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Chapter

Inflammatory Mediators Leading 
to Edema Formation through 
Plasma Membrane Receptors
Guilherme Teixeira and Robson Faria

Abstract

Edema is a swelling from liquid accumulation in body tissues. Injuries in tissues or 
organs may cause this disorder leading to chemical mediators releasing and trigger-
ing the inflammatory process. Inflammatory mediators, when released in response to 
injuries, promote biological reactions at the affected site. Furthermore, plasma mem-
brane receptors modulate the inflammatory chemical agent synthesis and release. 
Pattern recognition receptors, such as Toll Like is an example of plasma membrane 
receptors associated with chemical agents recognizing and cascade amplification. 
Therefore, these plasma membrane proteins exhibit essential roles during injuries 
and immunologic response. Thus, this review discusses the plasma membrane recep-
tors modulation in the inflammatory area, focusing on edema formation.

Keywords: membrane receptors, edema, inflammation, cytokines,  
vascular permeability

1. Introduction

Edema is characterized as a swelling caused by an increase of fluids in the inter-
stitial space. Interstitial liquid deregulation causes liquid accumulation in the body 
with harmful consequences to tissues and organs [1, 2]. The physiologist Ernest 
Starling defined the interaction between the fluids forces in blood vessels. The fluid 
movement (FM) in the blood vessel is correlated with blood vessel wall perme-
ability (constant Kf) and the difference between hydrostatic pressure variations 
(ΔP) and colloid osmotic pressure (Δπ) forces [1, 3]. The following mathematical 
equation (Starling’s equation) describes this interaction: FM = Kf. (ΔP- Δπ).

The liquid retention becomes harmful to tissues affecting the cellular balance 
and homeostasis. Several factors induce this phenomenon: hormones, plasma pro-
teins, inflammation, infectious diseases, and disturbs in some organs [3–5]. After 
an injury, inflammatory mediators cause physiological reactions in the lesioned 
region. Some of these inflammatory molecules include interleukins (IL-1β, IL-6, 
and IL-18), tumor necrosis factor-alpha (TNF-α), vasodilators, arachidonic acid 
metabolites, nitric oxide (NO), among others [6–8]. The inflammatory agent over-
production mediates increase in vascular permeability and leukocyte recruitment, 
causing edema formation and hyperalgesia [2, 9].

Membrane receptors are a group of functional proteins located in the plasma 
and organelles membranes. These receptors are able to trigger intracellular chemical 
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cascades [10]. Approaches in the pharmacological field investigated several plasma 
membrane receptors modulating inflammation [11], such as the purinergic system, 
TRP channels, and pattern recognition receptors (PRRs), are commonly associ-
ated with inflammatory pathways [12–16]. Therefore, this chapter will address the 
plasma membrane receptors modulation on inflammatory agents and subsequent 
edema formation.

2. Inflammation and edema: influence in the vascular permeability

Inflammation is a natural defense mechanism to Pathogen-associated molecular 
pattern (PAMPs) or Damage-associated molecular pattern (DAMPs) involving 
cells and blood vessels. In this process, local and immune cells (macrophages, 
neutrophils, and lymphocytes) promote the release of pro-inflammatory mediators, 
such as those mentioned earlier. Although the inflammatory response is a natural 
mechanism, this process may become harmful to tissues and organs when persis-
tently stimulated [17, 18]. The inflammation course and edema formation are linked 
because edema is one of inflammation cardinal signs [2].

After a trauma or injury, intracellular components are released, modifying the 
inflammatory site characteristics (Figure 1). Migrant and local cells, such as mast 
cells and basophils, release vasoactive amines, serotonin, and histamine. These mol-
ecules initially cause increase in blood vessel permeability and vasodilation [19–21]. 
Thus, these vascular changes cause liquid leakage from the vascular environment. 
Plasma protein, such as albumin, in the extravascular medium may modulate the 
vascular pressures. The press alteration favors the fluid and electrolyte passage to 
interstitial space generating swelling [3, 22].

