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Chapter

Non Classical Structures
and Linear Codes
Surdive Atamewoue Tsafack

Abstract

This chapter present some new perspectives in the field of coding theory. In fact
notions of fuzzy sets and hyperstructures which are consider here as non classical
structures are use in the construction of linear codes as it is doing for fields and
rings. We study the properties of these classes of codes using well known notions
like the orthogonal of a code, generating matrix, parity check matrix and polyno-
mials. In some cases particularly for linear codes construct on a Krasner hyperfield
we compare them with those construct on finite field called here classical struc-
tures, and we obtain that linear codes construct on a Krasner hyperfield have more
codes words with the same parameters.

Keywords: Linear codes, Fuzzy set, Krasner hyperstructures, Fuzzy logic,
Algebraic hyperstructures

1. Introduction

In mathematics, non classical structures as fuzzy sets and algebraic
hyperstructures approach better many well known real life situation, and represent
natural extension of classical algebraic structures.

Regarding fuzzy sets theory (fuzzy logic), this was introduced in the middle of
1960 by Lotfi Zadeh [1]. This concept is considered today as one of the most
important of the second half of twentieth century, this in view of its applications in
technological sciences and the impressive quantities of paper and book related to it.

As for algebraic hyperstructures, they were introduced by a french mathemati-
cian F. Marty [2] in 1934. Since then, more than a thousand papers and several book
have been written on this topic. A well known type of algebraic hyperstructures is
due to Krasner [3], who used as a technical tool in a study of his on the approxima-
tion of valued fields. In the literature they are called Krasner hyperrings and
Krasner hyperfields.

Transmission on coding theory always suppose to encode its information and
decode the received information, this is what the classical coding theory introduced
in 1948 by C. Shannon [4] deals with. It should ne noted that the handling infor-
mation are certains. So how can we do if the informations are uncertain? Thus as a
new perspective for the algebraic coding, we present below a connection between
fuzzy sets, Krasner hyperstructures and linear codes, and we find out how they can
bring more in classical coding theory.
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2. Fuzzy linear codes over pk

2.1 Preliminaries

The theory of fuzzy code as we present here were introduce by Shum and Chen
De Gang [5], although they have authors such as Hall Diall and Von Kaenel [6, 7]
who also worked on it. In this section, we shall formulate the preliminary defini-
tions and results that are required for a good understanding of the sequel (we can
see it in [8–10]).

Definition 2.1. Let X be a non-empty set, let I and J be two fuzzy subsets in X,
then:

• I ∩ Jð Þ xð Þ ¼ min I xð Þ, J xð Þf g, I ∪ Jð Þ xð Þ ¼ max I xð Þ, J xð Þf g,

• I ¼ J if and only if I xð Þ ¼ J xð Þ, I⊆ J if and only if I xð Þ≤ J xð Þ,

• I þ Jð Þ xð Þ ¼ max I yð Þ∧ J zð Þjx ¼ yþ zf g, IJð Þ xð Þ ¼ max I yð Þ∧ J zð Þjx ¼ yzf g.

These for all x, y, z∈X.
Let denoted by M the pk-module n

pk , where p is a prime integer and

n, k∈n 0f g.
The following definitions on the fuzzy linear space derive from [11, 12].
Definition 2.2. We called a fuzzy submodule of M, a fuzzy subset F⊓ of a pk-

module M such that for all x, y∈M and r∈pk , we have:

• F xþ yð Þ≥ min F⊓ xð Þ,F⊓ yð Þf g.

• F rxð Þ≥F⊓ xð Þ.

Definition 2.3. Let F⊓ be a fuzzy subset of a nonempty set M. For t∈ 0, 1½ �, we
called the the upper t-level cut and lower t-level cut of F⊓, the sets F⊓t ¼

x∈MjF⊓ xð Þ≥ tf g and F⊓t ¼ x∈MjF⊓ xð Þ≤ tf g respectively.
Proposition 2.4. F⊓ is a fuzzy submodule of an pk-module M if and only if for all

α, β∈pk ; x, y∈M, we have F⊓ αxþ βyð Þ≥ min F⊓ xð Þ,F⊓ yð Þf g.

The following difinition recalled the notion on fuzzy ideal of a ring.
Definition 2.5.We called a fuzzy ideal of pk, a fuzzy subset I of a ring pk such that

for each x, y∈pk ;

• I x� yð Þ≥ min I xð Þ, I yð Þf g.

• I xyð Þ≥ max I xð Þ, I yð Þf g.

Definition 2.6. Let G be a group and R a ring. We denote by RG the set of all
formal linear combinations of the form α ¼

P

g∈Gagg (where ag ∈R and ag ¼ 0

almost everywhere, that is only a finite number of coefficients are different from
zero in each of these sums).

Definition 2.7. Let RG a ring group which is the group algebra of < x> on the
ring pk (where x is an invertible element of pk). A fuzzy subset I of RG is called a

fuzzy ideal of RG, if for all α, β∈ RG,

• I αβð Þ≥ max I αð Þ, I βð Þf g.

2
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• I α� βð Þ≥ min I αð Þ, I βð Þf g.

When we use the transfer principle in [13], we easily get the next Proposition.
Proposition 2.8. A is a fuzzy ideal of RG if and only if for all t∈ 0, 1½ �, if At 6¼ ∅,

then At is an ideal of RG.
The following is very important, the give the meaning of the linear code over the

ring pk .

Definition 2.9. A submodule of n
pk , is called a linear code of length n over pk .

(with n a positive integer).
Contrary to the vector spaces, the module do not admit in general a basis.

However it possesses a generating family and therefore a generating matrix, but the
decomposition of the elements on this family is not necessarily unique.

Definition 2.10. We called generating matrix of a linear code over pk all matrix

of M pk

� �

, where the lines are the minimal generating family of code.

The equivalence of two codes is define by the following definition.
Definition 2.11. Let Cpk and C0

pk two linear codes over pk of generating matrix G

and G0 respectively. The codes Cpk and C0
pk are equivalences if there exists a

permutation matrix P, such that G0 ¼ GP.
To define a dual of a code which is helpful when we fine some properties of the

codes, we need to know the inner product.
Definition 2.12. Let Cpk be a linear code of length n over pk, the dual of the code

Cpk that we note C⊥
pk is the submodule of n

pk define by; C
⊥
pk ¼ fa∣ for all

b∈Cpk , a:b ¼ 0g. where “�” is the natural inner product on the submodule n
pk .

In a linear code Cpk of length n over pk , if for all a0,⋯, an�1ð Þ∈Cpk , then

s a0,⋯, an�1ð Þð Þ∈Cpk (where s is the shift map), then the code is said to cyclic.

2.2 On fuzzy linear codes over pk

Now we bring fuzzy logic in linear codes and introduce the notion of fuzzy
linear code over the ring pk .

Definition 2.13. Let M ¼ 
n
pk be a pk-module. The fuzzy submodule F⊓ of M is

called fuzzy linear code of length n over pk .

Using the transfer principle of Kondo [13], we have what is follow.
Proposition 2.14. Let A be a fuzzy set on 

n
pk .

A is a fuzzy linear code of length n over pk if and only if for any t∈ 0, 1½ �, if

At 6¼ ∅, then At is a linear code of length n over pk .

Corollary 2.15. Let A be a fuzzy set on 
n
pk .

