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Chapter

Cryopreservation and Its 
Application in Aquaculture
Judith Betsy C, Siva C and Stephen Sampath Kumar J

Abstract

Aquaculture is the major aquatic animal production segment. Problems like 
inbreeding depression, genetic drift, introgressive hybridization, etc. have been 
influencing the production of quality seeds negatively. Cryopreservation serves as a 
way-out for these problems and a possible answer to produce quality seeds and geneti-
cally improved varieties. It has been considered as a major strategy for conservation 
of fish genetic resources. Cryopreservation of fish gametes has been in vogue since 
1953 and the technology is well studied and validated for many species. So far the milt 
of 200 fish species has been cryopreserved successfully. In this chapter, the impor-
tance of aquaculture in overcoming malnutrition, genetic issues affecting quality seed 
production, cryopreservation protocol employed for various fish species, problems 
faced in cryopreserving fish eggs and embryos and future of cryopreservation in 
aquaculture have been discussed.

Keywords: Cryopreservation, aquaculture, fish, spermatozoa, egg, inbreeding

1. Introduction

In the World Summit on Food Security held at Rome during 16–18 November 
2009, it was committed to eradicate hunger from earth by increasing investment 
in agriculture involving public and private enterprises. Food and Agriculture 
Organization (FAO) defined food insecurity as a situation that exists when people 
lack secure access to sufficient amounts of safe and nutritious food for normal growth 
and development and an active and healthy life.

The projections of FAO for the next 15 years indicate that, if agricultural innova-
tion continues at a reasonable rate, food production can increase by 2 percent per 
year in the developing countries. Another report by World Bank mentioned that the 
world needs to produce at least 50% more food to feed 9 billion people by 2050. If 
the natural resources offer good potential for agricultural development, supporting 
agriculture research can bring big benefits in reducing food insecurity and malnutri-
tion [1]. In solving the above issues, along with grains and vegetables, fish can also 
play a major role.

Fish and other aquatic products provide at least 20% of protein intake for one 
third of the world’s population and the dependence on fish is high in developing coun-
tries [1]. Small-scale fisheries are considered to be more important for food security 
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because they supply more than half of the protein and minerals for over 400 million 
people in the food deficit countries of Africa and South Asia [2].

Fish is not an energy food, but it is an essential food for the human being. It is an 
extremely important source of protein, minerals and oils in many under developed 
countries. Fish protein constitutes around 30% of the Micronesian diet and 15% of 
the Polynesian diet [2]. Fish is more nutritious than other staple foods, providing 
quality animal protein, essential fatty acids and micronutrients. Interventions related 
to fish intake and aquaculture production include, utilizing fish as complementary 
food to improve nutritional status of children, encouraging children and women 
to eat nutrient-dense fish through nutrition education at community level [3] and 
increasing production of more demanded fish species through effective dissemination 
of the technology [4].

Fish being an important food for mankind, its production through all possible 
means has been explored. Besides exploitation of natural resources like sea and natu-
ral water impoundments, culture production through structured methods deserve 
due attention now. This shift in the population in the natural waters has impacted the 
availability of fish through capture and driving the people to develop ways to produce 
the fish through aquaculture. Nevertheless, the impacts of climate change on aquacul-
ture also could not be pushed off.

Studies in Asia suggest that low-income households consume lesser quantities of 
fish than rich households [5], but they still depend on fish as a major source of animal 
protein [6]. This invariably suggests that fish supply should be sufficient to wade off 
the malnutrition from the low-income group of people in order to keep the life free 
from nutritional disorders.

It is at this point anthropologists in the world insist that apart from concentrating 
on improving agriculture production, agencies like FAO and World Bank must estab-
lish projects in aquaculture of species that are positively impacted by climate change 
and at the same time contains high nutrients to eradicate malnutrition. Some of the 
fishes rich in nutrition include carps, catfish, murrels, tilapia and prawn [7].

Globally, fish provides 20% of average per capita intake of animal proteins to more 
than 3.3 billion people. In some countries like Bangladesh, Cambodia, the Gambia, 
Ghana and Indonesia, fish contribute to 50% or more of animal protein. The global 
fish consumption per capita food grew from 9.0 kg (live weight equivalent) in 1961 to 
20.5 kg in 2018 which is about 1.5% increase per year [8].

The total world fisheries and aquaculture production has reached 179 million 
tonnes in 2018 which was recorded as highest of all times and estimated at USD 401 
billion [8]. The aquaculture sector was the main driver that led to the increase in 
production of aquatic animals, and the total aquaculture production was estimated to 
be 82.1 million tonnes valued at USD 250 billion with average growth of 5.3% per year. 
The contribution of world aquaculture to global fish production has increased from 
25.7% in 2000 to 46% in 2018.