Coagulation factor activation, such as the Hangeman factor, induces bradykinin 
and proteases synthesis stimulation. Bradykinin is a kinin involved in vascular per-
meability and other vascular mechanisms [23–25]. Additionally, the complement 
system fragments exhibit a crucial role in the immunity and vascular processes. The 
anaphylatoxins, such as C3a, C4a, and C5a, act on leukocyte recruitment and also in 
bradykinin signaling [23, 26–29].

The pro-inflammatory cytokines participate in pain mechanisms and also pro-
motes increase in vascular permeability [23]. Stamacovic [30] described cytokines 
participating in the central nervous system inflammation and Blood–brain barrier 

Figure 1. 
Inflammatory mediators are acting on vascular permeability.
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permeability. The increase in IL-1β, IL-6, and TNF-α may cooperate for brain edema 
emergence. Martin et al. [31] showed vascular increase induced by IL-1 and IFN-y 
in Wistar rats. IL-1β is very approached in a mechanism involving nociception and 
sensibility to pain, as well as bradykinin [32, 33]. Furthermore, increase of IL-1β 
and TNF-α induct arachidonic acid metabolites [34]. Arachidonic acid metabolites 
like prostaglandins, leukotrienes, prostacyclin, and thromboxane also mediate 
vascular changes [35]. Prostaglandins is directly involved in the modulation of pain 
mechanisms [9, 36].

IL-18 is another IL-1 family member involved in pain mechanisms. The IL-1β and 
IL-18 synthesis possess similarities in their signaling [37]. Pilat and colleagues’ study 
involving the IL-18 inhibition [38] showed nociception reduction in a neuropathic 
pain model. Besides, IL-18 is also notorious as the IFN-y-inducing factor [37, 39].

Additionally, inflammatory mediators modulate inflammatory diseases, and 
some data confirms this actuation in organ pathophysiology such as lung, liver, 
heart, and others [40–43]. Thus, vital organ disturbs promote vascular fluids imbal-
ance. Additional data about cytokines modulation at vascular mechanisms can be 
found in the following works [23, 44, 45].

3.  Membrane receptors participation in the inflammation and edema 
pathophysiology modulation

Scientific advances provide new discoveries about plasma membrane receptors 
function and identity. Molecules impermeable to the membrane can selectivity 
cross to the intracellular environment through these receptors. Many receptors 
characteristics are investigated in the physicochemical field, including biophysical 
properties and structure. Membrane receptors generally have three classifications: 
receptors coupled to enzymes such as tyrosine kinase (RTKs), G protein-coupled 
receptors (GPCRs), and ion channels [46]. Interestingly, there is a group of mem-
brane proteins that are widely addressed in scientific research for modulating 
inflammatory mediators release and search for new anti-inflammatory drugs. Based 
on this, the following topics exhibit some of studied plasma membrane receptors 
related to the inflammatory response.

3.1 Toll-like receptors

The host defense against infections and tissue damage is a complex mechanism. 
In this process, the cells must recognize PAMPs and DAMPs to initiate a specific 
intracellular response against infectious agents, such as viruses and bacteria or 
dangerous signs, such as burn injuries [47].

The Toll-Like Receptors (TLRs) are a group of membrane proteins involved 
in inflammation and immunity. They act on PRRs expressed in macrophages, 
neutrophils, and dendritic cells [47, 48]. TLRs compose the interleukin 1 receptors 
superfamily (IL-1Rs) with slight structural differences. Ten TLRs subtypes were 
described in humans (TLR1–10), although other species may exhibit variations.

TLRs are located in different compartments in the cell. For instance, the sub-
types 1, 2, 4, 5, and 6 are located at the cell plasma membrane, whereas subtypes 
3, 7, 8, 9, and 10 are in the intracellular compartment, located in endosomes. [RF1] 
TLR2 and TLR4 are the best-studied receptors of this family [49, 50].