A is a fuzzy linear code of length n over pk if and only if the characteristic

function of any upper t-level cut At 6¼ ∅ for t∈ 0, 1½ � is a fuzzy linear code of length
n over pk .

Example 2.16. Consider a fuzzy subset F⊓ on 4 as follows:

F⊓ : 4 ! 0, 1½ �, x↦

1 if x ¼ 0;

1

3
if x ¼ 1;

1

3
if x ¼ 2;

1

3
if x ¼ 3:

8

>
>
>
>
>
>
>
>
<

>
>
>
>
>
>
>
>
:

.
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Then F⊓ is a fuzzy submodule on 4-module 4, hence F⊓ is a fuzzy linear code
over 4.

Remark 2.17. Let F⊓ be a fuzzy linear code of length n over pk , since 
n
pk is a

finite set, then Im F⊓ð Þ ¼ F⊓ xð Þjx∈
n
pk

n o

is finite. Let Im F⊓ð Þ is set as:

t1 > t2 >⋯> tm (where ti ∈ 0, 1½ �) that is Im F⊓ð Þ have m elements.
Since F⊓ti is a linear code over pk , let Gti his generator matrix, F⊓ can be

determined by m matrixes Gt1 , Gt2 , ⋯, Gtm as in the below Theorem 2.31.
There are some know notions of the orthogonality in fuzzy space, but no one of

them does not hold here because these definitions does not meet the transfer
principle in the sense of the orthogonality for the t-level cut sets. So we have to
introduce an new notion of orthogonality on fuzzy submodules.

Definition 2.18. Let F⊓1 and Fu2 be two fuzzy submodules on module n
pk over

the ring pk . We said that F⊓1 and F⊓2 are orthogonal if Im F⊓2ð Þ ¼

1� αj α∈ Im F⊓1ð Þf g and for all t∈ 0, 1½ �, F⊓2ð Þ1�t ¼ F⊓1ð Þt
� �⊥

¼

fy∈
n
pk ∣< x, y> ¼ 0, for all x∈ F⊓1ð Þtg. Where < , > is the standard inner prod-

uct on 
n
pk .

Noted that F⊓1 ⊥F⊓2 means F⊓1 and F⊓2 are orthogonal. We what is follow as
an example.

Example 2.19. Consider the two fuzzy submodules F⊓1 and F⊓2 on 4 defined as
follows:

F⊓1 : 4 ! 0, 1½ �, x↦

1

2
if x ¼ 0;

1

4
if x ¼ 1;

1

3
if x ¼ 2;

1

4
if x ¼ 3:

8

>
>
>
>
>
>
>
>
>
>
<

>
>
>
>
>
>
>
>
>
>
:

and F⊓2 : 4 ! 0, 1½ �,

x↦

3

4
if x ¼ 0;

1

2
if x ¼ 1;

2

3
if x ¼ 2;

1

2
if x ¼ 3:

8

>
>
>
>
>
>
>
>
>
>
<

>
>
>
>
>
>
>
>
>
>
:

.

We easily observe that:
F⊓1ð Þ1

2
¼ 0f g and F⊓2ð Þ1

2
¼ 4,

F⊓1ð Þ1
4
¼ 4 and F⊓1ð Þ3

4
¼ 0f g,

F⊓1ð Þ1
3
¼ 0, 2f g and F⊓1ð Þ2

3
¼ 0, 2f g.

Thus F⊓1⊥F⊓2.
Remark 2.20. Let F⊓1 be a fuzzy submodule on module n

pk such that ∀x∈
n
pk ,

F⊓1 xð Þ ¼ γ (with γ ∈ 0, 1½ �), then it does not exists a fuzzy set F⊓ on 
n
pk such that

F⊓1⊥F⊓.
The previous Remark 2.20 show that the orthogonal of some fuzzy submodule in

our sense does not always exists, so it is important to see under which condition the
orthogonal of fuzzy submodule exists. The following theorem show the existence of
the orthogonal of some fuzzy submodule.

4
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Theorem 2.21. Let F⊓1 be a fuzzy submodule on a finite module n
pk . If Im F⊓1ð Þ

have more that one element and for all ς∈ Im F⊓1ð Þ there exist ϵ∈ Im F⊓1ð Þ such that

Aς ¼ Aϵð Þ⊥, then there always exists a fuzzy submodule F⊓2 on 
n
pk such that F⊓1⊥F⊓2.

Proof. Let F⊓1 be a fuzzy submodule on 
n
pk . Assume that ∣Im F⊓1ð Þ∣ ¼ m> 1

and for any ς∈ Im Að Þ there exist ϵ∈ Im F⊓1ð Þ such that F⊓1ð Þς ¼ F⊓1ð Þ
ϵ

� �⊥
.

Assume that Im F⊓1ð Þ ¼ t1 > t2 >⋯> tmf g. Let the sets Mi ¼

x∈
n
pk jF⊓1 xð Þ ¼ ti

n o

, i ¼ 1,⋯,m. These sets form a partition of n
pk .

Let us define a fuzzy set F⊓ as follow:
F⊓ : 

n
pk ! 0, 1½ �, x↦ 1� tm�iþ1, if x∈Mi.

Since Im F⊓1ð Þ ¼ t1 > t2 >⋯> tmf g, we have F⊓1ð Þt1 ⊆ F1ð Þt2 ⊆⋯⊆ F⊓1ð Þtm . As

for any ς∈ Im F⊓1ð Þ there exist ϵ∈ Im Að Þ such that Aς ¼ Aϵð Þ⊥, then Ati ¼ Atm�iþ1

� �⊥
.

Thus F⊓1�tm�iþ1 ¼ x∈
n
pk jF⊓ xð Þ≥ 1� tm�iþ1

n o

¼ Mi ∪Mi�1 ∪⋯∪M1 ¼

F⊓1ð Þti ¼ F⊓1ð Þtm�iþ1

� �⊥
.

Then by taken F⊓2 ¼ F⊓ we obtain the need fuzzy submodule. □
When the orthogonality exist, there is unique. We have the following theorem to

show it.
Theorem 2.22. Let F⊓1, F⊓2 and F⊓3 be three fuzzy submodules on module n

pk ,

such that F⊓1⊥F⊓2 and F⊓1⊥F⊓3, then F⊓2 ¼ F⊓3.
Proof. Consider that F⊓1⊥F⊓2 and F⊓1⊥F⊓13.
Let t∈ 0, 1½ �, and b∈ F⊓2ð Þ1�t, then < a, b> ¼ 0, for all a∈ F⊓1ð Þt. Thus

b∈ F⊓3ð Þ1�t and F⊓2ð Þ1�t ⊆ F⊓3ð Þ1�t. Therefore F⊓3ð Þt ⊆ F⊓3ð Þt.
In the same way, we show that F⊓2ð Þt ⊆ F⊓3ð Þt. Therefore F⊓2 ¼ F⊓3. □
Corollary 2.23. The orthogonal of a fuzzy set on 

n
pk is a fuzzy submodule on 

n
pk .

The orthogonality is an indempotent operator, in fact if F⊓ be a fuzzy

submodule on 
n
pk then F⊓⊥ð Þ

⊥
¼ F⊓1.

The notion of equivalence on fuzzy linear code can be define as follow.
Definition 2.24. Let F⊓1 and F⊓2 be two fuzzy linear codes over pk . F⊓1 and

F⊓2 are said to be equivalent if for all t∈ 0, 1½ �, the linear codes F⊓1ð Þt and F⊓2ð Þt
are equivalent.

