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Chapter

Use of Discrete-Time Forecast
Modeling to Enhance Feedback
Control and Physically
Unrealizable Feedforward Control
with Applications
Derrick K. Rollins

Abstract

When the manipulated variable (MV) has significantly large time delay in
changing the control variable (CV), use of the currently measured CV in the feed-
back error can result in very deficient feedback control (FBC). However, control
strategies that use forecast modeling to estimate future CV values and use them in
the feedback error have the potential to control as well as a feedback controller with
no MV deadtime using the measured value of CV. This work evaluates and com-
pares FBC algorithms using discrete-time forecast modeling when MV has a large
deadtime. When a feedforward control (FFC) law results in a physically
unrealizable (PU) controller, the common approach is to use approximations to
obtain a physically realizable feedforward controller. Using a discrete-time forecast
modeling method, this work demonstrates an effective approach for PU FFC. The
Smith Predictor is a popular control strategy when CV has measurement deadtime
but not MV deadtime. The work demonstrates equivalency of this discrete-time
forecast modeling approach to the Smith Predictor FBC approach. Thus, this work
demonstrates effectiveness of the discrete-time forecast modeling approach for FBC
with MV or DV deadtime and PU FFC.

Keywords: Model Predictive Control, Nonlinear Dynamic Modeling,
Artificial Pancreas

1. Introduction

Modeling data is critical to the advancement of information and data science on
many levels and in many areas. Accurately modeling data is often important to
system monitoring, understanding, and control; and thus, ultimately to the
advancement of technology.

A characteristic of data that that is not well understood, even by those in the
physical sciences, is dynamic behavior. However, the behavior of Covid-19, which
is inherently dynamic, has forced wide-spread conversations from even the non-
science community about such terms as lag and deadtime. Just as understanding the
attributes of Covid-19 dynamically can lead to intelligent and thus, safe behavior,
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good decision making and preparation, and even save lives, the lack of understand-
ing can do the opposite. Thus, the better our understanding of dynamic behavior is,
physically and biologically, the better our understanding of data will be, leading
only to better solutions to many problems facing society.

Forecast modeling is a type of predictive modeling that uses current and antici-
pated future input values to predict values for outputs in the future. For example,
forecast modeling is used to predict the wind velocity in a certain region five days
into the future. Another example is forecast modeling to predict the number of
deaths caused by a virus a week into the future. This chapter focuses on the
application of forecast modeling to enhance feedback control (FBC) and
feedforward control (FFC) when the problem is physically unrealizable (PU).

A PU system is a mathematical phenomenon of a dynamic system. It occurs in
two ways. The first one is when the order of the differential equation for the output
is less than the order of the differential equation for the input. An example is the
development of a FFC law determined from a load transfer function divided by the
process transfer of a lower order. The second one is when an output depends on
deadtime that has a negative value, in effect causing a dependence on future values
of a time dependent variable(s). This also occurs in FFC when the load transfer
function has a smaller deadtime than the process transfer function. The most com-
mon approach for addressing a PU system is to use approximation(s) to make it
physically realizable. However, such approximations can lead to large modeling
errors, thus leading to unacceptable control.

The dynamic modeling literature [1, 2] defines causality somewhat differently
than the statistics literature. More specifically, “if a system[‘s] output depends on
the future input values … the system is noncausal [2].” This definition is synony-
mous with PU, it seems. In forecast modeling, all values of inputs are before the
forecast distance in the future. They can be in the future, but not a distance beyond
the forecast time. Another description for PU in the dynamic modeling literature is
improper transfer function.

In FFC, MV is the output and depends on input changes. When MV has a
deadtime of θMV, for example, it takes this time before a change in MV affects CV.
Within this period, other inputs may change that impact CV before the change in
MV does. An example is the control of blood glucose concentration (BGC) in type 1
diabetes. The deadtime for insulin infusion is much larger than the deadtime for
carbohydrate consumption. The best approach for control of BGC is to consider the
timing and the amount of carbohydrates consumed and to bolus this with a deter-
mined amount of insulin, a calculated amount of the time before the meal. This
procedure is just a manual type of PU FFC practiced by people with type 1 diabetes.

The use of causality in the statistics literature seeks to distinguish it from corre-
lation. Thus, in the statistics literature, causality is not focused exclusively on
dynamic systems (e.g., only those with lag or deadtime) but a cause-and-effect
relationship between input and output, that can be nondynamic [3]. For forecast
modeling, cause-and-effect is not essential if the model is accurate. However, in
control, cause-and-effectmodeling is essential. A PU system does not have an exact
solution which would be a continuous-time solution. However, a discrete-time
solution can be determined directly from the PU continuous-time structure. Hence,
this work uses highly structured discrete-time forecasting and FFC models.

1.1 Objective and contribution of the work

Moreover, the primary objective of this chapter is to apply a novel discrete-time
forecasting modeling methodology to systems with large MV deadtime in FBC and
PU FFC without physical realizable approximations. For this scope, FBC is
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examined and evaluated under three prediction horizons: 1. None – Classical FBC
that uses the currently measured value of CV [4, 5]; 2. θMV – Feedback Predictive
Control (FBC) [6] and; greater than θMV – Model Predictive Control (MPC) [7, 8].
The Smith Predictor (SP) [9] is a novel FBC approach when θMV = 0 and there is
deadtime in the measurement of CV. This work shows that FBPC gives equivalent
control of the SP, but also has the advantage that it is applicable when θMV > 0,
which the SP is not. In addition, this work reveals the detrimental use of the bias
correction as given in the block diagram of the SP and used widely in process
control [4]. Thus, this work proposes a better bias correction method. Finally, this
works presents a novel discrete-time PU FFC algorithm that is multiple-input and
single-output and hence, is able to treat complex multiple-input feedforward model
structures. Although MPC is a FBC approach, comparison is made to illustrate the
potential improvement of FFPC over model-based predictive FBC.