TLRs, when activated, are essential for the host response to harmful agents, 
since these receptors modulate the inflammatory mediators release. The factor 
nuclear kappa β (NF-kβ) and mitogen-activated protein kinase (MAPKs) are clas-
sical pathways activated by Toll-Like Receptors (Figure 2) [48]. When stimulated 
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by a ligand, such as lipopolysaccharides (LPS), TLRs transduces the signal through 
adaptor molecules in the intracellular environment. Myeloid differentiation pri-
mary response 88 (MyD88) is an adaptor molecule of the interleukin- 1 receptor-
associated kinases (IRKs) signaling with subsequent TNF receptor-associated factor 
6 (TRAF6) activation. TRAF6 activates the growth factor β-activated kinase 1 
(TAK1), which triggers an enzymatic complex associated with NF-kβ translocation 
to the cell nucleus. TAK1 signaling also activates the MAPKs pathway with activa-
tor protein 1 (AP-1) nuclear factor translocation. This pathway leads to various 
pro-inflammatory mediators transcription, such as cytokines (IL-1 family, IL-6, 
TNF-α), COX-2 stimulation (prostaglandin E2), and interferons [50, 51].

TLR activation may exhibit a crucial role in edema formation through inflam-
matory mediator production (Table 1). In a recent paper, Okada and colleagues [55] 
described brain edema reduction in a subarachnoid hemorrhage model (SAH) mouse 
after treatment with TAK-242, a TLR4 receptor inhibitor. The molecular mechanism 
by which this occur was not evaluated. However, the pathophysiology development 
of brain edema shows association with TLR4 function. In liver diseases, such as acute 
liver failure, astrocyte swelling is a notable characteristic that promotes brain edema 
formation. Interestingly, NF-kβ and MAPKs-induced cytokine release are crucial 
mechanisms for astrocyte swelling development [56, 57]. Jayakumar et al. [58] have 
demonstrated LPS and cytokines-induced astrocyte swelling increase. These data 
suggest TLR4 may be a target in the brain edema pathophysiology. Table 1 represent 
more data about TLR receptors in the inflammatory context.

3.2 Histamine receptors

Histamine constitutes an essential molecule in cell biology, edema pathophysiol-
ogy, and the inflammatory process. The histamine synthesis occurs with the amino 
acid L-histidine decarboxylation through the histidine decarboxylase enzyme (HDC). 
Other inflammatory mediators can lead to increase HDC activity, such as IL-1 cyto-
kines [60]. Histamine synthesis occurs in different body cells, although this produc-
tion primordially occurs in mast cells and basophils [61]. In these cells, histamine is 

Figure 2. 
Plasma membrane TLR signaling pathway. TLR receptor activation triggers AP-1 and NF-kβ transcription factors.
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stored in cytoplasmatic granules and released according to the stimulus presented. 
Histamine interacts with GPCRs membrane receptors classified as histamine recep-
tors (HRs) and divided into four subtypes: HR1, HR2, HR3, and HR4 (Table 2) [61].

The histamine action is remarkable in the vascular modulation mechanism, 
including vascular permeability increase. HRs actuate as a second messenger, lead-
ing to intracellular signal and cytokine synthesis [68]. A study by Delaunois and 
co-authors [69] showed a protective HR3 agonist role in pulmonary edema stimu-
lated by inflammation-promoting molecules. In addition, HR3 stimulation appears 
to play a significant role in perfusion in post-burn tissues [70]. HRs also participate 
in the mechanisms related to antinociception [61].

Among HRs, HR4 has become a new antihistamines studies target. The HR4 acti-
vation triggers MAPK, which leads to pro-inflammatory mediators synthesis [60]. 
Coruzzi and collaborates [66] showed promising results in inhibiting paw edema by 
HR4 in acute inflammation. After carrageenan-induced edema, two selective HR4 
inhibitors, JNJ7777120, and VUF6002, respectively, were evaluated. Inhibition by 
JNJ7777120 after two hours of carrageenan induction has shown notable values com-
pared to VUF6002. Another study using JNJ7777120 described the anti-nociceptive 
role in a pain inflammation model through HR4 antagonism. Additionally, HR4 inhi-
bition decreases neutrophilic influx to stimulated area pretreated with JNJ7777120 
[67]. These findings suggest HR4 with a crucial role in edema and pain mechanism.