Example 2.25. Let CG1 and CG2 be two equivalent linear codes of length n over pk .

We define the equivalent fuzzy linear codes as follow:

F⊓1 : 
n
pk ! 0, 1½ �, x↦

1 if x∈ CG1 ;

0 otherwise:

(

and.

F⊓2 : 
n
pk ! 0, 1½ �, x↦

1 if x∈ CG2 ;

0 otherwise:

(

.

Thus the 1 and 0 -level cut of the both fuzzy linear codes give F⊓1ð Þ1 ¼ CG1 and
F⊓2ð Þ1 ¼ CG2 ,

F⊓1ð Þ0 ¼ 
n
pk and F⊓2ð Þ0 ¼ 

n
pk .

Remark 2.26. Two equivalent fuzzy linear codes over pk have the same image.

2.3 Fuzzy linear codes in a practical way

As we have said in the introduction, how fuzzy linear code can deal with
uncertain information in a practical way? This subsection allow us to use directly
fuzzyness in the information theory.

5
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Let us draw the communication channel as follows:

Fk
�������!

Encoding
Fn
�������!

Channel


n
�������!

Decoding
Fk

Assume that Rk ¼ 
2
2 and Rn ¼ 

3
2, that means that k ¼ 2 and n ¼ 3. Let C⊆R3 be

a linear code over R, in the classical case, when we send a codeword a ¼ 101ð Þ∈ C
through a communication channel, the signal receive can be read as a0 ¼
0:98, 0:03, 0:49ð Þ and modulate to a00 ¼ 100ð Þ. Thus to know if a00 belong to the code
C, we use syndrome calculation [14]. Since the modulation have gave a wrong word,
we can consider that a0 have more information than a00, in the sense that we can
estimate a level to which a word 0 is modulate to 1, and a word 1 is modulate to 0.
Therefore it is possible to use the idea of fuzzy logic to recover the transmit codeword.

Let C be a linear code over 3
2. To each a∈ C, we find t∈ 0, 1½ � such that t estimate

the degree of which the element of 3, obtain from a through the transmission

channel belong to the code C. Thus in 
3
2 the information that we handle are certain,

whereas in 
3 there are uncertain. When we associate to all elements of 3

2 the
degree of which its correspond element obtain through the transmission channel

belong to 
3
2, then we obtain a fuzzy code. If the fuzzy code are fuzzy linear code,

then we can recover the code C just by using the upper t-level cut. Thus we deal
directly with the uncertain information to obtain the code C.

The following example illustrate this reconstruction of the code by using uncer-
tain information in the case of fuzzy linear code.

Example 2.27. Let 3
2 ¼ 000, 001, 010, 100, 110, 101, 011, 111f g and C ¼

000, 001, 110, 111f g be a linear code over 2.
Assume that after the transmission we obtain respectively

000; 0:01, 01; 1:01, 10; 1:001, 1, 0:999f g. Let F⊓ : 
3
2 ! 0, 1½ � such that

x↦

1f g if x ¼ 000;

0:99f g if x ¼ 001;

0:9f g if x ¼ 010;

0:9f g if x ¼ 100;

0:99f g if x ¼ 110;

0:9f g if x ¼ 101;

0:9f g if x ¼ 011;

0:99f g if x ¼ 111:

8

>
>
>
>
>
>
>
>
>
>
>
>
>
<

>
>
>
>
>
>
>
>
>
>
>
>
>
:

.

Then by finding a t∈ 0, 1½ � such that F⊓t ¼ x∈
3
2j F⊓ xð Þ≥ t

� �

¼ C, we obtain
t>0:9. Thus, for t ¼ 0:99, we are sure that the receive codeword is in C.

It should be better to investigate in deep this approach.

2.4 Fuzzy cyclic code over pk

Let the module n
pk , in this subsection we will consider the case where the

integers n and p are coprime.
Definition 2.28. A fuzzy module F⊓ on the module n

pk is called a fuzzy cyclic

code of length n over pk if for all a0, a1,⋯, an�1ð Þ∈
n
pk , then

F⊓ an�1, a0,⋯, an�2ð Þð Þ≥F⊓ a0, a1,⋯, an�1ð Þð Þ.
The following proposition give a caracterization of the fuzzy cyclic codes.
Proposition 2.29. [15] A fuzzy submodule F⊓ on on 

n
pk is a fuzzy cyclic code if and

only if for all.

6
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a0, a1,⋯, an�1ð Þ∈
n
pk , we have F⊓ a0, a1,⋯, an�1ð Þð Þ ¼

F⊓ an�1, a0,⋯, an�2ð Þð Þ ¼ ⋯ ¼

F⊓ a1, a2,⋯, an�1, a0ð Þð Þ:

Proposition 2.30. F⊓ is a fuzzy cyclic code of length n over pk if and only if for all

t∈ 0, 1½ �, if F⊓ð Þt 6¼ ∅, then F⊓ð Þt is a ideal of the factor ring

pk

X½ �

Xn�1ð Þ.

Proof. Assume that F⊓ is a fuzzy cyclic code over pk and t∈ 0, 1½ � such that

F⊓ð Þt 6¼ ∅. Then F⊓ð Þt is a cyclic code over pk .

Let ψ : 
n
pk !


pk

X½ �

Xn�1ð Þ, c ¼ c0,⋯, cn�1ð Þ↦ψ cð Þ ¼
Pn�1

i¼0 ciX
i.

It is prove by easy way that ψ is a isomorphism of pk-module, which send a

cyclic codes over pk onto the ideals of the factor ring

pk

X½ �

Xn�1ð Þ. Therefore, ∀t∈ 0, 1½ �,

F⊓t is a ideal of

pk

X½ �

Xn�1ð Þ.

Conversely, assume that, ∀t∈ 0, 1½ � such that F⊓t 6¼ ∅, F⊓t is a ideal of factor

ring

pk

X½ �

Xn�1ð Þ. Since F⊓t is a ideal of factor ring

pk

X½ �

Xn�1ð Þ, then F⊓t is a submodule of pk-

module n
pk . Hence F⊓t 6¼ ∅, is a linear code over pk , then F⊓ is a fuzzy linear

code. Due to ψ , ∀t∈ 0, 1½ �, F⊓t is a cyclic code over pk , then F⊓ is a fuzzy cyclic

code over pk . □

Since pk is a finite ring, then Im F⊓ð Þ ¼ F⊓ xð Þ∈ 0, 1½ �jx∈
n
pk

n o

is also finite.

Assume that Im F⊓ð Þ ¼ t1 > t2 >⋯> tmf g, then F⊓t1 ⊆F⊓t2 ⊆⋯⊆F⊓tm�1 ⊆Atm ¼


n
pk .

Let g kð Þ
i Xð Þ∈pk X½ � the generator polynomial of F⊓ti , note that g

kð Þ
i Xð Þ is the

Hensel lifting of order k of some polynomial gi Xð Þ∈p X½ � which divide Xn � 1, the

cyclic code < g
kð Þ
i Xð Þ> ⊂


pk

X½ �

Xn�1ð Þ is called the lifted code of the cyclic code

< gi Xð Þ> ⊂
p X½ �

Xn�1ð Þ [8].