2. Genetic issues affecting seed quality

Aquaculture in many countries depends on the adequate supply of quality seeds. 
However, it is not always possible since many hatcheries have reported stock deterio-
ration due to poor brood stock management, inbreeding depression, genetic drift, 
introgressive hybridization, unconscious selection, lack of effective population size 
(Ne) and genetic erosion of domesticated stock.
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2.1  Prevention of detrimental effect of inbreeding and genetic drift via 
cryopreservation

Inbreeding and genetic drift cause undesired changes in the genome and result 
in lower viability and growth and increase developmental instability in fishes [9]. 
Unplanned and uncontrolled breeding often lead to inbreeding depression which lead 
to decreased growth rate, low fecundity and poor survival which are usually accom-
panied by loss of alleles via genetic drift [10]. Uncontrolled inbreeding and genetic 
drift occur together in closed hatchery populations and these factors are determined 
by the population’s Ne. Hence maintaining the desired Ne will prevent adverse effects 
on productivity and profits [10].

Due to high fecundity in fishes, inbreeding is more prevalent in aquaculture than 
other domesticated animals. This applies especially to highly fecund species like 
Indian Major Carps (IMC) (catla, Catla catla, rohu, Labeo rohita, mrigal, Cirrhinus 
mrigala) and Chinese carps (silver carp, Hypophthalmicthys molitrix, grass carp, 
Ctenopharyngodon idella, common carp, Cyprinus carpio) where few broodstock are 
necessary to meet demands for fry and broodstock replacement. The detrimental 
effects of inbreeding are well documented and can result in 30% or more decrease in 
growth, survival and reproduction [11].

The problem of inbreeding and genetic drift can be reduced by spawning more 
fish than needed. Since the fecundity is high in some species, the required number 
of fingerlings can be produced by breeding one or two females and males. But the 
ability to spawn relatively few fish must be moderated if inbreeding and genetic 
drift are to be controlled. Another way to increase Ne and reduce the rate of inbreed-
ing and genetic drift is to spawn a more equal sex ratio. Most farmers and hatchery 
managers use skewed sex ratios when they spawn their fish. This is done because one 
male can usually be used to fertilize eggs from several females. This enables farmers 
to use and maintain fewer males, which lowers production costs. When a skewed 
sex ratio is used, the rarer sex has a disproportionate influence on the size of Ne. 
Cryopreservation can help in maintaining Ne by breeding more number of fish which 
leads to maintenance of fewer males in the hatchery [10].

2.2 Introgressive hybridization with cryopreservation

It is the gradual infiltration of the germplasm of one species into that of another 
as a consequence of hybridization and repeated backcrossing [12]. Sarder et al. [13] 
reported that pure mrigal are severely being threatened by introgressive hybridiza-
tion in Bangladesh. Moreover, unplanned hybridization, inbreeding depression 
and genetic drifts have been the causes of deteriorating quality of this species. 
They opined that cryopreservation is the simplest and most inexpensive method 
to preserve genomes that can be used to maintain future conservation options. 
Introgression of autochthonous populations with introduced ones is a common phe-
nomenon in salmonids and it can result in outbreeding depression and replacement of 
possibly locally adapted populations by allochthonous ones [14].

Horvath et al. [15] applied cryopreservation as a conservation effort of two 
salmonid species such as the marble trout (Salmo marmoratus) and the Adriatic 
lineage of the grayling (Thymallus thymallus) autochthonous to the drainage of the 
Soča river in Slovenia. Populations of these species were greatly affected by hybridiza-
tion and introgression with allochthonous species such as the brown trout (Salmo 
trutta m. fario) and the Danubian lineage of the grayling that were introduced to the 
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Soča drainage during the 20th century. Cryopreservation of sperm from the Adriatic 
grayling and the marble trout has constituted an integral part of the conservation 
activities. In case of the grayling, no pure population was available and hence the pro-
portion of Adriatic genotype in the broodstock was increased. Genetic analyses of the 
populations were also conducted. Sperm and fin clips were collected from wild males 
on the spawning grounds. Sperm was cryopreserved and stored until the genetic 
analysis was completed on each sample. Cryopreserved sperm of individuals contain-
ing higher than a pre-defined proportion of Adriatic genotype was thawed and used 
for fertilization of eggs from Adriatic females. The resulting progeny was developed 
as broodstock and 70–80% of the local grayling broodstock originated from cryo-
preserved sperm. In case of the marble trout, cryopreservation was used to create 
“sanctuary” streams. Sperm is collected from wild males of a given pure population 
prior to the spawning season (early November) and cryopreserved. Sperm is stored in 
liquid nitrogen (LN2) until the spawning season (December–January) and then eggs 
of females from the identical population are fertilized with the cryopreserved sperm. 
Eyed eggs are then stocked into artificially created nests in the prepared “sanctuary” 
stream. Thus, a high number of males of the given pure population participate in the 
creation of the new population.