3.3 Serotonin receptors

Diseases involving the psychiatric area have been widely addressed in scientific 
research, such as depression. [RF2] Factors involving mood and mental disorders, 

Receptor Ligand Involvement in inflammation and edema References

TLR1 Tri-acyl 
lipopeptides

TLR1 works together with TLR2 as a heterodimer. 
This subtype also mediates the intracellular 
cytokines transcription

[47, 52]

TLR2 Peptidoglycan TLR2 signaling intracellular transcription of 
inflammatory mediators
Cytokine gene expression such as IL-1β, TNF-α, and 
IL-6 decrease in TLR2 Knock out mice in vascular 
injury model
TLR2 plays a role in mast cells degranulation and 
cytokine release stimulated by peptidoglycan

[47, 53, 54]

TLR4 LPS TLR4 activation leads to inflammatory mediators 
transcription involved in pain and edema, such as 
COX-2 metabolites, IL-1 cytokines, and TNF-α
LPS induces astrocyte swelling and brain edema 
pathogenesis.
TLR4 also increases TNF-α and IL-1β in LPS-
induced mast cells

[47, 50, 54–58]

TLR5 Flagellin TLR5 can be activated by high mobility group 
box 1 (HMGB1), a protein that plays a role in 
inflammation. The HMGB1 action on TLR5 induced 
the pro-inflammatory mediators intracellular 
signaling.
TLR5 also plays a protective role in intestinal cells.

[47, 52, 59]

TLR6 Di-acyl 
lipopeptides

TLR6 functions are interacting with TLR2 and TLR4 
as a heterodimer.

[47, 52]

Table 1. 
Plasma membrane TLRs modulate inflammatory mediators.
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include serotonin, a critical functional amine in this disease. Interestingly, sero-
tonin regulates inflammatory signaling, playing a role in vascular permeability. 
Therefore, serotonin becomes a multifunctional molecule modulating many body 
processes [71–73].

5-hydroxytryptamine (5-HT), serotonin is synthesized from the amino acid 
tryptophan. The enzymes tryptophan hydroxylase and tryptophan decarboxylase 
are responsible for 5-HT production. Serotonin may be found in various body 
tissues, such as enterochromaffin, platelets, brain, and lung [71]. 5-HT interacts 
with membrane receptors (5-HT receptors), divided into seven families (5-HT1–7), 
where these receptors are GPCRs, except for 5HT3, which belongs to ion channels. 
These receptors possess fourteen subtypes: 5-HT1 (A, B, D, E, and F), 5-HT2 (A, B, 
and C), 5-HT3 (A, B), 5-HT4, 5-HT5 (A), 5-HT6, and 5-HT7 [74, 75].

The 5-HT role in other systems has been studied over the years. During inflam-
mation, 5-HT plays an essential role in vascular permeability, as well as histamine, 
in addition to participating in pro-inflammatory mediator production [72]. In this 
context, serotonergic receptor subtypes act on inflammation process biochemistry. 
5-HT7 is influential in peripheral inflammatory modulation, according to Albayrak 
and co-authors [76]. The 5-HT7 participates in the nociception mechanism with 
other 5-HT receptors, such as 5-HT1 and 5-HT2 [77, 78]. The 5-HT2 subtype (A) 
subtype also modulates the inflammatory process. Nishiyama studies [79] have 
demonstrated a role for 5-HT2A in cytokines synthesis during an inflammation 
model induced by endotoxin shock. The 5-HT2A inhibition reduced TNF-α, IL-1β, 
IL-8, and IL-6 levels. Interestingly, IL-10 levels (cytokine with anti-inflammatory 
function) increased due to 5-HT2A inhibition. Additionally, 5-HT2A shows to play 
a function in body temperature control [80]. These data demonstrate a relevant role 
for 5-HT2A receptors in inflammation pathophysiology (Table 3).