Since F⊓t1 ⊆F⊓t2 ⊆⋯⊆F⊓tm�1 ⊆F⊓tm ¼ 
n
pk , then g

kð Þ
iþ1 Xð Þ∣g

kð Þ
i Xð Þ, i ¼

1,⋯,m� 1. So we define the polynomial h kð Þ
i Xð Þ ¼ Xn � 1ð Þ=g

kð Þ
i Xð Þ which is called

the check polynomial of the cyclic code F⊓ti ¼ < g
kð Þ
i Xð Þ> , i ¼ 1,⋯,m.

Theorem 2.31. Let G ¼ g
kð Þ
1 Xð Þ, g

kð Þ
2 Xð Þ,⋯, g kð Þ

m Xð Þ
n o

be a set of polynomial in

pk X½ �, such that gi Xð Þ divide Xn � 1, i ¼ 1,⋯,m. If g
kð Þ
iþ1 Xð Þ∣g

kð Þ
i Xð Þ for i ¼

1, 2,⋯,m� 1 and < g kð Þ
m Xð Þ> ¼ 

n
pk , then the set G can determined a fuzzy cyclic code

F⊓ and < g
kð Þ
i Xð Þ> ji ¼ 1,⋯,m

n o

is the family of upper level cut cyclic subcodes of F⊓.

The proof is leave for the reader but he can check it in [15].

3. Fuzzy pk-linear code

In the previous section, we study define and fuzzy linear codes over the ring pk

in the previous section. Now define the notion on fuzzy Gray map, we are going to
use it in the construction of the fuzzy pk-linear codes which is different from the

fuzzy linear codes over the ring pk .

7
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3.1 Fuzzy Gray map

When we order and enumerate a binary sequences of a fixed length we obtain
the code of Gray in it original form. For the length two which interest us directly we
have the following Gray code:

0↦00

1↦01

2↦ 11

3↦ 10:

Let ϕ : 22 ! 
2
2 the Gray map.

Using the extension principle [16], we will define the fuzzy Gray map between
two fuzzy spaces by what is follow.

Definition 3.1. Consider the Gray map ϕ : 22 ! 
2
2. Let F 22ð Þ, F 

2
2

� �

the set

of all the fuzzy subset on 22 and 
2
2 respectively. The fuzzy Gray map is the map

ϕ̂ : F 22ð Þ ! F 
2
2

� �

, such that for all F⊓∈F 22ð Þ, ϕ̂ F⊓ð Þ yð Þ ¼ sup A xð Þjy ¼ ϕ xð Þf g.
The next Theorem is straightforward.
Theorem 3.2. The fuzzy Gray map ψ̂ is a bijection.
Proof: It is due to the fact that ψ is one to one function. □
As in crisp case, we have the following Proposition which is very important.
Proposition 3.3. If F⊓ is a fuzzy linear code over 22 and ϕ the Gray map, then

ϕ̂ F⊓ð Þ is no always a fuzzy linear code over the field 2.
The Gray map give a way to construct the nonlinear codes as binary image of the

linear codes, we have for example the case of Kerdock, Preparata, and Goethals
codes which have very good properties and also useful (We refer reader for it on
[17, 18]). Moreover if C is a linear code of length n over 4, then C ¼ ψ Cð Þ is a
nonlinear code of length 2n over 2 in generally [18]. In that way we construct a
fuzzy Kerdock code in the following example.

Example 3.4. Let G ¼

1 0 0 0 2 1 1 1

0 1 0 0 1 2 1 3

0 0 1 0 1 3 2 1

0 0 0 1 1 1 3 2

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

be a generating matrix for a

linear code C of length 8 over 4. Then his image under the Gray map ϕ give a Kerdock
code C.

Let F⊓ : 
8
4 ! 0, 1½ �, x↦

1, if x∈ C;

0, otherwise:

(

ThusF⊓ is a fuzzy linear code over 4.

Since ϕ is a bijection, we construct ϕ̂ F⊓ð Þ : 16
2 ! 0, 1½ �, y↦

1, y∈ E;

0, otherwise:

	

,

where E ¼ fy∈
16
2 ∣y ¼ ϕ xð Þ and x∈Cg.

Noted that as E is not a linear code over 2, then ϕ̂ Fuð Þ is a fuzzy 2-linear code
but not a fuzzy linear code over 2.

ϕ̂ F⊓ð Þ is a fuzzy Kerdock code of length 16.
By the Example, we remark that a fuzzy 4-linear code is not in generally a

fuzzy linear code over 2.
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If we define the fuzzy binary relation Rϕ on 22 � 
2
2 by Rϕ x, yð Þ ¼

1, if y ¼ ψ xð Þ;

0, otherwise:

	

It is easy to see [19] that ϕ̂ F⊓ð Þ yð Þ ¼ sup F⊓ xð Þjy ¼ ϕ xð Þf g can

be represented by ϕ̂ F⊓ð Þ yð Þ ¼ sup min F⊓ xð Þ,Rϕ x, yð Þ
� �

jx∈
2
2

� �

.
We now define fuzzy generalized gray map. First we consider the generalized

Gray map as in [8] Φ : pk ! 
pk�1

p .

Definition 3.5. Themap Φ̂ : F pk

� �

! F 
pk�1

p

� �

, such that for anyF⊓∈F pk

� �

,

Φ̂ F⊓ð Þ yð Þ ¼
sup F⊓ xð Þjy ¼ Φ xð Þf g, if a such x exists;

0, otherwise:

	

Is called a fuzzy generalized gray map.
Remark 3.6.

1.The Definition 3.5 can be simply write Φ̂ Að Þ yð Þ ¼
F⊓ xð Þ, if y ¼ Φ xð Þ;

0, otherwise:

	

This because Φ : pk ! 
pk�1

p cannot give more than one image for one element.

2.Let F⊓1 ∈F 
pk�1

p

� �

such that F⊓1 yð Þ ¼ t 6¼ 0 for any y∈
pk�1

p . There does not

exist a fuzzy subset F⊓∈F pk

� �

such that Φ̂ F⊓ð Þ ¼ F⊓1.

Thus Φ̂ is not a bijection map.

3.2 Fuzzy pk-linear code

In the following, we will note Φ̂ the map on F 
n
pk

� �

onto F 
n:pk�1

p

� �

which

spreads the fuzzy generalized Gray map.
Let define fuzzy pk-linear code.

Definition 3.7. A fuzzy code Fu over p is a fuzzy pk-linear code if it is an image

under the fuzzy generalized Gray map of a fuzzy linear code over the ring pk .

For a fuzzy pk-linear code, if it is the image under the generalized Gray map of a

cyclic code over the ring pk. Then the fuzzy code Fu is called a fuzzy pk-cyclic code.

Remark 3.8. A fuzzy pk-linear code is a fuzzy code over the fields p.

Example 3.9.

Let F⊓ : 
6
2 ! 0, 1½ �,w ¼ a, b, c, d, e, fð Þ↦

1, if e ¼ f ¼ 0;

0, otherwise:

	

F⊓ is a fuzzy linear code of length 6 over 2.

Let F⊓0
: 

3
4 ! 0, 1½ �, v ¼ x, y, zð Þ↦

1, if z ¼ 0;

0, otherwise:

	

F⊓0 is a fuzzy linear code of length 3 over 4.

