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Abstract

The concept of the driverless tractor has been discussed in the scientific 
 literature for decades and several tractor manufacturers now have prototypes being 
field-tested. Although farmers will not be required to be physically present on these 
machines, it is envisioned that they will remain a part of the human-automation 
system. The overall efficiency and safety to be attained by autonomous agricultural 
machines (AAMs) will be correlated with the effectiveness of information sharing 
between the AAM and the farmer through what might be aptly called an automa-
tion interface. In this supervisory scenario, the farmer would be able to both receive 
status information and send instructions. In essence, supervisory control of an 
AAM is similar to the current scenario where farmers physically present on their 
machines obtain status information from displays integrated into the machine 
and from general sensory information that is available due to their proximity to 
the operating machine. Therefore, there is reason to expect that real-time sensory 
information would be valuable to the farmer when remotely supervising an AAM 
through an automation interface. This chapter will provide an overview of recent 
research that has been conducted on the role of real-time sensory information to the 
task of remotely supervising an AAM.

Keywords: autonomous agricultural machines, remote supervision,  
automation interface, visual information, ergonomics

1. Introduction

For several decades, university researchers have devoted time and effort to the 
pursuit of developing a driverless tractor. The scientific literature contains numer-
ous articles describing various technologies that were evaluated, challenges that 
were encountered, conceptualizations of what future autonomous agricultural 
machines (AAMs) might look like, and issues (both technical and non-technical) 
in need of redress. In the late 1990s, the “agricultural ergonomics laboratory” was 
established at the University of Manitoba based on the hypothesis that engineers 
would continue to incorporate increasing levels of technology into agricultural 
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machines in pursuit of the ultimate goal of the fully autonomous machine. Based 
on the lessons learned when automation was introduced to other industry set-
tings, the human operator would experience a changing role. Thus, there was a 
need to view agricultural guidance technologies from an ergonomic perspective.

Unlike two decades ago, it is now possible to find autonomous tractors that are 
either available for sale to farmers or are in final stages of field testing. Conceptually, 
there are still at least four distinct designs being promoted (Table 1). There are 
advantages associated with each of these four distinct types of AAMs. Those which 
retain the operator station provide flexibility to the farmer for those instances when 
it is desired that the human operator be physically present on the AAM; this is per-
haps most critical in the early days when AAMs are being introduced to the market. 
AAMs that resemble current tractors (except for the operator cab) and attach to 
implements in the same manner as existing tractors will reduce the capital cost asso-
ciated with transitioning to autonomous agricultural production because the farmer 
will be able to continue to use existing implements. The integrated tractor reflects 
the situation where the engineer will be able to optimize the design of the tractor-
implement system; it potentially enables design opportunities not present with the 
current paradigm of a tractor pulling an implement (which is a hold-over from the 
early concept of a horse pulling an implement). The downside, of course, is that a 
whole new set of implements will be required as the farmer’s existing implements 
will be incompatible with the integrated tractor. The swarm or fleet concept perhaps 
reflects the most radical concept, reversing the decades-long trend of building bigger 
agricultural machines. Perhaps inspired by the insect world, the concept is that a 
fleet of many small AAMs working in an organized manner can outperform a small 
number of large-sized AAMs. It is too early to predict whether a single concept will 
emerge as the industry standard, or whether all of these concepts will survive either 
in niche applications or in direct competition with one another.

Regardless of how the AAM industry evolves, it would be foolish for designers 
to neglect how these autonomous machines will interact within the larger human-
autonomy system. It is inevitable that the AAM will need to interact with a human 
supervisor to receive instruction and to request assistance when problems cannot 
be self-corrected by the AAM. Appropriate principles from the discipline of human 
factors engineering will be essential to the successful integration of AAMs into 
production agriculture.

Concept Example Main Features

Retain operator 

station

Monarch Tractor • Tractor unit attaches to implements in the traditional 

manner.

• Small-sized tractor targeted towards orchard/ 

vegetable production or livestock operations.

Eliminate 

operator station

CNH, John Deere, 

Kubota, Autonomous 

Tractor Corporation

• Tractor unit attaches to implements in the traditional 

manner.

• Large-sized tractors to replace the large-sized tractors 

currently being used for cereal/oilseed production on 

the prairies.

Integrated 

tractor

DOT • Tractor unit is integrated with the implements that it 

powers.

Swarm/Fleet Fendt Xaver • Tasks completed by a swarm or fleet of extremely 

small machines working in an organized manner.