3.4 Purinergic receptors

The purinergic system is a group of transmembrane proteins activated by 
extracellular purine ligands, such as adenosine and other derivatives, adenosine 
triphosphate and diphosphate (ATP and ADP). Interestingly, when the ATP mol-
ecule is found in elevated concentration in the extracellular environment (eATP), 
this nucleotide may become a DAMP and regulates the inflammatory process. 
Purinergic receptors are formed by two groups (P1 and P2) differing in structure 
and activation ligands on mammalian cells [93, 94].

Receptor Ligand Involvement in inflammation and edema References

HR1 Histamine HR1 is involved in allergic response
HR1 influences MPAK signaling and modulates Th1 
response.

[61–63]

HR2 Histamine HR2 modulates Th2 response
HR2 regulates IL-10 and antinociceptive activity

[61, 62, 64]

HR3 Histamine HR3 exhibits an essential role in neuronal inflammation 
and neuropathic pain.
HR3 inhibition has been shown to be beneficial in 
inflammation and edema stimulated by formalin

[61, 65]

HR4 Histamine HR4 also participates in MAPK signaling.
HR4 inhibition shows to reduce neutrophil infiltration, 
edema, and hyperalgesia in acute inflammation

[60, 63, 66, 
67]

Table 2. 
Histamine receptors.
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The adenosine molecule activates the P1 group and possesses four subtypes (A1, 
A2a, A2b, and A3). The P1 group comprises GPCRs receptors, and the P2 group is 
extensive and divided into two families, P2X and P2Y. The P2X receptors form ATP-
activated ion channel receptors with seven subtypes (P2X1–7). P2Y receptors are 
GPCRs, like the P1 group. Interestingly, ATP and their derivatives activate the P2Y 
receptors, although, pyrimidine molecules, such as uridine diphosphate (UDP and 
UDP-glucose), also modulate some subtypes activation. This family consists in eight 
subtypes (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P213, and P2Y14) in mammals. 
The purinergic receptors participate in inflammation and immune response and are 
expressed in several tissues [14].

In the purinergic group, the receptor of great scientific notoriety is the P2X7 
receptor (P2X7R), addressed in several mechanisms, such as cell death and inflam-
matory cytokines release [14]. P2X7R have the capacity to increase membrane 
permeability for large solutes after prolonged ATP activation. The prolonged P2X7R 
stimulation induces a pore opening that allows the molecules of up to 900 Da. 
This mechanism highlights the P2X7R as a pore-forming protein, similar to other 
membrane receptors, such as some TRP channels [95].

However, a striking P2X7R feature is the participation in the maturation of IL-1 
cytokine family (IL-1β and IL-18) release. The IL-1β and IL-18 production and 
maturation require two signaling mechanisms, one mediated by pattern recogni-
tion receptors (via TLRs family activation) and a second by a danger signal, such as 
eATP. The activation of TLRs induces nuclear transcription through NF-kβ of the 

Receptor Ligand Involvement in inflammation and edema References

5-HT1 Serotonin 5-HT1 receptors stimulation induces a role in neurogenic 
inflammation
Intrathecal 5-HT1A, 5-HT1B, and 5-HT1D receptor agonists 
administration decreased the peripheral inflammatory 
edema induced by carrageenan.

[81, 82]

5-HT2 Serotonin 5-HT2A subtype inhibition increased IL-10 in inflammation 
induced by shock with endotoxins.
5-HT2A receptor activation decrease TNF-α-induced 
inflammation
5-HT2A regulates the body temperature
5-HT2B subtype shows the immunomodulatory function in 
dendritic cells

[79, 80, 83, 
84]

5-HT3 Serotonin 5-HT3 inhibition decreased inflammatory cytokines and 
neutrophilic action in a colitis model
5-HT3 decreases pain in carrageenan-induced inflammation

[72, 85, 86]

5-HT4 Serotonin Spinal 5-HT4 receptor antagonism decreased hyperalgesia 
effects
5-HT4 induced IL-1β and IL-8 release in mature dendritic 
cells.