Since F⊓ ¼ ϕ̂ F⊓0ð Þ. Then F⊓0 is a fuzzy 4-linear code.
Using crisp case technic we prove he following Proposition.
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Proposition 3.10. Let Fu be a fuzzy pk-linear code, then Fu is no always a fuzzy

linear code over the field p.

Proof. The need here is to construct an counter-example, which is done in the
Example 3.9. □

The following diagram give a construct the fuzzy pk-linear code. This holds

because the fuzzy generalized Gray map image of fuzzy linear code can be a fuzzy
linear code over the field p:

We construct some codes using the both methods.
Example 3.11.

1. Let F⊓ : 
n
pk ! 0, 1½ � be a linear code such that F⊓ have three upper t-level cut

F⊓t3 ⊆F⊓t2 ⊆F⊓t1 . Let F⊓0
t3 ¼ Φ F⊓t3ð Þ, F⊓0

t2
¼ Φ F⊓t2ð Þ and F⊓0

t1 ¼

Φ F⊓t1ð Þ, we have F⊓0
t3
¼ Φ F⊓t3ð Þ⊆F⊓0

t2
¼ Φ F⊓t2ð Þ⊆F⊓0

t1
¼ Φ F⊓t1ð Þ. We

construct F⊓0 ¼ Φ̂ F⊓ð Þ as follow:

F⊓0
: 

n:pk�1

p ! 0, 1½ �, y↦

t3, if y∈ F⊓0
t3
;

t2, if y∈ F⊓0
t2
;

t1, if y∈ F⊓0
t1
;

0, otherwise:

8

>
>
>
<

>
>
>
:

2. Let F⊓ : 4 ! 0, 1½ �, x↦

1

2
if x ¼ 0;

1

3
if x ¼ 2;

1

4
if x ¼ 1, 3:

8

>
>
>
>
>
<

>
>
>
>
>
:

be a fuzzy linear code over 4. Then F⊓1
2 ¼ 0f g, F⊓1

3 ¼ 0, 2f g and F⊓1
4 ¼ 4.

We construct F⊓01
2 ¼ 00f g, F⊓01

3 ¼ 00, 11f g and F⊓01
4 ¼ 

2
2, the Gray map

image of F⊓1
2
, F⊓1

3 and F⊓1
4 respectively, we define

F⊓0
: 

2
2 ! 0, 1½ �, y↦

1

2
if x∈ F⊓1

2, y ¼ ϕ xð Þ ;

1

3
if x∈ F⊓1

3 n F⊓1
2, y ¼ ϕ xð Þ;

1

4
if x∈ F⊓1

4 n F⊓1
3, y ¼ ϕ xð Þ:

8

>
>
>
>
>
<

>
>
>
>
>
:

We obtain the same code F⊓0 and ϕ̂ F⊓ð Þ.
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Proposition 3.12. [15] If for all t∈ 0, 1½ �, F⊓0
t ¼ Φ F⊓tð Þ (when F⊓t 6¼ ∅) is a

linear code over p, then this two constructions of the fuzzy p-linear code above are give

the same fuzzy code.
Proof. This follows directly from the definition of the fuzzy generalized Gray

map and the fact that the image under the generalized Gray map of a linear code is
not a linear code in general. □

4. Linear codes over Krasner hyperfields

4.1 Preliminaries

This section recall notions and results that are required in the sequel. All of this
can also be check on [3, 20–22].

Let H be a non-empty set and P ∗ Hð Þ be the set of all non-empty subsets of H.
Then, a map ⊛ : H�H ! P ∗ Hð Þ, where h1, h2ð Þ↦ h1 ⊛ h2 ⊆H is called a
hyperoperation and the couple H, ,⊛,ð Þ is called a hypergroupoid.

For all non-empty subsets A and B of H and h∈H, we define A⊛ B ¼

⋃a∈A,b∈Ba⊛ b, A⊛ h ¼ A⊛ hf g and h⊛ B ¼ hf g⊛ B.

Definition 4.1. A canonical hypergroup R, ⊕ð Þ is an algebraic structure in
which the following axioms hold:

1.For any x, y, z∈R, x⊕ y⊕ zð Þ ¼ x⊕ yð Þ⊕ z,

2.For any x, y∈R, x⊕ y ¼ y⊕ x,

3.There exists an additive identity 0∈R such that 0⊕ x ¼ xf g for every x∈R.

4.For every x∈R there exists a unique element x0 (an opposite of x with respect
to hyperoperation “⊕ ”) in R such that 0∈ x⊕ x0,

5.For any x, y, z∈R, z∈ x⊕ y implies y∈ x0 ⊕ z and x∈ z⊕ y0.

Remark 4.2. Note that, in the classical group R,þð Þ, the concept of opposite of
x∈R is the same as inverse.

A canonical hypergroup with a multiplicative operation which satisfies the fol-
lowing conditions is called a Krasner hyperring.

Definition 4.3. An algebraic hyperstructure R, ⊕ , �ð Þ, where “�” is usual multi-
plication on R, is called a Krasner hyperring when the following axioms hold:

1. R, ⊕ð Þ is a canonical hypergroup with 0 as additive identity,

2. R, �ð Þ is a semigroup having 0 as a bilaterally absorbing element,

3.The multiplication “�” is both left and right distributive over the
hyperoperation “⊕ ”.

A Krasner hyperring is called commutative (with unit element) if R, �ð Þ is a
commutative semigroup (with unit element) and such is denoted R, ⊕ , �, 0, 1ð Þ.

Definition 4.4. Let R, ⊕ , �, 0, 1ð Þ be a commutative Krasner hyperring with unit
such that Rn 0f g, � , 1ð Þ is a group. Then, R, ⊕ , �, 0, 1ð Þ is called a Krasner hyperfield.

This Example is from Krasner.
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Example 4.5. [?] Consider a field F, þ , �ð Þ and a subgroup G of Fn 0f g, �ð Þ. Take
H ¼ F=G ¼ aGj a∈Ff g with the hyperoperation and the multiplication given by:

aG⊕ bG ¼ c ¼ cGj c∈ aGþ bGf g

aG � bG ¼ abG

	

Then H, ⊕ , �ð Þ is a Krasner hyperfield.
We now give an example of a finite hyperfield with two elements 0 and 1, that

we name F 2 and which will be used it in the sequel.
Example 4.6. Let F 2 ¼ 0, 1f g be the finite set with two elements. Then F 2 becomes a

Krasner hyperfield with the following hyperoperation “⊕ ” and binary operation “�”.

⊕ 0 1

0 0f g 1f g

1 1f g 0, 1f g

and

� 0 1

0 0 0

1 0 1

Let R, ⊕ , �ð Þ be a hyperring, A and B be a non-empty subset of R. Then, A is
said to be a subhyperring ofR if (A, ⊕ , �) is itself a hyperring. A subhyperring A of
a hyperring R is a left (right) hyperideal of R if r � a∈A (a � r∈A) for all r∈R,
a∈A. Also, A is called a hyperideal if A is both a left and a right hyperideal. We
define A⊕B by A⊕B ¼ fx∣ x∈ a⊕ b for some a∈A, b∈Bg and the product A � B is
defined by A � B ¼ fx∣ x∈

Pn
i¼1ai � bi, with ai ∈A, bi ∈B, n∈

∗ g. If A and B are
hyperideals of R, then A⊕B and A � B are also hyperideals of R.