2. Physically unrealizable

Physical unrealizability (PU) is an anomaly that is strictly an artifact of a
dynamic system. A dynamic system has at least one process state (i.e., output or
response) that does not change to its new value immediately when input changes
occur that cause its value (i.e., level) to change. This behavior contrasts with a
nondynamic system that changes to its new state immediately when inputs change
(also, called “disturbances”).

There are two basic dynamic phenomena – time lag and time delay (also called
“dead time”) which are shown in Figure 1. This figure illustrates nondynamic and
dynamic relationships for the response, y, to a step change in the input, x, occurring

Figure 1.
Response y to a step change in x: a. nondynamic; b. lag; c. time delay and; d. lag and time delay.
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at time (t) = 0. As shown, for the nondynamic response (a), y changes immediately
to its new steady state value. Lag (b) is shown by the change in y starting to occur at
t = 0, but monotonically increasing over time to its new steady state value. Time
delay (c) is shown by the change in y to its new value occurring θ time later. Lag and
time delay (d) are shown by y starting to change θ time later and then monotoni-
cally increasing over time to its new steady state value. “Everyday” examples of
nondynamic changes are eyes opening (x) and immediate sight (y) and turning on
the radio in a car (x) and hearing it (y) immediately. A dynamic time delay example
is lightening occurring very far away. It occurs when one sees the lightening, but the
thunder is delayed and occurs at a significant time after seeing the lightening. It
does not build up to its final value, there is just a big boom that occurs, essentially,
at once. A dynamic change with lag occurs when a person has been out in the cold
for a while and their skin temperature is quite cold and when they move to a
warmer environment, their temperature starts to rise but it takes time for the
temperature to reach its new level in this warmer environment.

When a system is dynamic, its mass and/or internal energy changes over time,
being driven to a new state due to input changes, arriving there at a time different
than when the input was changed. Mathematically (and theoretically) this is seen as
a time-order differential equation. Such an equation is given in terms of input x and
output y in Eq. (1).

an
dny tð Þ

dtn
þ an�1

dn�1y tð Þ

dtn�1 þ⋯þ a1
dy tð Þ

dt
þ a0y tð Þ ¼

bm
dmx t� θð Þ

dtm
þ bm�1

dm�1x t� θð Þ

dtm�1 þ⋯þ b1
dx t� θð Þ

dt
þ b0x t� θð Þ

(1)

The dynamic form represented by Eq. (1) is PU if n < m, if θ is negative, or if
both are true. More specifically, the output, y, which depends on the input, x,
cannot have a time dependent derivative structure that is of lower order than the
variable that causes it to change. The response of a system to a disturbance also
cannot have negative time delay. A system cannot respond to a disturbance before it
occurs. There is no true solution for these conditions.

However, there are ways to address these PU cases in practice. For the first case,
n < m, discrete-time backwards different derivatives can be used to approximate
the continuous-time derivatives. This approach should provide adequate accuracy
when the sampling time is constant and sufficiently small, and sensor noise is not
too great. Eq. (2) illustrates this approximation when m = 2, n = 1, a constant
sampling time, Δt, and with θ = 0 (for simplicity). Note, since y(t) cannot be
immediately affected by x(t), xt-Δt is used to approximate x(t).

a1
dy tð Þ

dtn
þ a0y tð Þ ¼ b2

d2x tð Þ

dt2
þ b1

dx tð Þ

dt
þ b0x tð Þ

) yt ≈

yt�Δt þ
b2
Δt

þ b1 þ b0Δt

� �

xt�Δt �
2b2
Δt

þ b1

� �

xt�2Δt þ
b2
Δt

xt�3Δt

1þ a0Δt

(2)

Thus, digital and sensor technologies, among other advancements, have
significantly contributed to an ability to approximate Eq. (1) when n < m.

For the other case, i.e., when the time delay is a negative value such as a -5Δt
(e.g., in FFC when deadtime for the disturbance variable (θDV) is smaller than the
deadtime for the manipulated variable (θMV)), Eq. (2) becomes
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a1
dy tð Þ

dtn
þ a0y tð Þ ¼ b2

d2x tþ 5Δtð Þ

dt2
þ b1

dx tþ 5Δtð Þ

dt
þ b0x tþ 5Δtð Þ

) yt ≈

yt�Δt þ
b2
Δt

þ b1 þ b0Δt

� �

xtþ5Δt�Δt �
2b2
Δt

þ b1

� �

xtþ5Δt�2Δt þ
b2
Δt

xtþ5Δt�3Δt

1þ a0Δt

¼

yt�Δt þ
b2
Δt

þ b1 þ b0Δt

� �

xtþ4Δt �
2b2
Δt

þ b1

� �

xtþ3Δt þ
b2
Δt

xtþ2Δt

1þ a0Δt

(3)