[72, 87, 88]

5-HT5 Serotonin Intrathecal administration appears to show an anti-
nociceptive role for spinal 5-HT5A receptors

[89, 90]

5-HT6 Serotonin Like 5-HT4, 5-HT6 receptor antagonism is also beneficial in 
hyperalgesia

[87, 91]

5-HT7 Serotonin 5-HT7 receptor stimulation has an anti-inflammatory role in 
the periphery carrageenan-induced inflammation
5-HT7 agonist decreased COX-2 levels.
Like 5-HT4, 5-HT7 activation also induces IL-1β and IL-8 
secretion in dendritic cells.

[76, 88, 92]

Table 3. 
Serotonin receptors.



Infections and Sepsis Development

8

immature forms of these cytokines (ProIL-1β and ProIL-18), concluding the first 
stage.The eATP activates the P2X7R, beginning the cascade signaling that compose 
the Nod-like receptor protein-3 (NLRP3) inflammasome complex with subsequent 
IL-1β and IL-18 maturation and release [48, 96]. The following figure illustrates this 
mechanism more clearly (Figure 3).

The IL-1β inhibition in inflammation and pain has been addressed in several 
inflammation studies. Experiments in vivo using P2X7R antagonist have demon-
strated improvements in the swelling caused by inflammation in a model of paw 
edema [97, 98]. The pain sensibility mechanism is linked to vascular permeability, 
causing edema [2]. Furthermore, P2X7R inhibition reduces pro-inflammatory cyto-
kines, such as IL-1β and other mediators, since the P2X7R is responsible for these 
mechanisms [96]. Additionally, the P2X4 receptor has participated in IL-1β and 
IL-18 signaling based on Chen et al. [99]. Further, other purinergic receptors data in 
edema and inflammation have already been approached in the literature (Table 4).

3.5 TRP channels

The physiological mechanisms of pain and temperature stimuli indicate the 
transient receptor potential (TRP) as a target in this regard [110]. The TRP chan-
nels superfamily is constituted of transmembrane cationic ionotropic receptors. In 
mammals, six subfamilies classify the TRP channels into two groups. The first group: 
TRPC (canonical), TRPV (vanilloid), TRPA (ankyrin), and TRPM (melastatin). 
The second group is composed of TRPML (mucolipin) and TRPP (polycystic). This 
chapter will discuss the most addressed subfamilies in the scientific literature: TRPV, 
TRPM, and TRPA based on their involvement in inflammation and pain. These 
subfamilies are classified in TRPV1–6, TRPM1–8, and TRPA1 receptors [111, 112].

Figure 3. 
IL-1β and IL-18 synthesis after P2X7R activation. The first signaling occurs with the ProIL-1β and ProIL-18 
transcription after TLRs receptor activation (TLR4). The second signal arrives with the eATP stimulating 
the P2X7R. The receptor activation induces the NLRP3 inflammasome complex, and finally, IL-1β and IL-18 
conversion for mature form.
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TRPV1 is the most studied TRP channel because of its noxious heat and inflam-
mation perception. TRPV1 is a pore-forming protein, like P2X7R and other TRPs, 
such as TRPV2–4, TRPA1, and TRPM8 (Table 5). All these channels promote pore 
opening, and molecules flux up to 900 Da [117]. Capsaicin is one TRPV1 receptor 
agonist and plays a critical role in nociception pathogenesis [124].

The TRPV1 receptor (heat sensor) together with TRPA1 (cold sensor) can 
modulate the neuropeptide molecules release like substance P. This molecule 
encompasses many biochemical processes involved in inflammation, such as 
histamine and serotonin released by mast cells, which leads to increased vascular 
permeability and hyperalgesia [113]. Hoffmeister and co-authors [125] described 
a reversion in edema and pain caused by monosodium urate crystals after TRPV1 
inhibition. These findings may be associated with the mechanism mentioned above 
with TRPV1 participation. Additionally, TRPV1 and TRPA1 receptor inhibition 

Receptor Ligand Involvement in inflammation and edema References

A1R Adenosine A1R receptor stimulation increased leukocyte 
recruitment and edema formation in acute 
pancreatitis disease.
A1R participates in pulmonary inflammation 
and influence vascular permeability through 
inflammatory cytokines release in monocytes and 
neutrophils

[100, 101]

A2R Adenosine A2aR decreases cytokine synthesis (IFN-γ, IL-4, 
and IL-2) in lymphocytes and influence platelet 
aggregation.
A2bR mediates several pro-inflammatory 
cytokines (IL-1β, TNF-α) synthesis
In contrast, A2bR also exerts an anti-
inflammatory action, as observed for IL-10 release 
in macrophages.