From a management perspective, the desirability of introgressive hybridization in 
response to environmental change depends on the circumstances. It is desirable when 
the resulting adaptation has the potential to rescue a native species from extinction, 
such as adaptation to the sudden climate shifts that might become more frequent or 
extreme with climate change. In such cases, management actions to protect hybridiza-
tion, such as the protection of hybrid zones, might enhance the potential for species 
to respond to environmental change [16].

3. Aquaculture and cryopreservation

Fish breeding depends on many factors and failure or partial success in the breed-
ing is a reality for many successful hatchery operators. In order to get the required 
quantity of seeds, induced breeding is considered as a viable tool that makes the fishes 
maturing and spawning despite to low or poor rainfall and worst climatic condi-
tions. Nevertheless, the health of brooders is severely affected by repeated breeding 
attempts within its confined life time. Exchange of brooders is not a simple task due to 
difficulties and physiological factors associated with the transportation of the brood-
ers. Therefore shipping of gametes is considered as a possible alternative that may 
have its own advantages as witnessed in the animal husbandry.

It is necessary to introduce biotechnological tools in fish breeding programme 
to ensure continuous seed production. Cryopreservation may be a possible answer 
to produce quality seeds and genetically improved varieties. FAO has endorsed 
cryopreservation as a major strategy for conservation of fish resources [17]. 
Cryopreservation increases the longevity of gametes for several years without any 
drastic change in the fertilizing capacity of the gametes by lowering the temperature 
usually to −196°C [18] which arrests all biological activities, including biochemical 
reactions that lead to cell death and DNA degradation [19].

In fishes, Blaxter [20] is believed to be the first successful scientist who did the 
cryopreservation of herring spermatozoa and proceeded up to artificial fertilization 
with the cryopreserved spermatozoa. It has been reported that so far milt from over 
200 species of freshwater and marine fish have been cryopreserved [21, 22].
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4. Principle of cryopreservation

The basic principle of cryopreservation is exposure of living cells to sub-zero 
temperature as low as −200° C through a perfect process thereby arresting its activi-
ties without damaging the life of it. A series of complex and dynamic processes of 
heat and water transport between cells and their surrounding medium is involved 
during the freeze–thaw process of biological material. The effect of the process 
depends on the speed at which the cells are frozen or thawed. When cells are frozen 
in an aqueous solution, both cells and the solution get super cooled leading to freez-
ing that will be followed by heterogeneous nucleation, usually in the extracellular 
solution. The same condition can be seen in the cell solutions also. If such condition 
occurs intracellularly, the resultant nuclei will be isolated by plasma membranes 
from the unfrozen cell components and leads to separation of ice crystals inside the 
cell. As water gets frozen, the extracellular solution becomes progressively more 
concentrated leading to slow dewatering conditions in the cells. This results only 
when the cooling is slow and there is sufficient time for the cells to lose enough water 
so as to remain in osmotic equilibrium with the concentrating extracellular solu-
tion leading to water loss inside the cells. If that occurs, that will lead to cell death 
otherwise called as freeze killing or chill killing. While this may take time in large 
and multi cellular organisms, in small micro-organisms and single cells much of 
water can be withdrawn during freezing leading to desiccation and the death of the 
cell instantly [23].

In contrary to the above situation, if the rate of cooling is faster and rapid, there 
will be less time for the intracellular water to diffuse out of the cells. A balancing situ-
ation will emerge under such fast or rapid cooling. This leads to survival of the cells by 
minimizing the time or exposure duration to concentrated solution. The cooling rate 
also ensures there is no formation of intracellular ice. This process is called vitrifica-
tion and it is the process that is happening inside the cell in the cryopreservation 
process [23].

During thawing, the same cellular physiological processes occur in reverse order. 
The thawing rate should also be rapid and fast enough that of the corresponding 
cooling rate. Nevertheless, recrystallization invariably occurs during thawing, 
forming lethal intracellular ice. A high warming rate is usually employed to minimize 
the degree of recrystallization when thawing is rapid to provide insufficient time or 
least possibility for the dehydrated cells to absorb the amount of water lost during 
 freezing [23].

5. Cryopreservation of fish spermatozoa

5.1 Milt collection

Cryopreservation success depends on the milt quality and hence, quality of milt 
must be evaluated based on the condition of spermatozoa prior to cryopreservation. 
Milt should be always collected from oozing ripe brooders by stripping method in ice 
cold, sterilized cryovials [19]. Milt must be collected in clean, dry and sterile vials and 
immediately stored on ice [19]. Collected milt should be in quiescent form and should 
be free from contaminants, such as water, mucus, blood, and gut exudates. Prior to 
stripping, the urinary bladder can be emptied by gentle squeezing in order to avoid 
milt contamination with urine.
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Employing stripping method for collecting fish milt might result in contamina-
tion with urine which may seriously influence milt characteristics and quality [24]. 
The contaminated milt can deteriorate the spermatozoa quality and have detrimental 
effects on post thaw viability as the contaminants such as urine, blood, mucus, etc. 
can change the seminal fluid composition and induce sperm motility [25]. Urine 
contamination can lead to lower percentage of fertilized eggs [26].