Definition 4.7. An algebraic structure R, ⊕ , �ð Þ (where ⊕ and � are both
hyperoperations) is called additive-multiplicative hyperring if the satisfies the
following axioms:

1. R, ⊕ð Þ is a canonical hypergroup with 0 as additive identity,

2. R, �ð Þ is a semihypergroup having 0 as a bilaterally absorbing element, i.e., x �
0 ¼ 0 � x ¼ 0,

3.the hypermultiplication “�” is distributive with respect to the hyperoperation
“þ”,

4.for all x, y∈R, we have x � y0ð Þ ¼ x0ð Þ � y ¼ x � yð Þ0.

An additive-multiplicative hyperring R, ⊕ , �ð Þ is said to be commutative if
R, �ð Þ is a commutative semihypergroup. and R, ⊕ , �ð Þ is called a hyperring with
multiplicative identity if there exists e∈R such that x � e ¼ x ¼ e � x for every x∈R.

We close this section with the following definition of the ideal in a additive-
multiplicative hyperring.
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Definition 4.8 A non-empty subset A of an additive-multiplicative hyperring R
is a left (right) hyperideal if,

1.for all a, b∈A, then a⊕ b0 ⊆A,

2. for all a∈A, r∈R, then r � a⊆A (a � r⊆A).

4.2 Hypervector spaces over hyperfields

We give some properties related to the hypervector space as it is done by Sanjay
Roy and Samanta [23] and all these will allow us to characterize linear codes over a
Krasner hyperfield.

From now on, and for the rest of this section, by F we mean a Krasner
hyperfield.

Definition 4.9. [23] Let F be a Krasner hyperfield. A commutative hypergroup
V, ⊕ Vð Þ together with a map � : F � V

Ð

! V
Ð

, is called a hypervector space over F

if for any a, b∈F and x, y∈V
Ð

, the following conditions hold:

1.a � x⊕
V
Ð y


 �

¼ a � x⊕
V
Ð a � y (right distributive law),

2. a⊕
V
Ð b


 �

� x ¼ a � x⊕
V
Ð b � x (left distributive law),

3.a � b � xð Þ ¼ abð Þ � x (associative law),

4.a � x0ð Þ ¼ a0ð Þ � x ¼ a � xð Þ0,

5.x ¼ 1 � x.

Let us give that trivial example of a hypervector space.
Example 4.10. Let n∈, F n is a hypervector space over F where the composition of

elements are as follows:

x⊕ y ¼ z∈F n; zi ∈ xi ⊕ yi, i ¼ 1… n
� �

and a � x ¼ a � x1, a � x2, … , a � xnð Þ for any

x, y∈F n and a∈F .

Definition 4.11. [23] Let V
Ð

, ⊕ , � , 1
� �

be a hypervector space over F . A subset

A⊆V
Ð

is called a subhypervector space of V
Ð

if:

1.A 6¼ 0,

2.for all x, y∈A, then x⊕ y0 ⊆A,

3. for all a∈F , for all x∈A, then a � x∈A.

Definition 4.12. [23] Let S be a subset of a hypervector space V
Ð

over F . S is
said to be linearly independent if for every x1, x2, … , xn in S and for every
a1, a2, … , an in F , (n∈n 0, 1f g) such that 0∈ a1 � x1 þ a2 � x2 þ⋯þ an � xn implies
that a1 ¼ a2 ¼ ⋯ ¼ an ¼ 0.

If S is not linearly independent, then we said that S is linearly dependent.
If S is a nonempty subset of V

Ð

, then the smallest subhypervector space of V
containing S is the set define by

Sh i ¼ ∪
Pn

i¼1
ai � xij xi ∈S, ai ∈F , n∈n 0, 1f g

	 �

∪ l Sð Þ, (where l Sð Þ ¼

a � xj a∈F , x∈Sf g).
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Definition 4.13. [23] Let V
Ð

be a hypervector space over F . A vector x∈V
Ð

is

said to be a linear combination of the vectors x1, x2, … , xn ∈V
Ð

if there exist
a1, a2, … , an ∈F such that x∈ a1 � x1 þ a2 � x2 þ⋯þ an � xn in the hypervector
spaces, the notion of basis exists and he have the following definition.

Definition 4.14. [23] Let V
Ð

be a hypervector space over F and B be a subset of V
Ð

.

The set B is said to be a basis for V
Ð

if,

1.S is linearly independent,

2.every element of V
Ð

can be expressed as a finite linear combination of
elements from S.

4.3 Polynomial hyperring

We assume that F is such that for all a, b∈F , a � b0
� �

¼ a0ð Þ � b ¼ a � bð Þ0.
Let denote by F x½ � the set of all polynomials in the variable x over F . Let the

polynomials f xð Þ ¼
Pn

i¼0aix
i and g xð Þ ¼

Pm
i¼0bix

i in F x½ �.

Let us define the set P ∗ Fð Þ x½ � ¼ f
Pn

k¼0Akx
k; where Ak ∈P ∗ Fð Þ, n∈g, the

hypersum and hypermultiplication of f xð Þ and g xð Þ are defined as follows:

⊕ : F x½ � � F x½ � ! P ∗ Fð Þ x½ � (1)

f xð Þ, g xð Þð Þ↦ f ⊕ gð Þ xð Þ ¼ a0 ⊕ b0ð Þ þ a1 ⊕ b1ð Þxþ⋯þ aM ⊕ bMð ÞxM, (2)

where M ¼ max n,mf g: (3)

� : F x½ � � F x½ � ! P ∗ Fð Þ x½ � (4)

f xð Þ, g xð Þð Þ↦ f �gð Þ xð Þ ¼
Xmþn

k¼0

X

lþj¼k

al � b j

0

@

1

Axk, if deg fð Þ≥ 1 and deg gð Þ≥ 1 (5)

The following remark is from Jančic-Rašović [24].
Remark 4.15. The algebraic hyperstructure F x½ �, ⊕ , �ð Þ is an additive-

multiplication hyperring.

4.4 Linear codes and cyclic codes over finite hyperfields

In this section we shall define and discuss about the concept of linear and cyclic
codes over the finite Krasner hyperfield F 2 from the Example 4.6. Let us recall
some basics from code theory. Let C be a linear code, the Hamming distance dH x, yð Þ
between two vectors x, y∈ C is defined to be the number of coordinates in which x
differs from y. The minimum distance of a code C, denoted by d Cð Þ, is d Cð Þ ¼
min fdH x, yð Þ∣ x, y∈ C and x 6¼ yg. In this case we can also compute for a code word
x∈ C, the integer wH xð Þ which is the number of nonzero coordinates in x also called
Hamming weight of x.

We denoted by k ¼dim Cð Þ the dimension of C and the code C is called an n, k, dð Þ
-code which can be represented by his generator matrix [25].

Let us define linear code over F 2.
Definition 4.16. A subhypervector space of the hypervector space F n

2 is called a
linear code C of length n over F 2.

The concept of dual code is a very useful in the coding theory. Let us define it on
the Krasner hyperfield F 2.
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Definition 4.17. Let C be a linear code of length n (n≥ 2) over F 2. The dual of C

is also a linear code defined by C⊥≔ y∈F n
2 j 0∈ x � yt,∀x∈ C

� �

.