[101]

A3R Adenosine A3R stimulation induces histamine and serotonin 
release and inflammation in rat paw.
A3R seems to mediate benefits in control 
hyperalgesia

[102, 103]

P2X4R ATP P2X4 induces IL-1β and IL-18 cytokines 
maturation through NRLP3 inflammasome
P2X4R is involved in prostaglandin E2 release and 
pain

[14, 99, 104]

P2X7R ATP P2X7R activation produces cytokines, such as 
IL-1β and IL-18 maturation through NRLP3 
inflammasome and TNF-α
P2X7R regulates prostaglandin E2 release
P2X7R antagonism reversed edema and 
hyperalgesia
P2X7R stimulation leads to vascular bed 
inflammation through IL-1β release

[14, 96–98, 
105, 106]

P2YR ATP/UDP/
UDP-glucose

P2Y1R, P2Y2R, and P2Y6R are associated with 
leukocyte chemotaxis.
P2Y1R, together with P2Y12R, have a function in 
platelet aggregation
Like P2X7R, P2Y6R activation in endothelial 
cells promotes vascular inflammation and fluids 
leakage.

[107–109]

Table 4. 
Purinergic receptors.
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decreased pro-inflammatory cytokines levels, such as TNF-α, IL-1β, and IL-6 in 
an endotoxin-induced lung injury model [114]. Interestingly, Li et al. [115] dem-
onstrated TRPV1 activation associated with NF-kβ phosphorylation through the 
intracellular Ca2+ influx. Based on this data, TRPV1 receptors play a critical role in 
the modulation of the pro-inflammatory cytokines.

Another notorious receptor involved in the low temperatures detection in 
conjunction with TRPA1 is the TRPM8 receptor. TRPM8 exhibits an essential role in 
neuropathic pain and anti-inflammatory effects [111]. TRPM8 is the most studied 
receptor in cold physiology. TRPM8 activation reverses the hyperalgesia caused by 
TRPV1 and TRPA1 stimuli [16]. Experiments using eucalyptol, a TRPM8 agonist, 
show promising results in reducing pro-inflammatory cytokines in paw edema 
[121]. Studies with cold therapy can have analgesic and anti-edema effects [122]. 
These findings make the TRPM8 receptor a target in this context.

Receptor Ligand Involvement in inflammation 

and edema

References

TRPV1 Capsaicin/Protons/Heat sensor TRPV1 channel is involved in 
the release of the neuropeptide 
like substance P in sensory fibers 
Capsaicin administration showed 
painful effects in mouse paws, 
which were diminished by TRPV1 
inhibitors
TRPV1 increased intracellular 
Ca+2 concentration inducing the 
cytokines transcription such as 
IL-1β and TNF-α through the 
NF-kβ pathway
In the endotoxin-induced lung 
injury model, TRPV1 reduced 
the pro-inflammatory cytokines 
levels

[113–116]

TRPV4 4α-Phorbol 12,13-didecanoate/
Osmotic sensor

TRPV4 activation in vascular 
endothelial cells caused an 
increase in vascular permeability.
TRPV4 is sensitive to hypo-
osmotic stress in chondrocytes

[117–119]

TRPA1 Allyl Isothiocyanate (AITC)/
Cold sensor

Like TRPV1 channels, TRPA1 
acts on neuropeptides molecules 
regulation and nociception.
TRPA1 induced edema in an acute 
inflammation model using AITC
TRPA1 stimulation by AITC 
has been shown to influence the 
COX-2 regulation in HEK 293 
cells

[113, 116, 120]