Using a catheter for milt collection can avoid urine and fecal contamination 
[27–29]. Researchers have suggested that anesthetizing the donors prior to milt 
collection was advantageous [30, 31]. Anesthetizing agents like Tricaine methane 
sulphonate (MS-222) can be used before milt collection [32]. Fish can be anesthetized 
by immersing in 2-phenoxyethanol for 2 min at a dose of 0.5 ml/l of water [33].

For instance, O. mykiss was anesthetized with MS 222 in a 1:10,000 dilution water 
bath during milt collection and the milt was collected by gently massaging the abdo-
mens of the fish [34]. C. carpio brooders were anesthetized with a 1:1000 aqueous 
solution of 2-phenoxyethanol before handling [35]. C. carpio males were anesthetized 
with 2-phenoxyethanol at a dose of 0.5 ml before milt collection [36].

5.2 Spermatological properties

Sperm quality evaluation is very important as it provides necessary information 
for optimal handling and storage protocols for sperm used in artificial fertilization 
[25, 37]. The fish milt composition and its physical characteristics vary with species 
and are important from the aspect of milt quality [38]. The quality of the milt is 
species specific [39] and can be affected by the feeding regime, feed quality, rear-
ing temperature and spawning season of males [40, 41]. Spermatozoa motility, milt 
volume and the spermatozoa concentration are considered to be good indicators for 
milt quality [42, 43]. Sperm quality can be evaluated based on the sperm volume, 
spermatozoa density, motility of spermatozoa [25]. The appearance, color and nature 
of milt are also used to assess the quality of milt. The milt volume of fishes is found to 
vary with species [44–46].

5.2.1 Sperm motility and motility duration

Motility is one of the most important parameters which is most frequently used to 
assess milt quality after cryopreservation and generally presents a positive correlation 
with fertilizing capacity [47]. Sperm motility is considered as the best biomarker of 
milt quality [48]. Motility depends on various aspects of the cell, such as the physi-
ological state of the mitochondria, ATP production, plasma membrane channel 
integrity and flagellum structure [49]. Relationship between percentage motility and 
fertilization capacity of spermatozoa was reported in many fishes [50–55]. The motil-
ity, velocity and fertilizing ability of sperm was found to vary according to seasonal 
variations in osmolality of seminal plasma [56–58]. Sperm motility was also found to 
vary in vigor and duration among individual male depending on ripeness [45].

The spermatozoa are in immobile phase before ejaculation and it was reported 
that the osmolarity and ion content of the aquatic medium are central factors in 
activating motility [59, 60]. It was observed that in some of the fish species, the 
changes in the osmotic pressure (0–300 mosmol/l) could initiate spermatozoa motil-
ity [61]. In carp testes and seminal plasma, inhibition of sperm motility was observed 
due to high osmolality (approximately 300 mosmol/kg) surrounding spermatozoa 
[50]. Various researchers observed that the spermatozoa usually remain motile for 
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less than 2 min and sometimes they are only highly active for less than 30 s in most of 
the freshwater fishes [62–64].

5.2.2 Sperm pH

Milt pH can affect spermatozoa motility and maturation [25]. Hence determi-
nation of variation in sperm pH provides information on fertilization capacity of 
spermatozoa. The milt of most of the freshwater fish species exhibit slightly alkaline 
pH [65]. When intracellular pH is below 7.5, sperm cells remain immotile with low 
respiration rate, but in response to an internal alkalinisation, they become motile, 
concomitantly with an increase in oxygen consumption [66, 67]. The initiation and 
duration of sperm motility is influenced by the extracellular and intracellular pH 
[68]. The external pH affects intracellular proton concentration which modifies the 
membrane potential and motility behavior [69].

5.2.3 Sperm density

Traditionally the density of sperm has been used for the assessment of milt qual-
ity. It is an important parameter which has an impact on fertilization success and is 
a characteristic feature of fish species [70]. Spermatozoa density is usually reflected 
by sperm volume [71]. Various methods like using Sysmex Microcell counter CC-120 
[72], spectrophotometric method [73], haemocytometric method [74] were employed 
to estimate sperm density in fishes.

5.3 Extender

For successful cryopreservation, it is essential to prevent activation of spermato-
zoa during preservation. Undiluted milt is unsuitable for storage at cryogenic tem-
peratures, so it should be diluted with an appropriate medium [51]. Because motility 
of fish spermatozoa is mostly a one-time event, this medium should not induce 
motility and at the same time must not interfere with the ability of the spermatozoa to 
be activated subsequently during utilization. Media that satisfies these conditions is 
called “Extender” [75].