Thus, as shown by Eq. (3), the output depends on future values of the input.
However, discrete-time modeling provides a means to express an approximate
solution in a PU form where knowledge of future changes allows approximation of
the output. An example where this type of approximation is applied, is the control
of blood glucose concentration (BGC) for people with type 1 diabetes [10]. The
manipulated variable (MV) for the automatic regulation of the exogenous insulin
infusion from a servo-mechanical pump can have a deadtime of 60 minutes and
carbohydrates from meals can have a deadtime of 30 minutes [11], resulting in x(t)
becoming x(t + 30) in the numerator of the FFC law, with MV as the output
variable. Moreover, for these values, a change in insulin flow rate will take one hour
to begin to lower BGC. During this period, eating can increase BGC. People with
type 1 diabetes understand this phenomenon and will bolus their insulin infusion,
based on when they will eat and how many carbohydrates they will eat. This is
called “a meal announcement” [12, 13]. But just as this idea is applied to carbohy-
drates, it can be applied to other variables with dead times less than MV such as
stress, exercise, etc. As one can imagine, the relationships of such a set of variables
on BGC is quite complex and accurately modeling their relationships and automatic
feedback/feedforward control (FBFFC), with accurate announcements, appears to
be the most viable one for success. In the content to follow, we focus on dynamic
modeling with application to feedback control (FBC) and FFC when time delay in
MV is significantly larger than time delay in disturbances. For this situation, when
CV is the output, forecast modeling is necessary and when MV is the output, future
announcement (i.e., knowledge) is needed for any variable with a dead time less
than that of MV.

3. Discrete-time forecast dynamic modeling

Accurate forecast dynamic modeling in the context of process control has two
critical applications. One is accurately forecasting CV at least θMV distance into the
future, depending on the type of model-based control algorithm being used in FBC.
The other one is an accurate cause-and-effect model for CV that is inverted for
determining MV as a function of disturbances in FFC. Empirical modeling methods
(EMM) (i.e., the so-called “data-driven” methods such as linear regression and
artificial neural networks) are fit to a correlation structure and should not be used
for cause-and-effect modeling unless the modeling data are generated from a statis-
tical experimental design covering the full range of the operating (i.e., input) space.
This input space will be orthogonal and prevent extrapolation, which is risky for
EM. For “freely existing data” or any data not generated from a statistical experi-
mental design, accurate EM for CV forecasting is possible. However, when model-
ing data are not generated by a statistical experimental design, it would not be wise
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to use EM when cause-and-effect modeling is needed since EMM are data driven and
not knowledge driven, rely on high levels of parametrization, do not have structures
or parameters that are physically interpretable based on first principles modeling,
and are typically very risky for, even slight, extrapolation. In contrast, first princi-
ples model structures are: 1. nonlinear and thus, naturally break down correlation
structures in the input data; 2. have physically interpretable parameters; and 3.
often physical constraints with a theoretical basis. Nonetheless, theoretically based
modeling of real data outside a controlled environment such as a lab, is often some
combination of empiricism and first principles knowledge, which is essentially a
“hybrid model” that is often called “gray box” or “semi-empirical” models. Models
that are fully theoretical in derivation and structure but use data to obtain unknown
physically interpretable model parameters, are classified in this document as
semi-theoretical models.

Theoretically structured dynamic systems can be linearized (i.e., approximated)
in time dependent variables (i.e., x = x(t)) while maintaining their time derivative
structures (i.e., the order of derivatives will remain intact) and physical parametri-
zation. For example, Eq. (4) represents the result of a dynamic overall mass balance
on a process tank with one inlet stream with flow rate, q1(t), and one outlet stream
though a hand valve with flow rate, q(t) = h2(t)/Rv, where h is the tank level, Rv is
the resistance to flow through the valve, and A is the cross-sectional area of the
tank. The density and temperature of the fluid in the tank is constant in this
example. Using a 1st order Taylor Series approximation to linearize all time depen-
dent variables in Eq. (4), gives the solution in Eq. (5), where the “0” represents a
variable as a deviation from its initial steady state at t = 0.

A
dh tð Þ

dt
¼ q1 tð Þ � R�1

V h2 tð Þ (4)

A
dh0 tð Þ

dt
¼ q01 tð Þ � 2R�1

V h 0ð Þh0 tð Þ (5)

Rearranging Eq. (5) into the form of Eq. (1) gives:

a1
dh0 tð Þ

dt
þ a0h

0 tð Þ ¼ b0q
0
1 tð Þ

τ
dh0 tð Þ

dt
þ h0 tð Þ ¼ Kq01 tð Þ

(6)

where a1 ¼ A 2R�1
V h 0ð Þ

� ��1
¼ τ, a0 ¼ 1 and b0 ¼ K ¼ 2R�1

V h 0ð Þ
� ��1

: Eq. (6) is
a first-order dynamic relationship with time constant, τ, and steady-state gain, K,
and is represented in “standard form [4, 5].” Many dynamic processes can be
approximated accurately by either a first-order-plus-deadtime (FOPDT) or second-
order-plus-deadtime (SOPDT) structure [4, 5].

Eq. (7) gives a second-order version of Eq. (1) for inputs x0i, i ¼ 1, … , p, and
unity gain, with y replaced by v0i: Thus, Eq. (7) represents the dynamic response due
to x0i, in the units of x0i: Eq. (8) represent the dynamic response of y as a function of
v00i s where f(V) is an unrestricted mathematical function that maps each v0i to the
units of the output variable in standard form. Thus, it is f(V) that transforms
the linear dynamic inputs into the nonlinear dynamic and static response for the
output y.

