rewards) based on
Bellman’s Equation that decomposes the value of an agent’s state into an immediate
reward and the value of a cumulative set of successor states according to a discount
factor that determines the importance of future rewards. Bayesian learning (or
belief) networks (BLNs) are a type of network model that is stochastic or probabi-
listic and involves ‘priors’. Prior is short for ‘prior probability distribution’ and is the
probability distribution that express one’s beliefs about an uncertain quantity before
some data or further evidence is taken into account. They are used to represent
spatial or temporal dependence (represented by conditional probability distribution
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Figure 1.

Overview of the interactions of major climate, biotic, and abiotic drivers, stressors, and risks within vineyards.

functions) between multiple stochastic variables (i.e., nodes), describing how the
variables depend on each other in terms of cause-and-effect or causality (i.e., con-
nections or arcs between nodes). Variables can be discrete or continuous. BLNs can
be prepared by experts or learned from data, then used for inference to estimate the
probabilities for causal or subsequent events. Copula bayesian networks (CBNs) use
a tailored mathematical function called a copula that provides an efficient way to
represent and compute the joint probability represented by such networks along
with how its variables depend on each other.

New methods and frameworks to use and integrate BD and Al for complex
problem-solving and enhanced decision making will, very likely, be needed to
support sustainable vitiviniculture. Such approaches will need to consider complex
interactions between climate, biotic, and abiotic drivers, stressors, and risks within
vineyards, influencing grape and wine production, and value-chain resiliency and
sustainability (Figure 1).

5. Al use-cases and knowledge gaps

Structured data is highly organized and easily understood by machine language,
whereas unstructured data is often categorized as qualitative data that cannot be
processed and analyzed using conventional tools and methods and includes text,
video files, audio files, mobile activity, social media posts, and satellite imagery. BD
can include also vague and imprecise information, qualitative data, and rule-based
logic. An expert system (ES) is a computer program, model, or algorithm that uses
Al to simulate the judgment and behavior of a human or an organization that has
expert knowledge and experience in a particular domain or field. It provides super-
vision for Al algorithms by human experts termed human-in-the-loop (HITL),
whereby a model requires human interaction and intervention and is not fully
automated or self-reliant. Al in winemaking based on an ES approach was explored
in 2000 [16], with limited research on ES, and closely associated, fuzzy inference
systems (FIS) in viniviticulture. Fuzzy theory and FIS represent vagueness and
imprecise information often used in making decision in a mathematical way using
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fuzzy sets and rule-based logic. Several leading examples are noteworthy. An ES for
automated forecasting of optimal grape ripeness dates using data gathered from a
vineyard wireless sensor network (WSN) has been developed and tested, but uses
the Holt method (exponential adaptive forecasting for trended data) instead of ML
or DL models/algorithms [17]. Also, an FIS that enables automating the classifica-
tion of grape quality at harvest for grape growers has been developed and tested
[18]. An ES for evaluating the sustainability of vineyards based on their manage-
ment called Vigneto uses a fuzzy logic indicator [19]. A decision support system
called FGRAPEDBN that uses fuzzy logic and expert knowledge is able to predict
grape berry maturity. Berry maturity is measured as sugar concentration that
increases rapidly, and acidity concentration, that decreases along with pH levels as
berry mature. This ES attains high predictive accuracy (i.e., a root-mean-squared-
error (RMSE) of 7 g/l (i.e., 0.44 g/l or 0.11 g/kg) [20]. The coupling of ES to AI (i.e.,
ML and DL models/algorithms) in viticulture, or agriculture in general, is still
unexplored and in its infancy. Also, ES systems generally have no ability to learn
decision rules, so could benefit also from being informed by AI/ML analytics and
predictive insights.

A wide array of applications and use-cases of Al in vitiviniculture are evident,
and are summarized in Table 1. This shows that there is substantial interest, applied
expertise, and future potential in developing such approaches to help mitigate and
adapt to climate change, address inter-related risks, and enhance decision-making
and foresight. Current AI work is, however, concentrated heavily on grapevine
yield prediction and grape variety classification using on the pattern recognition,
detection, counting, and clustering of grape berries and bunches in imagery col-
lected by observers, unmanned aerial vehicles (UAVs), and/or robots. Such imagery
differs based on vineyard environmental conditions and grape variety altering
illumination, occlusions, colors and contrast in images. Existing research limitations
and challenges point to the need for robotics and mobile sensing platforms, the
combination or fusion of both fine-scale hyperspectral and coarser-scale multispec-
tral imagery data, as well as spatially-distributed sampling within vineyards to
better measure and assess micro-climate variability linked with meso- and macro-
climate and landscape suitability requirements that are changing with climate
change.