Extender is a salt solution which helps to maintain the viability of cell during cryo-
preservation, which supplies sources of energy to sperm cells, protect the cells from 
temperature related damage, and maintain a suitable environment for the sperm to sur-
vive during the period of cryopreservation [76, 77]. Based on the inorganic composi-
tion of seminal plasma, extender is prepared as a buffered physiological saline solution 
[78] and hence extender composition differs between species. Extenders maintains the 
inactivity of spermatozoa when milt is diluted before freezing due to stabilization of 
physicochemical properties [79]. Sperm typically need to be maintained in an extender 
with proper osmolality (usually nearly isotonic to the plasma osmolality) to inhibit 
undesired sperm activation during refrigerated storage or cryopreservation [80].

A large number of extenders such as Ringer’s solution, Cortland’s solution, 
Alsever’s solution, etc. have been tried for the cryopreservation of spermatozoa of 
fish which were proven successful for milt cryopreservation in mammals [29]. Several 
simple extenders which are isotonic in nature, with inorganic salts like NaCl, KCl, 
CaCl2, NaHCO3, NaHPO4, MgSO4, MgCl2 and others with organic compounds such 
as fructose, mannitol, lecithin, glycine have been used with varying levels of success 
[29]. Extenders have been developed using saline and sugar-based diluents [81].
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Tris-egg yolk gave higher post-thaw motility percentage (50%) during cryopreser-
vation of milt of C. carpio and L. rohita [82]. Use of glucose-based extender containing 
10% dimethyl sulfoxide (DMSO) could be successfully used for Oncorhynchus mykiss 
milt cryopreservation and fertilization rate similar to that of fresh spermatozoa can be 
achieved [45]. Sperm diluted with 0.3427 g NaCl, 3.4314 g sucrose, 100 ml DW, 21 μl 
NaOH solution, 0.5 ml antibiotic (10,000 unit/ml penicillin and 10,000 μg/ml strepto-
mycin) and DMSO gave the best post-thaw motility (94.5 ± 3.3%) in C. carpio [83]. The 
feasibility of three extenders namely, Freshwater Fish Saline, Modified Fish Ringer and 
Physiological Saline was compared in cryopreserving C. carpio milt and the motility 
duration obtained was 57.28 ± 9.21 s, 64.78 ± 8.84 s and 67.39 ± 4.79 s for Physiological 
saline, Freshwater Fish saline and Modified Fish Ringer respectively [84].

5.4 Cryoprotectant

Cryoprotectants are low molecular weight compounds that penetrate cells and 
lower the freezing points of solutions. Cryoprotectants in combination with an 
effective dilution ratio can also improve the cryo-resistance of spermatozoa [85]. 
Cryoprotectants need time to penetrate to the cells (equilibration), however, pro-
longed exposure before cryopreservation can be toxic for sperm [85]. At higher con-
centrations, cryoprotectants can suppress most of cryoinjuries but at the same time, 
it can become toxic to the cells [86]. Therefore, suitable cryoprotectant concentration 
is needed for the development of cryopreservation protocol. The protective effect of 
cryoprotectants varies in different fish species [87].

Cryoprotectants are very essential for the survival of spermatozoa during 
cryopreservation. There are two different types of cryoprotectants; permeating 
and non–permeating [88]. Permeating cryoprotectants such as DMSO, glycerol, 
methanol, propanediol etc., are believed to lower the freezing point of the solution, 
which minimize osmotic shock by replacing the water inside the cell, and reduce 
formation of destructive intracellular ice [89]. Non-permeating cryoprotectants 
include protein like milk, egg yolk, bovine serum albumin (BSA); sugars such as 
glucose, sucrose; synthetic polymers like polyethylene glycol and polyvinylpyrrol-
idone and are believed to stabilize the membrane during cryopreservation [90]. Use 
of insufficient cryoprotectant before cooling reduces effectiveness, whereas excessive 
cryoprotectant causes osmotic swelling and rupture during thawing and dilution 
[91]. Cryoprotectants were found to prevent the formation of ice crystals during 
 freezing [48].

Due to ice crystal formations at low temperatures very few spermatozoa survive 
without cryoprotectant and same levels of those cryoprotectants can be lethal to 
unfrozen cell [92]. Cryoprotectants were most effective when they could rapidly 
penetrate the cell during freezing, which resulted in delay in intracellular freezing and 
led to minimization of the solution effect [93]. Common cryoprotectants used for fish 
sperm include DMSO, methanol and propylene glycol (PG) [94].

Regarding these cryoprotectants, PG used for sperm cryopreservation in yellow-
tail flounder (Pleuronectes ferrugineus) resulted to be an effective cryoprotectant [95] 
but showed moderately good post-thaw motility in Clarias gariepinus [96]. Methanol 
at 10% was found suitable for cryopreservation of bitterling milt [97], bagrid catfish 
[98] and C. gariepinus [99] and 5% methanol was reported to be suitable for tilapia 
(Oreochromis niloticus) milt cryopreservation [94]. DMSO was established to be very 
successful for cryopreservation of sperm in various freshwater species [100, 101] and 
has been considered as a universal cryoprotectant [102, 103].
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The milt of C. mrigala when cryopreserved with glucose as co-cryoprotectant at 
0.5% concentration egg yolk at 10% concentration gave the highest post-thaw motil-
ity duration [104, 105]. BSA at 2% gave the highest post-thaw motility duration in 
C. carpio [106].