τ2i
d2vi tð Þ

dt2
þ 2τiζi

dvi tð Þ

dt
þ vi tð Þ ¼ τai

dxi t� θið Þ

dt
þ xi t� θið Þ (7)
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y tð Þ ¼ f V tð Þð Þ þ ε tð Þ ¼ η tð Þ þ ε tð Þ (8)

where V tð Þ is a vector of the v00i s and the estimate of y(t), denoted as ŷ tð Þ, is equal
to the estimate of η tð Þ, η̂ tð Þ: This hybrid dynamic modeling structure is called a
Wiener network [14] and is in a class of structures that are called “block-oriented
models.” The block diagram for this network is shown in Figure 2.

Rollins, et al. [15] developed a multiple-input, single-output, discrete-time, non-
linear Wiener dynamic approach using backwards difference derivatives based on
Eqs. (7) and (8). Using a backward difference approximation applied to a sampling
interval of Δt, an approximate discrete-time form of Eq. (7) is obtained (for p
inputs):

vi,t ¼ δ1,ivi,t�Δt þ δ2,ivi,t�2Δt þ ω1,ixi,t�θi�Δt þ ω2,ixi,t�θi�2Δt (9)

where ω2,i ¼ 1� δ1,i � δ2,i � ω1,i to satisfy the unity gain constraint with

δ1,i ¼
2τ2i þ 2τiζiΔt

τ2i þ 2τiζiΔtþ Δt2
(10)

δ2,i ¼
�τ2i

τ2i þ 2τiζiΔtþ Δt2
(11)

ω1,i ¼
τai þ Δtð ÞΔt

τ2i þ 2τiζiΔtþ Δt2
(12)

After obtaining vi,t for each input i (i = p is MV), the modeled output value is
determined by substituting these results into f (V), such as

ηt ¼ f Vð Þ ¼ a0 þ a1v1,t þ⋯þ apvp,t þ b1v
2
1,t þ⋯þ bpv

2
p,t

þc1,2v1,tv2,t þ⋯þ cp�1,pvp�1,tvp,t
(13)

Modification of Eq. (13) for forecasting η tð Þ a distance θMV into the future with
p = 3, for example, gives

Figure 2.
Block diagram for the wiener network with p inputs and one output. Each input, xi, is passed through their own
unity gain linear dynamic block, Gi, after which these unobservable intermediate outputs are collected and
passed through a single unrestricted static gain function, f(V), to produce the output, y.
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ηtþθMV
¼ a0 þ a1v1,tþθMV þ⋯þ a3v3,tþθMV þ b1v

2
1,tþθMV

þ⋯þ b3v
2
3,tþθMV

þ c1,2v1,tþθMV
v2,tþθMV

þ⋯þ c2,3v2,tþθMV
v3,tþθMV

(14)

where ai, bi, and ci,j, denote the linear, quadratic and interaction parameters for
i = 1, 2, 3 and j = 2 and 3, and

v1,tþθMV ¼ δ1,1v1,tþθMV�Δt þ δ2,1v1,tþθMV�2Δt

þω1,1x1,tþθMV�θDV1
�Δt þ ω2,1x1,tþθMV�θDV1

�2Δt

(15)

v2,tþθMV
¼ δ1,2v2,θMV�Δt þ δ2,2v2,tþθMV�2Δt

þω1,2x2,tþθMV�θDV2
�Δt þ ω2,2x2,tþθMV�θDV2�2Δt

(16)

v3,tþθMV
¼ δ1,3v3,tþθMV�Δt þ δ2,3v3,tþθMV�2Δt

þω1,3x3,tþθMV�θMV�Δt þ ω2,3x3,tþθMV�θMV�2Δt

¼ δ1,3v3,tþθMV�Δt þ δ2,3v3,tþθMV�2Δt þ ω1,3x3,t�Δt þ ω2,3x3,t�2Δt

(17)

where the θ’s are integer multiples of Δt. Depending on the rate of change of CV,
forecast accuracy (and hence, control) can suffer significantly by setting θMV - θDV

to zero. Developers of BGC devices that use current sensor glucose measurements in
the feedback error restrict these devices for use only during long sleeping periods
when BGC changes very slowly. For an application such as automatic BGC control,
with a very large deadtime for MV and many disturbances with smaller deadtime
than MV, that are nonlinear and interactive, the required accuracy for forecasting
BGC is quite challenging. However, as health monitoring sensor technology con-
tinues to advance, forecast modeling accuracy continues to improve. The strengths
of the method presented in this chapter are the use of dynamic structures that are
embedded in first principles modeling; that is, they have physically interpretable
parameters embedded in highly nonlinear structures (Eqs. (10)–(12)) with physical
constraints such as ω2,i ¼ 1� δ1,i � δ2,i � ω1,i, τi >0 and ζi >0, for all i. While the
method has these strengths for forecasting [16, 17], these strengths are quite critical
in FFC applications where cause-and-effect modeling is essential. Next PU is
examined from a control perspective – FBC first and then feedback feedforward
(FBFFC).

4. FBC when θMV is large

As discussed above, a change in MV will not affect CV until θMV time into the
future. When θMV is 0, the feedback error for FBC is, rightly, et = Yset

– yt, where yt is
the measured value of CV at the current time, t. When θMV is not 0, the equivalent
feedback error is et = Yset

– yt+θMV which is unknown because yt+θMV is not obtained
until time t + θMV. This section describes and compares three FBC approaches when
θMV is not 0. The first one is classical FBC [4, 5] which uses et = Yset

– yt. The second
one is feedback predictive control (FBPC) [6] which uses et = Yset

–ŷtþθMV
: The third

one is model predictive control (MPC) [18–20]. The MPC control law is for CV to
be equal to Yset, J time steps after t + θMV while holding the current value of MV
fixed [4]. Thus, J is the only controller tuning parameter for MPC. More specifi-
cally, its feedback error is: et = Yset

–ŷtþθMVþJΔt:Hence, the MPC prediction horizon is

longer than FBPC by the amount JΔt: For MPC, the optimal value of JΔtwill tend to
increase as the time lag of yt increases for changes in MV. Since forecasting accuracy
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typically decreases as the distance into the future increases, MPC control can
significantly deteriorate as JΔt increases.