Suitability requirements for vineyards would benefit from other AI/ML tech-
niques to explore geospatial data and cross-validate geographical locations deter-
mined from CNN models applied to identify vineyards in satellite data. A wide
range of different models for disease and pest control (i.e., a hybrid BLN, CNN, RF,
GB) have been applied, and these multiple Al approaches could be coupled to
provide a fully-integrated solution for processing field imagery, conducting data
mining and analytics, and forecasting of disease risk in vineyards. Vineyard man-
agement is already exploring decision rule applications via case-based reasoning,
and sequential methods of Al, but in isolation, and such work could greatly benefit
from being coupled together to accelerate advancement. This would enable them to
be tested on a broader set of vineyard data and to better identify best management
practices, rather than a more incremental, siloed approach. Much more work is
needed to explore opportunities and potential of BD and Al in vineyard biotic and
abiotic factors and stress. Only a handful of studies have explored the use of satellite
remote-sensing (i.e., Earth Observation or EO) data for detecting and mapping
water and heat stress, yet large amounts of data for training and validating Al
models now exists from EO data centers and providers. This could help to validate
whether satellite indices can reliably detect and map stress variability in vineyard,
what data fusion and satellite indices perform best, to port such BD and capabilities
to support stakeholders proactive decision making ahead of extreme weather
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Aspect Use-cases Method/ Current challenges References
algorithm
Suitability detect, segment CNN spectral distortions [21, 22]
requirements vineyards dependent on wavelength,
image acquisition parameters
Grape/grape  non-invasive, automated DNN, CNN, high-quality training and [23-31]
bunch cluster compactness, AdaBoost validation data (different
detection variety discrimination, and RWNN, varieties, illumination
classification, tracking SVM, ANN  conditions)
Disease and disease forecasting, hybrid BLN, vineyard data on grape yield, [32-35]
pest control automated detection and CNN, RF, disease imagery to validate
differentiation of diseases GB models for different
from leaf images varieties, diseases, vineyards,
climatic zones; deploying
imaging systems on ground
vehicles
Vineyard automated grape vine RNN with learning rules of expert [36, 37]
management, pruning; irrigation, LSTM, Case- pruners; broader method
grape nutrients based testing; including inter-
growing reasoning annual variability due to
(CBR)11 weather, climate;
Biotic factors automated insect ANN, expanding training dataand  [38-40]
and stress trapping; rhizogenesis genetic introducing more parameters
and acclimatization; soil  algorithm regarding soil physical
microbial biomass properties and management
Abiotic water stress from RF, EGB classification using the [41-43]
factors and hyperspectral imagery; widely-applied Savitzky—
stress heat stress from Golay smoothed spectra
Sentinel-2 multispectral reduces accuracy
imagery
Grapevine grape berry maturity, fuzzy logic, reducing uncertainty with an [20, 44-48]
phenology yield prediction dynamic integration of expert
detection, BLN knowledge
yield
prediction
Wine aroma, vertical vintage using Clustering,  coupling models to data using [49, 50]
sensory near-infrared GO new and emerging
profiling spectroscopy (NIR); technologies to make these
weather/management analyses more affordable and
data user-friendly
Wine quality, wine preferences from ANN,SVM  greater use, adoption of novel [12, 14,
classification  physicochemical models/tools, cost-benefit 51-55]
properties, organic acids; analysis
abnormal fermentation
detection; wine blending,
Al consultant; preference
prediction
Traceability,  incident handling in wine clustering, = greater use, adoption of novel [56-62]
authenticity, storage; authenticity dimensional models/tools, cost-benefit
protection assessment; wine aging reduction analysis

prediction; constructing
wine barrels, smoke
exposure

Refer to abbreviation list for model/algorithms.

Table 1.
Showcase of AI/ML in vitiviniculture (partial set from the review).
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impacts like heatwaves. Most work on wine aroma and sensory profiling still
employs traditional statistical techniques and clustering with limited work on global
optimization (GO). While decision tools already exist in the market to track the
wine preferences of consumers, they could be better informed from AI analysis and
prediction that links more objective, scientific data on new varieties, wine constit-
uents, alternative wine blends and new wine grown in newly establish vineyards in
more suitable areas as climate change shifts grape and wine suitability. The appli-
cation of BD and Al in traceability, authenticity, and protection also relies on more
traditional statistical methods, rather than BD and Al. This is surprising and was not
expected before conducting this review, as this area involves large extents of the
value-chain and major business risk. Here, government could play a vital role to co-
design and pilot test new solutions alongside experts in BD and Al, as developing
broad-based solutions in this aspect likely require broad collaboration, multidis-
ciplinary expertise, substantial BD collection and sharing, and industry wide
involvement, adoption, and deployment.

6. Proposed BD and Al framework

An existing ontology framework called the Agri-Food Experiment Ontology
(AFEO) has been developed to guide the integration of data in a way that provides
researchers with the information necessary to address extended research questions
[63]. It contains 136 concepts spanning viticulture practices, wine-making prod-
ucts, and operations. It utilizes the Resource Description Framework (RDF) format,
a standard model for relational data queries, interchange, and metadata processing,
to represent these data in a standard format. Based on this review, an analytical
framework is proposed that integrates BD analytics and Al prediction as part of a
BD value-chain using expert knowledge as HITL intervention and guidance is
outlined in Figure 2.