5.5 Dilution ratio

The process of milt dilution is carried out as a means to increase the number of 
eggs that can be fertilized with a small volume of milt [107]. In fish spermatozoa cryo-
preservation, dilution of the sperm fluid is one of the most important steps which has 
been reported to improve fertilization rate as compared with results obtained with 
undiluted milt [108]. Milt dilution ratio is very important for fish sperm to survive 
after cryopreservation [109]. The dilution process is very important to increase the 
volume of milt, so that it can be used for multiple inseminations. Milt is generally 
diluted 3–20 folds for Salmonid, carp and tilapia [24].

In Cyprinids, full sperm motility is activated at osmolalities <50 mosmol/kg [50]. 
Using cryopreserved milt, full activation of sperm motility was obtained at ratios of milt 
to fertilization media of 1:10 for all types of media since at this ratio, the osmolality of 
the extender–water mixture was high enough to stabilize sperm viability [110]. Too low 
dilution ratio do not activate full sperm motility and too high ratios results in insuffi-
cient low sperm concentrations in the fertilization solution [110]. However, reports also 
suggest 1:25 [111, 112] and 1:20 [113] as the optimal ratio of milt to fertilization medium.

In this regard, when C. carpio milt was diluted with Kurokura medium at 1:5 ratio, 
it gave best results [114]. Dilution ratio of milt to extender of 1:7 resulted in highest 
hatching rates while at lower (1,3) and higher dilutions (1,10) fertility was signifi-
cantly decreased in bleak (Chalcalburnus chalcalburnus) [110]. When dilutions of 
1:25, 1:50 and 1:100 were evaluated on European perch (Perca fluviatilis), best result 
was obtained at 1:50 dilution [115]. The highest mean post-thaw motility duration, 
motility score, percentage of fertilized eggs, and hatching rate was obtained with 1:40 
dilution ratio in C. carpio [116].

5.6 Equilibration period

Equilibration period is the optimum time that must be allowed to facilitate the 
penetration of permeating cryoprotectants into the cells while minimizing the toxic-
ity for effective protection during freezing [117].During cryopreservation of milt, 
an equilibration time of 45–60 min for IMC [118], 10 min for C. carpio [119], 60 min 
for Tor putitora [120], 5 min for bleak (C. chalcoides) [100], 10 min for L. rohita [121], 
10 min for O. mykiss [122] has been employed with successful results.

Salmo gairdneri milt stored for 20 min after dilution gave significantly higher 
percentage of fertilization than that stored for 65 min or longer and therefore, cryo-
preservation of milt should be done as soon as possible after the collection [123]. Poor 
post-thaw motility was recorded in C. carpio at 20 min of equilibration time than that 
frozen immediately [124]. When the diluted milt was equilibrated for 15 min, there 
was no adverse effect on the post-thaw fertility of Salmonid milt [48].

5.7 Freezing

Too high freezing rate result in the formation of small ice crystals within the 
cell due to limited time for the free water to separate from the cytoplasm which 
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puncturescell membraneand the membranes of the cell organelles. Too low  freezing 
rate exposes the cell to the concentrated cytoplasm for a long time resulting in 
pickling effect and the biomolecules in the cell get denatured due to the high salt 
concentration and subsequent changes in the pH [18].

The optimum freezing rate is a moderate rate between the two extremes of the 
freezing rate [125] which depends on cell type and size, cryoprotectant type and 
concentration, equilibration time, final temperature prior to plunging in LN2, fish 
species and associated interactions [99, 126]. Optimal cooling rate should be rapid 
enough to minimize the duration of exposure to prevent the occurrence of concen-
trated solute and slow enough to allow water osmosis to prevent intracellular ice 
crystal  formation [127].

The freezing rate is a critical factor and it was reported that instant immersion in 
LN2 may significantly decrease the post-thaw motility duration of fish spermatozoa 
[128]. Freezing can be performed by programmable temperature changes or simple 
immersion in LN2 vapor above the surface of LN2 [83]. Freezing can also be done 
using methanol-dry ice bath [129] or by freezing the extended milt with cryoprotec-
tant over crushed dry ice [130]. The pelletization technique in which specific volumes 
of diluted milt is placed over dry ice (solid CO2) also served to freeze the milt and it 
was used by many workers [32, 131, 132].