The code C is self-dual if C ¼ C⊥.
Here is an basic example of a linear code and his dual.
Example 4.18. Let C ¼ 000, 101, 011, 110, 111f g be a linear code of length 3 over F2.

It’s easy to check that the dual of C is defined by C⊥ ¼ 000, 111f g.
As in the classical case, the notion of cyclic code on hyperstructures still works

with polynomials. So i that way the polynomial f xð Þ ¼ a0 þ a1x
1 þ a2x

2 þ⋯þ

an�1x
n�1 of degree at most n� 1 over F 2 may be considered as the sequence a ¼

a0, a1, a2, … , an�1ð Þ of length n in Fn
2 . In fact, there is a correspondence between F n

2

and the residue class hyperring F 2 x½ �
xn�1ð Þ [25].

ξ : F n
2 !

F 2 x½ �

xn � 1ð Þ

c ¼ c0, c1, c2, … , cn�1ð Þ↦ c0 þ c1x
1 þ c2x

2 þ⋯þ cn�1x
n�1:

Using Theorem 3.7 in [26], the multiplication of x by any element of F 2 x½ �
xn�1ð Þ is

equivalent to applying the shift map s of the Definition?? to the corresponding
element of F n

2 , so we use the polynomial to define cyclic code.
We are now going to define a distance relation on linear codes over the finite

hyperfield F 2, which will allow us to detect if there is an error in a received word.
Proposition 4.19. The mapping define by

dH : F n
2 �F n

2 ! 

x, yð Þ↦ dH x, yð Þ ¼ card i∈j xi 6¼ yi
� �

is a distance on F n
2 , called the Hamming distance.

Proof. The proof is similar to the classical case. □
The following remark will be helpful to define Hamming weight.
Remark 4.20. For an x∈F n

2 , we write x ¼ x1f g, … , xnf gð Þ such that x belongs
now to the cartesian product P ∗ F 2ð Þð Þn. Hence we can compute wH xð Þ ¼
card i∈j 0 ∉ xif g ¼ dH 0, xð Þ.

The following map denoted by wH on the cartesian product P ∗ F 2ð Þð Þn:

wH : P ∗ F 2ð Þð Þn ! 

a ¼ a1, … , anð Þ↦ card i∈j 0 ∉ aif g:

is the Hamming weight on F n
2. So for all x, y∈F n

2, we have dH x, yð Þ ¼ wH x⊕ y0ð Þ.
If C is a linear code over F 2, the integer number d ¼ min wH xð Þjx∈ Cf g is called

the minimal distance of the code C.
To characterized a linear code of length n over F 2 as a subhypervector space of

F n
2 , it is sufficient to have a basis of that linear code. This basis can often be

represented by a k� n-matrix over F 2 (where k is the dimension of the code).
We denoted by M F 2ð Þ be the set of all matrices over F 2.
Definition 4.21. Let C be a linear code over F 2. We called a generator matrix of

C any matrix from M F 2ð Þ where the rows form a basis of the code C.
Proposition 4.22. Let B˩ ∈Mk�n F 2ð Þ be a generating matrix of the linear code C

over F 2, then C ¼ c∈ a � B˩j a∈F k
2

� �

.
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Proof. Let C be a n, k½ �-linear code over F 2 and B˩ a generating matrix of C. Then
the rows of B˩ ∈Mk�n F 2ð Þ form a basis of C. So C consists of all linear combinations

of the rows of B˩, therefore C ¼ c∈ a � B˩ j a∈F k
2

� �

. □.

It is know that the dual code C⊥ of the linear code C over F 2 is also linear, so C⊥

has a generating matrix called a parity check matrix.
Here and until the end of this paper, we will denoted by B˩ the generating matrix

and by H˩ the parity check matrix of the linear code C over F 2.

Example 4.23. Let B˩ ¼
1 0 1

0 1 1


 �

be a generating matrix of the linear code C

from Example 4.18. Then the parity check matrix of C is H˩ ¼ 1 1 1ð Þ.
Theorem 4.24. Let C be a linear code of length n (n≥ 2) and dimension k over F 2.

Then H˩ ∈M n�kð Þ�n F 2ð Þ and 0∈B˩ � H˩
t. (It should be noted that H˩

t means the

transpose of H˩).
Proof. Let the generating matrix and the parity check matrix be denoted

respectively by B˩ ¼

g1
⋮

gk

0

B
@

1

C
A and H˩ ¼

h1

⋮

hn�k

0

B
@

1

C
A, where gi ∈F n

2 and h j ∈F n
2 (for

i ¼ 1⋯k and j ¼ 1⋯n� k).

Then, B˩ � H˩
t ¼

g1 � h
t
1 g1 � h

t
2 ⋯ g1 � h

t
n�k

g2 � h
t
1 g2 � h

t
2 ⋯ g2 � h

t
n�k

⋮ ⋮ ⋮ ⋮

gk � h
t
1 gk � h

t
2 ⋯ gk � h

t
n�k

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

. Thus, by the definition of C⊥,

0∈B˩ � H˩
t. □

We now give some examples of linear codes over F 2 and we make some
comparison between the linear codes over the finite field with two elements 2 and
the linear code over the Krasner hyperfield F 2.

Example 4.25. Let F 3
2 be a hypervector space over F 2 and C be a subhypervector

space of F 3
2, with dimensional k ¼ 2. Then C is a linear code of length n ¼ 3 and

dimension k ¼ 2 over F 2.

1.Let B1 ¼
0 1 0

1 0 1


 �

be a generating matrix of the linear code C1 ¼

000, 010, 101, 111f g over F 2. B1 is also a generating matrix of a linear code C2 ¼
000, 010, 101, 111f g of length 3 and dimension 2 over the finite field 2. These two
codes C1 and C2 have the same parameters and card C1ð Þ ¼ card C2ð Þ.

2.Let B2 ¼
1 1 0

1 0 1


 �

be another generating matrix of the linear code C over F 2.

B2 is also a generating matrix of a linear code C02 of length 3 and dimension 2 over
the finite field 2.

Here we have that C1 ¼ 000, 110, 101, 011, 111f g, C02 ¼ 000, 110, 101, 011f g, so

these two codes have the same parameters but card C1ð Þ> card C02
� �

.

3.Let Bmin ¼
Idk Idn�k

� 0


 �

(where Idk is the k� k-identity matrix).
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Bmin is a generating matrix of a linear code Cmin of length n and dimension k over
F 2 (with n� k≤ k). The linear code Cmin over F 2 generated by Bmin has the

minimal number of code words, card Cminð Þ ¼ 2k.

4.Let Bmax ¼ Idk 1n�kð Þ (where Idk is the identity matrix and 1n�k is the matrix
such that every element is equal to 1).

Bmax is a generating matrix of a hyperlinear code Cmax of length n and dimension
k> 2 over F 2. The linear code Cmax over F 2 generated by Gmax has the maximal

number of code words, card Cmaxð Þ ¼ 2n�k þ
Pk�1

i¼2

k

i


 �

þ kþ 1.

This remark is deduce from the previous example.
Remark 4.26. There exists a finite hyperfield such that for any other finite field

of the same cardinality, the linear codes over the hyperfield are always better than
the classical linear code over the finite field. (i.e., they have more code words).

In classical coding theory, one of the most important problems mentioned by
MacWilliams and Sloane in their book The Theory of Error-Correcting Codes [27] is to
find a code with a large number of words knowing the parameters (length, dimen-
sion and minimal distance). So the hyperstructure theory may help to increase the
number of code words. That is the subject of the next theorem.