BD is distributed across different remote-sensing platforms (e.g., drone and
satellite), across vineyards (e.g., networks of Al and climate-smart vineyards), and
within vineyards (e.g., field sensor networks), and across data centers and

Vineyard prediction

Distributed data Vineyard ‘Big Data’ Data processing and Machine—learning

warehouse model calibration (ML) algorithms analytics and forecasts
’_|: = =
Data quality Indicator benchmarks
Remote-sensing (uncertainty, gap filling) (e.g., growing degree-day) Life-cycle assessment
{e.g., drone, (LCA), resiliency,
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I (yield, quality predictors) . indicators
Risk forecast model
s ] = ¢
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Vineyard (cumulative distribution extreme weatheretc..)
nagement functions, cdfs;
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;e
S _d
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sampling data | | | Expert/ Traditional knowledge
(e.g., sensors) |/ 5 . 3 .
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—— representedby a conditional, rule-based logic model)
S
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Figure 2.

Depiction of a vineyard BD value-chain that incorporates diverse, distributed vineyard data alongside an
expert system. This system integrates traditional, cultural perspectives, knowledge, and reasoning of grape
growers, viticulture specialists, and other wine industry stakeholders.
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providers (e.g., long-term climate stations and weather monitoring networks pro-
viding both historical climate and near-real-time weather station data). Using a
distributed cloud approach, an application of cloud computing technology, BD can
be interconnected with public and private applications served from varied geo-
graphical locations for preprocessing quality control, data quality checks, model
identification (i.e., variable selection, quantile classification), indicator model
benchmarking, and the development of risk forecast models using Al. An ES system
comprising conditional, decision rules provides traditional and expert knowledge,
while informing Al model training and validation. An AI model then also learns by
selecting rules from the master ES ruleset, adjusting and updating rules as it learns.
In this way, the framework is agile and scaleable to address a wide range of stake-
holder needs along the value-chain. This includes life-cycle assessment (LCA),
providing data to support monitoring and tracking of vineyard sustainability indi-
cators, and providing forecasts (i.e., foresight) to better anticipate future impacts,
having additional lead time to mitigate and safeguard operations in time, and
deciding between different possible actions and interventions to climate change
(i.e., irrigation needs and limitations, disease outbreaks, extreme weather events)
risks for more informed vineyard management scheduling and planning. Weather
and climate transformed into tailored information and knowledge that vineyard
stakeholders and users need and require are provided through customized Climate
Information Services (CIS) help to drive forecasts of relevant vineyard indicators.
This could integrate sub-seasonal and seasonal forecasting, alongside longer-term,
downscaled inter-annual and decadal scenario projections. The quantification of
risk (i.e., levels and associated uncertainties) is essential to determine an appro-
priate response. With an approach that can be scaled up to the entire
vitiviniculture value-chain the adoption of BD and AI can be accelerated. This
would enable all stakeholders to co-learn and collaborate in evidence-based and
model-tested design tactics and strategies. Such an approach can ensure mitiga-
tion and adaptation actions and interventions are enabling, rather than inhibiting,
to maximize perceived benefits and organizational readiness, while minimizing
external pressures [64].

7. Conclusions

Vineyards that are certified organic and biodynamic, however, are not neces-
sarily the same ones that are early- or significant-adopters of latest BD and Al
technology that can accelerate and support the wider transformation from conven-
tional to sustainable vitiviniculture practices. As discussed, this is because of a
disconnect that exists between the path to adoption of sustainable practices and the
path to adoption of BD and Al technology. This could be addressed by providing a
way to structure and integrate an expert knowledge and insights from all stake-
holders into an ES embedded within an overarching analytical framework. The
majority of research challenges identified in this review, which span a wide range of
aspects of viniviticulture, also point to the need for including expert knowledge to
provide context and rules to design Al algorithms and their automated learning,
while helping to structure data, obtain high-quality data for training Al models, and
validate the use and adoption of new BD types and sources. Aligning the existing
AFEO ontology that links vitiviniculture objects and experimental activities to an
analytical BD and Al modeling, could accelerate the advancement of sustainable
vitiviniculture. This would also provide the ES methodology with an ability to learn
from experience which most systems cannot do currently. ML and DL models and
algorithms need to be trained and informed by an ES that integrates imprecise and
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vague information as well as qualitative data and decision rule-based logic that is
used in stakeholder decision making. This will require linking the scientific and
expert knowledge on climate and weather risks pertaining to drivers and interac-
tions, the BD value chain, to address the identified research challenges outlined
here. Future work will aim to synthesize knowledge and insights from the wide
array of applications of ES, to design a representative ES for the proposed BD
value chain.
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