These three control algorithms were compared by [6] in their ability to auto-
matically control CV for a true FOPDT process with K = 1, τ = 10 and 50 min,
θMV = 3 min, and a sampling time, Δt, equal to 1 min. FBPC and FBC were PI-
Controllers with tuning parameters to give the best response with little, to no,
overshoot for a unit step change in the set point at time t = 0.

Figure 3 presents the results of this study found in [6]. As shown, CV (y) is on
the left and MV (M) is on the right. The top row represents τ = 10 (J = 3, 8, and 20)
and the bottom row represents τ = 50 (J = 8, 20, and 30). As shown, as J decreases, y
reaches the set point faster and overshoots it for the lowest values of J. FBPC reaches
the set point much faster than MPC, even when MPC overshoots the set point. As τ
increases, MPC takes longer to reach the set point, but this is not the case for FBPC
and FBC. FBC reaches the set point faster without overshooting than MPC for the
case with the larger τ. Moreover, depending on J and τ, FBC and MPC can reach the
set point about the same time without overshooting the set point. However, FBPC
has a faster response and reaches the set point much earlier than FBC and MPC in all
cases. MV for FBPC has an initial “kick” much greater than FBC or MPC. However,
its MV quickly drops below that of FBC and MPC and has significantly less move-
ment in both cases as shown in Figure 3. Thus, as expected, because of the longer
control horizon, which increases as τ increases, MPC responded slower than FBPC
in reaching and staying at the new set point. Similar conclusions were seen in a
comparison of FBPC and MPC in this article [6] for a simulated CSTR. Nonetheless,
the main conclusion is that there are model-based forecasting FBC algorithms that
are viable alternative to classical FBC when θMV is appreciably large.

Figure 3.
CV (y) responses (left panels) and MV (M) changes (right panels) for FBPC, FBC and MPC for the FOPDT
process. The top case is for τ = 10 (for MPC with J = 3, 8, and 20) and the bottom one is for τ = 50 (for MPC
with J = 8, 20, and 30) [6].
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5. FFC when θMV is large

All classical process control textbooks (e.g., [4, 5]) derive the FFC algorithm from
a block diagram and give the FFC transfer function for each DV, Gf, as -GDV/GMV.
The outputs from each Gf are added together to form the multiple-disturbance
feedforward control law. An example when both GDV and GMV are FOPDT is:

G f ¼ �
GDV

GMV
¼ �

KDVe
�θDVS

τDV sþ1

KMV e�θMVS

τMV sþ1

¼ �
KDV

KMV

τMVsþ 1

τDV sþ 1
e θMV�θDVð ÞS ¼ �

KDV

KMV

τMVsþ 1

τDV sþ 1
eΔθS

(18)

Thus, Gf will be PU when θMV > θDV, i.e., when Δθ > 0. Typically, this limitation
is addressed by just setting Δθ to 0 or increasing τMV to τMV þ Δθ and setting eΔθS to
1 [4]. This approximation is usually acceptable when Δθ is small, as commonly
found in chemical processes. However, modern applications of process control have
gone beyond chemical processes to biological processes where transport is cellular,
slow, and complex (i.e., not well understood). A common example is exogenous
insulin taken by people with diabetes as mentioned above [21]. Insulin deadtime is
significantly greater than the deadtime for carbohydrate intake and other distur-
bances. Recent advancements in activity trackers measure multiple variables that
likely affect BGC, and most, if not, all have a smaller deadtime than insulin [15–17].

Process Control textbooks commonly describe additive and linear dynamic FFC
and present the algorithms in the continuous-time Laplace (s-) domain. This section
presents a FFC approach that is: 1. given in the time domain; 2. discrete-time; 3. able
to treat all types of non-additive behavior as well as nonlinear dynamic and static
behavior and; 4. combines all disturbances functionally into one FFC law (i.e., all
the DV’s enter one FFC equation). A block diagram of this FFC approach based on
the Wiener network is given in Figure 4. As shown, the modeled disturbances are

Figure 4.
Multiple-input FBC/FFC block diagram for a p-input wiener network FFC model [22].
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x1 to xp-1 and xp is MV. Inputs x1 to xp-1 pass through their dynamic blocks to
produce v1 to vp-1. The FFC law associated with Figure 4 is:

effc ¼ Y set � f Veð Þð Þjxep
¼ 0 (19)

where f Veð Þis defined in Eq, (8) with the superscript e associating it with the FFC
law, i.e., xep ¼ xeMV ¼ value of MV that makes effc = 0, and thus, satisfying Eq. (19).