TRPM8 Menthol/Eucalyptol/Cold sensor TRPM8 channels inhibited edema 
and inflammation by decreasing 
pro-inflammatory cytokines 
(TNF-α and IL-1β)
Menthol produced analgesic 
effects on inflammatory pain 
through the TRPM8 channel

[16, 121–123]

Table 5. 
Transient receptors potential.
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3.6 Other receptors involved

A large quantity of plasma membrane receptors modulates the inflammation 
and immune response processes. In this work, we discuss the membrane receptor 
groups as therapeutic targets for inflammation and edema processes. The connec-
tion between the receptor systems is vast, and the response can vary according to 
the stimulus. Thus, other receptors can fit this context, such as cholinergic, dopami-
nergic, and adrenergic receptors. These are other examples of membrane receptors 
that can also be addressed in this context [126–128].

Additionally, bradykinin also promotes a role in vascular permeability. 
Bradykinin receptors divide into B1, and B2 (GPCRs) play a crucial role in edema 
pathogenesis [129, 130]. Further, cytokines receptors are also involved in inflamma-
tion mechanisms, such as IL-1 family and TNF-α receptor [131].

4.  Therapeutic perspective of membrane receptors for inflammatory 
diseases

The inflammatory process (edema, cell migration, pain, and other) treatment 
mainly uses non-steroidal anti-inflammatory drugs (NSAIDs) and corticosteroids. 

Receptor Compound Disease Clinical 

study

Results References

TLR4 NI-0101 Rheumatoid 
arthritis (RA)

Phase II Insufficient 
therapeutic effects

[133]

HR4 JNJ-39758979 Asthma Phase IIa Potential in patients 
with eosinophilic 
inflammation

[134]

Toreforant RA Phase IIa 
and IIb

No improvement in 
Phase IIb study

[135]

Eosinophilic 
asthma

Phase IIa No significant 
effects on the 
applied dose

[136]

ZPL-3893787 Atopic 
dermatites 
(DA)

Phase IIa Improvement in 
skin lesions

[137]

P2X7R AZD9056 RA Phase IIa 
and IIb

Insufficient 
therapeutic effects

[138]

Crohn’s 
disease (DC)

Phase IIa Good effects 
in improving 
symptoms in 
moderate and 
severe DC

[139]

CE-224.535 RA Phase IIa Insufficient 
therapeutic effects

[140]

TRPV1 JNJ-38893777 Not available Phase I Tolerable and 
safe for future 
investigations

[141]

PAC-14028 DA Phase IIb Effectiveness for 
the treatment of 
mild and moderate 
AD

[142]

Table 6. 
Receptor antagonist compounds highlighted in clinical trials for inflammatory diseases.
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NSAIDs inhibit eicosanoid metabolites produced for the COX pathway, whereas 
corticosteroids are based on hormones released by the endocrine glands [132]. On 
the other hand, the more serious problem with these drugs is their prolonged use 
in treatments, presenting toxicity to organs. Based on this, the membrane recep-
tors discussed in this chapter are promisor candidates for inflammation treatment. 
In addition, some classes possess agonists and antagonists commercially available 
among these receptors, such as 5-HT receptors and HRs.

Interestingly, clinical trials have already been realized and described in the 
literature concerning other membrane receptor types for reducing inflammatory 
diseases and their symptoms (Table 6). Therefore, we highlight four receptors dis-
cussed in this chapter with great potential in modulating the inflammation (TLR4, 
HR4, P2X7R, and TRPV1).

5. Conclusion

The inflammation field encompasses broad aspects, such as chemical mediators 
(cytokines, vasoactive amines, and lipid mediators), pain, and edema. The plasma 
membrane receptors influence on the inflammatory process is widely explored in 
scientific research. Concerning data discussed in this chapter, membrane receptors 
are promising and directly involved in the inflammatory mediators modulation in 
the edema and hyperalgesia pathophysiology. Thus, these new data open a horizon 
in the search for new pharmacological targets with anti-edema and analgesic effects 
in the therapeutic perspective of the inflammatory process.
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