Theorem 4.27. Let C be a linear code of length n and dimension k over F 2. If M is the

cardinality of C, then 2k ≤M≤

2n�k þ kþ 1, if k≤ 2;

2n�k þ
Pk�1

i¼2

k

i

 !

þ kþ 1, if k> 2:

8

>
<

>
:

.

Proof. Since a generating matrix contains a basis of the linear code C as rows, it
is sufficient to give a way how to construct a generator matrix for the code where
the cardinality is maximal.

If k≤ 2, this is trivial.
If k> 2, then we choose a generator matrix such that:

1. in the first k columns no 1 is repeated. (this forces that every code word
belongs to only one linear combination).

2. not any sum of elements in one column is equal to zero.

3. all the elements of the n� k last columns are equal to 1. (because we need
every combination has the maximal number of code words)

Therefore, the maximal number of code words is 2n�k þ
Pk�1

i¼2

k

i


 �

þ kþ 1. □

We deduce from the Theorem 4.27 what is follow, which mean that a linear code
over the hyperfield F2 satisfies the Singleton bound.

Corollary 4.28. Let C be a linear code of length n and dimension k over F 2, and C0 be

a linear code of length n and dimension k over the finite field 2. Then d≤ d0 ≤ n� kþ 1
(where d is the minimal distance of C and d0 is the minimal distance of C0).

The following next propositions give some characterization of the linear codes
over F 2 using their generating matrix and their parity check matrix.

Proposition 4.29. Let C be a linear code of length n and dimension k over F 2, then
c∈ C if and only if 0∈ c � H˩

t.
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Proof.)): Let c∈ C andH˩ ¼

h1

⋮

hn�k

0

B
@

1

C
A be the parity check matrix of the code C.

Then c � H˩
t ¼ c � ht1, c � h

t
2,⋯, c � htn�k

� �

, thus by definition of C⊥, 0∈ c � H˩
t.

() Assume that 0∈ c � H˩
t, then c belongs either to B˩, or to a linear combination

of rows of B˩. Therefore c∈ C. □
Proposition 4.30. Let C be a linear code of length n over F 2, then the double dual of

C is equals to C, that is C⊥
� �⊥

¼ C.

Proof. Using Proposition 4.3 in [26], C⊥
� �⊥

is a linear code of length n over F 2,

so it is sufficient to show that C ¼ C⊥
� �⊥

. By definition we have C⊥
� �⊥

¼

fa∈F 2∣ 0∈ y � at; for all y∈ C⊥g, so it is straightforward that C⊆ C⊥
� �⊥

. Now, let

a∈ C⊥
� �⊥

. Let H˩ ¼

h1

⋮

hn�k

0

B
@

1

C
A be the parity check matrix of the code C, then

a � H˩
t ¼

Pn

i¼1
ai � h1,i,⋯,

Pn

i¼1
ai � hn�k,i


 �

¼
Xn

i¼1

h1,i � ai,⋯,
Xn

i¼1

hn�k,i � ai

 !

¼
Xn

i¼1

h1,i � a
t,⋯,

Xn

i¼1

hn�k,i � a
t

 !

:

Thus 0∈ a � H˩
t by definition of C⊥

� �⊥
, therefore a∈ C. We conclude the proof

by using Proposition 4.29. □
It is known from [26] that cyclic code in F n

2 has only one generating polynomial,
so it is clear that this polynomial divides the polynomial xn � 1.

Proposition 4.31. If g xð Þ ¼ a0 þ a1xþ⋯þ akx
k ∈F 2 x½ �, is the generating polyno-

mial for a cyclic code C over F 2, then B˩ ¼

a0 ⋯ ak 0 0 ⋯ 0

0 a0 ⋯ ak 0 ⋯ 0

0 0 a0 ak ⋯ ⋮

⋮ ⋮ ⋱ ⋱ ⋯ ⋱ 0

0 0 ⋯ 0 a0 ⋯ ak

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

is the

generator matrix of the cyclic code C.
Proof. Let g1 ¼ a0, … , ak, 0, … , 0ð Þ∈F n

2 , then B˩ can also be write as

B˩ ¼

g1
s g1
� �

¼ g2
s2 g1
� �

¼ g3
⋮

sk�1 g1
� �

¼ gk

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

(where s is the shift function and sk ¼ s∘s∘⋯∘s, k-successive

shifts).
Since the polynomial g generates C, we have C ¼ < g xð Þ> . Let c∈ C, then

cið Þi¼1⋯n ¼ c∈ g xð Þ � p xð Þ (where b0 þ b1xþ⋯þ bn�1x
n�1 ¼ p xð Þ∈ F 2 x½ �

xn�1ð Þ) implies

that ci ∈
P

lþjal � b j if i≤ k and ci ¼ 0 else if (i> k).

Focus on g xð Þ and p xð Þ, the element c belongs to the sum b0 � g xð Þ þ b1x � g xð Þ þ

⋯þ bn�1 � x
n�1 � g xð Þ because this sum can also be written as e1 � g1 þ e2 � g2 þ⋯þ

ek � gk (e ¼ e1, … , ekð Þ∈F n
2), and C is a cyclic code generated by g xð Þ. □

The following Proposition use same notations as in Proposition 4.31.
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Proposition 4.32. [28] Let h xð Þ∈ F 2 x½ �
xn�1ð Þ be a polynomial such that xn � 1∈ h xð Þ �

g xð Þ, then

1.The linear code C over F 2 can be represented as

C ¼ p xð Þ∈ F 2 x½ �
xn�1ð Þj 0∈ p xð Þ � h xð Þ

n o

.

2.h xð Þ is the generating polynomial for the linear code C⊥.

To illustrate what is doing for cyclic codes and polynomials, we have this
example.

Example 4.33. Let C be a linear code over F 2 generate by the polynomial g xð Þ ¼

1þ x2 ∈ F 2 x½ �
x3�1ð Þ. Then the generator matrix of the code C is given by B˩ ¼

1 0 1

1 1 0


 �

.

Since x3 � 1∈ 1þ x2ð Þ _⊙} 1þ xþ x2ð Þ, then the polynomial h xð Þ ¼ 1þ xþ x2 is
the parity check polynomial of the code C, and the parity check matrix is given by
H˩ ¼ 1 1 1ð Þ.

Thus C ¼ p xð Þ∈ F2 x½ �
x3�1ð Þj x

3 � 1∈ p xð Þ _⊙} 1þ xþ x2ð Þ
n o

¼

0, 1þ x2, 1þ x, 1þ xþ x2, xþ x2
� �

.

5. Conclusions

This Chapter divides in three sections Fuzzy linear codes over pk , Fuzzy pk-

linear codes and Linear codes over Krasner hyperfields just introduce some new
perspectives in the field of coding theory. In the first and second section, we define
and give some related properties of these on codes. We show in some example that
fuzzy linear code can deal with uncertain information directly. The third section,
which joint the previous sections in the sense that fuzzy fields/rings and Krasner
hyperfields are non classical structures which approxim very well many real life
situation, study linear codes over Krasner hyperfields as linear codes over finite
fields. Many of their properties are given and the important thing that arise here is
that with almost the same parameters linear codes construct on Krasner hyperfields
have much code words than one construct on fields.
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