In a protocol, straws were frozen for 4 min on a stainless steel tray (−80°C) 
suspended over LN2 and was immersed into LN2 [133]. When C. carpio milt was 
frozen 3 cm above the surface of LN2 for 3 min before plunging in LN2 it resulted 
in high post-thaw motility as well as fertilization and hatching rate [134]. During 
cryopreservation of C. carpio milt, the 0.5 ml straws were placed horizontally onto a 
3 cm high styroframe raft (−130°C) for 20 min, which was floating on the surface of 
LN2, before immersing the straws into LN2 and it did not negatively affect the fertility 
of frozen–thawed sperm [35].

Programmable freezers was also used by many researchers for freezing the diluted 
milt samples of several fish species [135–137]. Programmable freezing allows the 
pre-setting of different freezing programs, the monitoring of precise temperature 
during the cooling sections and the continuous biological examination of cells during 
the freezing stages [138]. Different programmes and different final temperatures can 
be attained in programmable freezer [119, 139–141]. The use of programmable freezer 
allows the evaluation of spermatozoa motility at different rates of cooling during 
freezing [141]. Incorporation of fast freezing rates using the controlled-rate program-
mable freezer was successfully used in earlier studies for cryopreservation of carp 
sperm [111, 113, 142].

For cryopreservation of milt of C. carpio, the most efficient freezing rate was 5°C/
min from 2°C to −7°C and 25° C/ min from −7° C to −70°C [135]. A slower cooling 
rate at 4°C/min from 00 C to −4°C and 11°C/min from −4°C to −80°C can also be used 
for cryopreservation of C. carpio milt successfully [113]. A cooling program of 4°C to 
−9°C at a rate of 4°C/min and then from −9° C to −80° C at a rate of 11°C/min, which 
was held for 6 min at −80°C, and transferred into LN2 was followed for C. carpio and 
high motility (69 ± 14%) and moderate fertilization rate (56 ± 10%) was reported 
[111]. C. gariepinus spermatozoa can be frozen at the rate of −5°C/min initially from 
+5°C to −35°C and then from −35°C to −50°C or − 70°C [99].

Three different cooling methods were employed during the cryopreservation of 
C. carpio [142]. Two of them used 3 steps, initially from 2°C to −7°C then −7°C to 
−30°C and finally −30°C to −80°C with two different cooling rates (3 and 6°C/min) 
after which the sample was transferred to LN2. In the third method, a one-step method 
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(2°C to −50°C) with faster average cooling rate (10°C/min) was applied and was 
reported that faster cooling rates (6 and 10°C/min) were more efficient for cryopreser-
vation and the highest fertilization recorded with 10°C/ min was 99%.

5.8 Thawing

The rate of thawing is an important step which is said to be a decisive factor for the 
success of cryopreservation procedure. It is the reverse of freezing but rapid thawing 
after the cooling procedure is preferred however, too high and too low rates of thaw-
ing are detrimental for the cryopreserved spermatozoa [18]. Thawing rates should 
be high enough to avoid recrystallization as its rate is very critical for preservation 
of spermatozoa viability [143]. It appeared that the ideal thawing procedure almost 
avoided or reduced either recrystallization and ice crystal formation during thawing. 
The temperature change should allow movement of water and cryoprotectants while 
preventing intracellular ice recrystallization [144].

In Cyprinid fishes, the highest mean fertilization percentage of 57% was obtained 
in C. idella when thawed at 20°C quickly in a water bath [145]. The cryopreserved milt 
of freshwater carps (L. rohita, C. carpio, Puntius gonionotus, C. idella, Aristichthys nobi-
lis and Pangasius sutchi) was thawed by swirling the frozen ampoules in tap water at 
29°C [146]. Similarly, the frozen milt of IMC and H. molitrix was thawed by swirling 
the straws in tap water at 30°C [147]. High post-thaw motility percentage of 92–98% 
and high hatching percentage of 25.7% was obtained after thawing the cryopreserved 
milt of T. khudree at 37 ± 1°C for 5–10 s [148]. The highest mean motility (83.4 ± 2.1) 
and fertilization rate (85.6 ± 2.8) was obtained in C. Idella when the milt was thawed 
at 35° C for 30 s [149]. The highest post-thaw motility of 52.6 ± 1.4 s was recorded in 
C. carpio when thawed at 30°C for 30 s [150].

In Salmonid fishes (O. mykiss, Salmo trutta lacustris, S. trutta fario and Salvelinus 
fontinalis), the highest fertilization rates obtained was when milt was thawed at 25°C 
in water bath for 30 s and change of the thawing period for only 5 s or the thawing 
temperatures for 5°C led to reduce of post-thaw fertilization ability of milt [45]. 
Cryopreserved milt of T. khudree was thawed at 37°C for 40 s in a water bath [120]. 
Cryopreserved milt of O. mykiss was thawed at 25°C in water bath for 30 s for 0.5 ml 
and 1.8 ml straws and at 60°C for 30s/ 80°C for 20 s for 5 ml straws and was reported 
that thawing at 25°C in water bath for 30 s was best for thawing of O. mykiss milt [42]. 
The cryopreserved milt of O. mykiss was thawed at 10°C for 30s in water bath [130]. 
The cryopreserved milt of Salmonid fishes was thawed at 25°C for 30 s for 0.5 ml 
straws and at 30°C for 30 s for 1.2 ml and 5.0 ml straws in a water bath [151].