For p = 2, i.e., one disturbance and MV, and FOPDT structures for both inputs,
and application of linear forms for Eq. (13) (for simplicity) into Eq. (19) gives:

effc ¼ Y set � a0 � a1v1,t � a2v2,tð Þjx2 ¼ Y set � a0

�a1 δ1,1v1,tþθMV�Δt þ δ2,1v1,tþθMV�2Δt þ ω1,1x1,tþΔθ�Δt þ ω2,1x1,tþΔθ�2Δt½ �

�a2 δ1,2v2,tþθMV�Δt þ δ2,2v2,tþθMV�2Δt þ ω1,2x2,t�Δt þ ω2,2x2,t�2Δt½ � ¼ 0

) x2,t�Δt ¼ xMV,t�Δt ¼
1

ω1,2
a0 � Y setð

þa1 δ1,1v1,tþθMV�Δt þ δ2,1v1,tþθMV�2Δt þ ω1,1x1,tþΔθ�Δt þ ω2,1x1,tþΔθ�2Δt½ �

þa2 δ1,2v2,tþθMV�Δt þ δ2,2v2,tþθMV�2Δt þ ω2,2x2,t�2Δt½ �Þ

(20)

Eq. (20) gives an explicit solution for the FFC signal, xMV, in this example.
When f (V) has terms higher than first order, numerical root solving methods may
be required to find xMV, as illustrated in [22].

Eq. (20) is evaluated now to determine if it can meet the standard of perfect
control for x1 load changes. For a frame of reference, MPC is also included in this
study although it is a FBC method. For this example, Yset = 100 and remains
constant. Input changes are made in x1(t) and its dynamic response to these input
changes, v1(t), are given in Figure 5. The tuning parameter for MPC, J, has values of
1, 2 and 10. The model parameters are: a1 = 1, τ1 = 5 min, θ1 = 5 min; a2 = �1,
τ2 = 10 min, θ2 = 10 min; and the sampling time, Δt = 1 min. The results for CV and
MV for both FFPC and MPC are given in Figure 5. FFPC gives perfect control, as
anticipated, and MPC does not, as anticipated. The response of MV that gives
perfect control is the heavy black line in Figure 5. MPC with J = 1 appears to match
the FFPC MV profile the best in terms of shape and time of changes, but it is also
the most extreme. Thus, this example illustrates the ability of FFPC to meet
the requirement of theoretically perfect control. Figure 6 gives a general
multiple-input, block-oriented model FBFF block diagram similar to the one in
Figure 4. For more information see [13].

Figure 5.
CV (y) responses (left plot) and MV (M) changes (right plot) for FFPC and MPC (J = 1, 2, and 10). M = x2
for FFPC and MPC, and M = v1 for the DV (i.e., x1) [13].
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FFPC is now evaluated on the in silico continuous stirred tank reactor (CSTR) in
Figure 7 and described in [13] and taken from [5] with some minor modifications.
This study has two DVs – feed composition, CAi (x1), and temperature of the
coolant entering the jacket,TCi (x2)). MV is the flowrate of the coolant entering the
jacket, FC (x3). The output (CV) is the measured tank temperature,Tm (y). The
model for each input is SOPDT, as shown in Eq. (7). The output, y, follows Eq. (8)
and measurement noise was added to the true tank temperature (T) to produce Tm.
Modeling this process was an application of Eqs. (9)–(17) with θ1 = θ2 = 5 seconds (s)
and θ3 = θMV = 10 s. Thus, Δθ = 5 s for each input and both are PU in the FFC law.
Therefore, the objective of this study is to compare announcement of input changes
5 s ahead versus no announcement.

Figure 6.
A general BOM FBFF block diagram shown with m loads and p FFC variables [8].

Figure 7.
Flow diagram of the CSTR in the in silico study.
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A proportional-integral (PI) feedback controller was implemented in this study.
Thus, FBPC was not used for FBC in any case to evaluate FFPC exclusive of FBPC.
For this controller KC = 1.40, τI = 11.0 andMFB is the FBC signal to the control valve.
MFF = xe3 ¼ xeMV , is the FFPC signal. Thus, the signal to the valve, M, in Figure 7 is
M =MFB +MFF. The input sequence used for training the model is given in Figure 8.
The excellent fit of the model to Tm for these input changes is also shown in
Figure 8. The testing sequence (not shown) fit the response as well as the training
sequence.

The results of FBC with FFPC for the two disturbances is shown in Figure 9. The
left plot is for FBC only. The right plot is FBC with announcements for TCi and CAi.
As shown, the variation of Tm around its set point decreased greatly with FFC and
announcements for both disturbances. More specifically, the standard deviation
about the set point temperature dropped from 0.4352°C to 0.1131°C, a 74% reduc-
tion. Thus, modeling disturbances effectively and implementing them into FFC
algorithms that can take advantage of announcements of future changes for critical
disturbances can have a significant impact in reducing variation around the set
point of CV.

6. FBPC and the Smith predictor

As demonstrated above, FBPC is an effective FBC strategy when θMV is large.
The Smith Predictor (SP) [4, 9] is a widely accepted FBC strategy when there is no

Figure 8.
Input sequences (left plot) CAi (x1), TCi (x2) and M (x3) and its wiener model fit (right plot).

Figure 9.
The effect of Tci and CAi announcement on tank temperature Tm for FFPC (left plot is without announcement
for both and right plot with announcements for both).
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deadtime in MV, and CV is measured, not at t, when MV changes, but at t + θCV (see
Figure 10). The SP idea is to obtain a predictive model for CV with deadtime,
remove the deadtime, and use this estimator in the feedback error term for CV at t.
In Figure 11 an example of a SP process is illustrated with a block diagram
representing the process given in Figure 10. As shown in Figure 11, MV = M(t) (M
is the signal of MV) immediately affects CV = B(t) (B is the signal of CV), but the
sensor is at B1(t) = B(t-θCV). Thus, SP uses a prediction of CV at t with an MV that
changes CV immediately. In contrast, FBPC uses a forecast prediction of CV at
t + θMV when it takes a time of θMV for a change in MV to affect CV. Moreover, the
SP does not use a forecast estimator and is not applicable to cases with deadtime in
MV. However, this section will show that FBPC, using the forecasting estimator of
CV at t + θCV, gives the same result as the SP. Consequently, FBPC can be used in
place of the SP. However, the opposite is not true. More specifically, the SP is not
applicable when a change in MV has time delay in changing CV, whereas FBPC is
applicable for this case.