6. Cryopreservation of fish eggs and embryos

Cryopreservation of fish eggs and embryos are still in its infant stage. Unlike cryo-
preservation of spermatozoa, very few studies are available on cryopreservation of 
eggs. Attempts have been made to cryopreserve the eggs of rainbow trout [152, 153] 
and embryos of Japanese medaka fish, Oryzias latipes [154], rainbow trout, O. mykiss 
[155], zebra fish, Brachydanio rerio [156], common carp, C. carpio [157] and rohu, 
L. rohita [158].

Many of the attempts to cryopreserve fish eggs were failure due to dehydration, 
relatively large size of eggs, presence of large amount of yolk and different water 
permeability rate of membranes [159–161]. The major hindrances recorded in the 
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cryopreservation of egg and embryos of teleost fishes [162] are the large size of fish 
egg and embryos which results in low surface/volume ratio and lower membrane 
permeability to water and cryoprotectant solutions that makes the embryos difficult 
to cool and warm uniformly without damage and ice formation, low permeability 
of the membrane due to the presence of chorionic layer, sensitivity of fish egg and 
embryosto low temperatures and the presence of multi-layered membrane structure 
which hinders the osmotic properties for each compartment of the egg/embryos 
which finally affects the transport of the cryoprotectant solutions.

Studies have been carried out by different researchers to overcome these issues and 
some of the efforts made are microinjection of cryoprotectants directly into the cyto-
plasm [163], use of negative pressure on the egg/embryos to increase permeability of 
the cryoprotectants [164], microinjection of anti-freeze protein [165] and application 
of hydrostatic pressure on the egg/embryos [166]. Precise knowledge of embryo 
permeability is essential for successful cryopreservation of egg/embryos [167].

Herring embryos did not survive after cooling below −10°C when DMSO was 
used [168]. Methanol was a better cryoprotectant for zebrafish embryo when com-
pared with DMSO or ethanediol since it penetrates theentire embryo within 15 min 
while other cryoprotectants could not penetrate into yolk even after 2.5 h [169, 170]. 
Similarly, PG also could not protect the zebrafish embryos upon immersion of it into 
LN2 as it resulted in mitochondrial damage, disorganization of ribosomes and plasma 
membrane of the yolk syncytial layer [171].

7. Application of cryopreservation in aquaculture

• This technology can be used to preserve milt of the best age group brooder which 
can be used at any point of time in future.

• It can also eliminate inbreeding problem since cryopreserved spermatozoa can be 
easily exchanged between hatcheries.

• Using this technology, spermatozoa can be made available at any season of 
the year.

• It makes breeding possible during off-season.

• It synchronizes the gamete availability of both sexes leading to sperm economy.

• It simplifies broodstock management in farms.

• It helps in the production of viable and strong offspring by intra-species 
hybridization.

• It overcomes the difficulties arising due to the short time viability of gametes.

• It enables the genetic preservation of desired lines.

• It allows cross breeding at different times of the year.

• It helps in germplasm storage for genetic selection programs or conservation of 
species.
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• Cryopreserved spermatozoa can help in the hybridization programmes and 
genetic engineering research in fishes.

• It leads to many other avenues such as cryobanking of viable gametes as in the 
case of animal production and development of gene bank and genetic manipula-
tion in fishes.

8. Demerits of frozen milt in aquaculture

• All the milt collected from individuals do not withstand rigors of freezing

• High initial investment cost

• Limits number of sires/males used and if proper care is not taken it may lead to 
inbreeding

• Requires better training of personnel

• Reduced or poor fertilization rate compared to other artificial breeding methods

9. Conclusion

Cryopreservation technology has been developed for many fish species. However, 
standard species specific cryopreservation protocols must be developed and the 
success rate of using cryopreserved sperm in artificial fertilization program of every 
fish species has to be determined for commercializing the technology. Even though 
standard protocols of cryopreservation are followed, cryoinjuries are unavoidable. 
Ways to overcome the cryoinjuries by establishing proper freeze–thaw cycle is essen-
tial. The oxidative stress in the cryopreserved sperm must be clearly addressed and 
methods to reduce the production of reactive oxygen species (ROS) must be evolved. 
The possible effects of cryopreservation on the energy production, ROS production, 
mitochondrial DNA of the spermatozoa and the structure of spermatozoa must be 
documented. Unlike in animals, very few fish sperm banks have been established for 
fishes. More research is needed to make the sperm banks for fishes a reality in the 
developing countries. Addressing the research needs mentioned above will help to 
establish successful fish sperm banks for many commercially important fish species.
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