For a Figure 10 type process, the SP should compensate for the deadtime (i.e.,
reduce its effect) and respond quicker using an accurate estimate of Bt than using an
accurate measurement of B1,t. The block diagram for the SP [4, 9] shows feedback

control using CV t ¼ B̂t with bias correction (BC) to address measurement bias. BC

is the current measurement of B1,t � B̂1,t, where B̂1,t is the estimated value of B1,t:

Thus, in the SP block diagram,

et ¼ Y set
t � Bt � B1,t � B̂1,t

� �

(21)

Similarly, for FBPC,

et ¼ Y set
tþθMV

� B̂1,tþθMV
(22)

The same simulated CSTR used above was used in this study to compare classical
FBC, FBPC and the SP control algorithm with and without feedback correction. A

Figure 10.
An example of a SP process with M as MV and B1 as CV.

Figure 11.
A block diagram showing the blocks between M and B1.
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step test in M was done and obtained B1 over time from the initial steady state to a
final steady state. These values are:M0 = 0.2569 andM

∞
¼ 0:3800 corresponding to

B10 = 0.4000 and B1,∞ ¼ 0:3800: The input change was large enough to cover the
change in Tm for the test data (i.e., a 4°C change in the set point temperature). A
FOPDT model was fit to the data and the fitted response is given in Figure 12. As

shown, the fit is excellent with the following estimates: K̂ ¼ 1:746, τ̂ ¼ 14:24 s and

θ̂ ¼ 14 swith δ̂ ¼ τ̂= τ̂ þ Δtð Þ ¼ 0:99303 and Δt = 0.1. A plot of the response over time

is given in Figure 12. The fitted forecast equation for B̂1,tþθMV
is derived as follows:

τ
dB0

1 tð Þ

dt
þ B0

1 tð Þ ¼ KM0 t� θð Þ ) τ
B0
1,t � B0

1,t�Δt

Δt
þ B0

1,t ¼ KM0
t�θ�Δt

⋮ ) τ þ Δtð ÞB0
1,t ¼ τB0

1,t�Δt þ KΔtM0
t�θ�Δt

) B0
1,t ¼

τ

τ þ Δt
B0
1,t�Δt þ K

Δt

τ þ Δt
M0

t�θ�Δt ) B0
1,t ¼ δB0

1,t�Δt þ K 1� δð ÞM0
t�θ�Δt

) B̂1,tþ140 ¼ B0
1,t þ 0:4 ¼ δ̂B̂1,tþ139 þ K̂ 1� δ̂

� �

Mt�0:1

(23)

The SP estimate without BC is obtained from Eq. (23) as

B̂tþ140 ¼ δ̂B̂tþ139 þ K̂ 1� δ̂
� �

Mt�0:1 (24)

With BC, the SP estimate is

B̂t ¼ δ̂B̂t�0:1 þ K̂ 1� δ̂
� �

Mt�0:1 � B1,t � B̂1,t

� �

(25)

For a step change in the set point temperature of 4°C, the responses for tank
temperature (Tm) for all four cases are given in Figure 13. The proportional-integral
(PI) controller is the slowest to get to the new set point of 92°C. This is no surprise
since the deadtime is quite large as shown in Figure 12. The SP with BC gives a
modest improvement over PI which is surprising. This is also reflected in the

Figure 12.
The fitted process reaction curve of B1 the measured values used for the fitting for a step change in M.
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modest increase in Kc from 0.20 to 0.41 as shown in Table 1. However, when the BC
was removed, the SP response improved considerably as did Kc to 1.50. It gives the
same response as FBPC, which also has no BC. These two cases give the same
results, supporting the conclusion that FBPC and SP are equivalent for the SP
application. However, when MV has deadtime with respect to CV, SP is not appli-
cable, but FBPC is applicable. In [6] this BC method also did quite poorly with MPC
being 132% worse (This BC method was not applied to FBPC in this study). More-
over, for BC, the following time series approach is recommended where the ϕ’s are
estimated with all other parameters for fitted model [6]:

ŷtþθ ¼ η̂tþθ þ ϕ̂1 yt � η̂t
� �

þ ϕ̂2 yt�Δt � η̂t�Δt

� �

þ⋯

¼ η̂tþk1Δt þ ϕ̂1et þ ϕ̂2et�Δt þ⋯

(26)

7. Conclusions

This chapter has focused on the use of discrete-time dynamic forecast modeling to
enhance FBC and all types of FFC. Discrete-time modeling has the advantage of
obtaining solutions to PU systems without having to make assumptions to make the
system an approximation of a physically realizable system. Models do not have to be
cause-and-effect for forecasting but need to be as FFC models. Cause-and-effect
models result from statistical design of experiments because input changes are
orthogonal (i.e., uncorrelated) and for theoretical structured models because they will
be nonlinear in one or more physically based parameters, have physical constraints
that must be met, and physically interpretable unknown model parameters [23].

When MV has deadtime with-respects-to CV (e.g., θMV), a change in MV will
not begin to change CV until a time distance of θMV in the future. Three FBC

Figure 13.
Graphical SP results.

Controller KC τI

PI 0.20 12.70

SP w BC 0.41 14.00

SP w/o BC 1.50 15.00

FBPC 1.50 15.00

Table 1.
Tuning values in the SP study.
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approaches where evaluated in this scenario: classical FBC, FBPC and MPC, using
the current measured value of CV, forecast estimate of CV, θMV in the future, and
forecast estimate of CV, θMV + JΔt in the future, respectively. In the simulation
study, FBC responded quicker than MPC when the process lag was large and MPC
responded quicker when the process lag was small. FBPC responded much faster
than both under small and large lag. FBPC control has a prediction horizon of θMV

but for MPC it is JΔt longer. Since the optimal value of J increases as the lag
increases, MPC can be significantly more sluggish than FBPC when J is large. A
definite advantage of MPC is that J is its only tuning parameter.

A discrete-time FFC approach (FFPC) was presented in this chapter that can
be effective when θMV is large and the multiple-input FFPC model is PU for any
reason (i.e., the order of the differential equation or negative deadtime). FFPC

Figure 14.
Flowchart illustrating the complete process of the proposed framework of this chapter.
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was shown to satisfy perfect theoretical control in a simulated data study. A
critical strength of the approach presented in this work is that the FFC variables
enter one mathematical function that simultaneously solves for one FFC control
signal. This contrasts with classical FFC that has a FFC algorithm for each input and
combines their values to determine the value of the FFC control signal for MV. The
classical approach cannot treat complex interactive and nonlinear behavior of the
disturbances in determining the optimal value of the FFC signal for MV. Block
diagrams of this novel FFC approach were shown for the Wiener Network and a
general block-oriented modeling approach. When FFC inputs have a PU impact,
knowing how their values will change over the control horizon (i.e., announce-
ments), can significantly improve FFC as demonstrated in the CSTR simulation
study.

The SP is a model-based feedback control algorithm that can be quite effective
when there is no deadtime between a change in MV and its impact on CV, and the
measured value of CV has deadtime. For this situation, FBPC, that uses a forecast
value for CV based on a model developed from the measured value of CV with
deadtime, gives the equivalent result of the SP. However, the SP is limited to this
case, but FBPC is not. More specifically, FBPC is applicable when there is deadtime
for changes in MV and its effect on CV but the SP is not. Finally, one should exercise
care when using the bias correction (BC) method in the block diagram for the SP. It
can lead to a significantly suboptimal SP as shown in this work. A better alternative
is to use one that is obtained from modeling the serially correlated structure in the
process as given in this chapter. A flowchart illustrating the complete process of the
proposed framework of this chapter is shown in Figure 14.
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Nomenclature

A cross-sectional area of the tank
an the nth constant
B the signal of CV in the SP algorithm
BC bias correction in the SP algorithm
B1 the signal of CV with deadtime θCV
bm the mth constant
CAi inlet concentration to the CSTR (x1)
effc the feedforward control law criterion for perfect control

et the feedback error = Yset
– yt,

FC inlet flow rate of the coolant to the jacket of the CSTR
f Veð Þ the true function in the FFC law that satisfy effc ¼ 0

f(V) is an unrestricted mathematical function that maps each v0i to the
units of the output variable in standard form. Thus, it is f(V)
that transforms the linear dynamic inputs into the nonlinear
dynamic response for the output y.

Gf feedforward transfer function
GDV DV transfer function
Gi transfer function with output vi
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GM transfer function for CV in signal
GMV MV transfer function
GP process transfer function
GV transfer function for MV
h the tank level
J the only controller tuning parameter for MPC.
K process gain
KC controller gain for FBC
m mth order derivative
M the input signal to MV transfer function
MFB FBC input signal to MV transfer function
MFF FFC input signal to MV transfer function
n nth order derivative
q1 inlet flow rate of Stream 1
Q flowrate in the Laplace domain entering the system
q flow rate of the outlet stream
Rv valve resistance
t current time or just time
T the physical value of CV in SP case
TCi inlet temperature of the coolant to the jacket of the CSTR
Tm measured tank temperature
vi dynamic output for ith input, xi, in the same units as xi
V tð Þ is a vector of the v00i s
x input
xt-Δt the value of x at time t -Δt
x0i deviation of xi at time t from xi at time t = 0
xep xeMV equals the value of MV in the FFC law that satisfy effc ¼ 0

y the response = output
ŷ tð Þ the estimate of y(t)

Greek Letters

θ time delay or deadtime
η tð Þ the true value of the output at time t
η̂ tð Þ the estimate of η tð Þ
ωi,j dynamic coefficient for the ith input at t – jΔt

δi,j dynamic coefficient for output vi at t – jΔt

θCV dead time of the controlled variable
θDV dead time of the disturbance variable
θMV dead time of the manipulated variable
τI reset time for FBC
τ process time constant
Δt the sample rate

Acronyms and abbreviations

BGC blood glucose concentration
CSTR Continuous-Stirred-Tank-Reactor
CV control variable
DT deadtime
DV disturbance variable
EM empirical modeling
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EMM empirical modeling methods
FBC feedback control
FBFFC feedback/feedforward control
FBPC feedback predictive control
FFC feedforward control
FFPC feedforward predictive control
FOPDT first-order-plus-deadtime
MISO multiple-input, single-output
MPC model predictive control
MV manipulated variable
PID proportional, integral, derivative
PH prediction horizon
PU physically unrealizable
SEM semi-empirical model
SDOE statistical design of experiments
STM semi-theoretical model
SP Smith Predictor
SOPDT second-order-plus-deadtime
TDPU time delay physical unrealizability
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