Table 1. 
Autonomous tractor concepts being developed by various companies world-wide.
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2. Supervision of autonomous agricultural machines

Supervision is an activity that is undertaken for the purpose of ensuring that 
a task is done in such a way that it meets our approval (in terms of safety, in 
accordance with rules, etc.). We would find it absurd to hire a junior employee 
and not provide some means for supervision of their work. Even senior employees 
require supervision to ensure that they are held accountable for their performance. 
The same need for supervision applies to the AAMs currently being developed 
by engineers. Autonomous machines, though independent, still require human 
supervision [1, 2] to help minimize any catastrophe that may arise in case of 
unexpected situations such as system failure or malfunction that exceeds the capa-
bility of the machine [3]. Furthermore, since it is currently difficult to automate 
high-level reasoning and tasks, it is also beneficial that the human remains in the 
decision-making loop to assist with planning field operations, allocating resources, 
and coordinating the autonomous machines. Generally, involving the human (as 
a supervisor) in an autonomous system has been reported to increase the overall 
reliability and performance of the system [4].

Supervision can be carried out in proximity (where the supervisor and the sys-
tem being supervised are collocated) or remotely (where the supervisor performs 
his/her roles from a distant location without being physically present in the work 
zone). Currently, supervision of agricultural field machines is mainly performed in 
proximity (i.e., with the operator seated in a cab on the machine), but it is envi-
sioned that future AAMs will be supervised remotely due to farm labour shortages 
(i.e., enabling one person to supervise multiple AAMs) and to enhance the overall 
efficiency of the farmer (i.e., enabling the farmer to complete other farm manage-
ment tasks while supervising AAMs in the field).

Remote supervision is not novel and has been practiced for decades in 
different sectors. There is evidence of remote supervision being used in non-
agricultural sectors such as military, space exploration, marine, industrial 
applications, and rescue operations [5–8]. As an example, robots that are used to 
inspect pipelines for cracks are monitored remotely during operation [9] since 
these areas are not accessible by humans. Search and rescue robots and military 
drones have been monitored remotely [6, 10]. In both cases, supervisors make 
use of some type of interface (which may be portable or stationary) to moni-
tor the robot and to receive status updates. In agriculture, remote supervision 
has been used in livestock husbandry, crop production, and crop storage [8]. 
Unmanned aerial vehicles (commonly known as drones) have been remotely 
monitored while using them to determine weed infested regions on the field. In a 
hog barn environment, the physiology of pigs (body temperature) and environ-
mental conditions of the barn (air temperature, humidity, and concentration of 
carbon dioxide, hydrogen sulfide, and ammonia) have been remotely monitored 
to minimize contact with the pigs and to assist the farmer with decision-making 
from any location [11].

Several remote supervision concepts for autonomous agricultural field machines 
have been proposed by academic researchers and manufacturers alike. These 
concepts differ with respect to the type of human involvement, autonomy level, 
proximity of the remote supervisor to the autonomous machine, and number 
of autonomous machines being supervised simultaneously [12]. For example, 
[13] envisioned the human to only monitor autonomous machines, whereas [14] 
expected the farmer to both manually operate a field machine while supervising 
another autonomous machine (which may or may not be the same type of machine). 
A third supervision concept involved manually controlling the actual operation of a 
field machine remotely (i.e., teleoperation) [15]. Some researchers [2, 16] proposed 
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that the human would monitor just one machine while others [17, 18] envisioned the 
supervisor to monitor several machines simultaneously.

Edet and Mann [12] described four remote supervision concepts based on the 
location of the remote supervisor in relation to the AAM: 1) in-field supervision, 
2) edge-of-field supervision, 3) supervision from the farm office, and 4) supervi-
sion from outside the farm site. A practical example of the ‘in-field’ supervision 
concept is the human-machine, master–slave interaction that involves having both 
an AAM and a human-driven machine working simultaneously on the same field. 
Supervision of the AAM would be done from an interface located in the cab of 
the human-driven machine. In the ‘edge-of-field’ remote supervision concept, the 
farmer is not operating any of the machines. This gives the farmer the opportunity 
to also be involved with the logistics of the operation such as bringing supplies to 
the field, making repairs, and responding to alerts. The ‘supervision from the farm 
office’ concept, on the other hand, makes it more challenging for the farmer to 
respond to in-field demands in a timely manner; the advantage is that the farmer 
can attend to other non-field related tasks rather than focusing on monitoring the 
AAM alone. Supervision from outside the farm site would theoretically allow a 
farmer to remain engaged in field operations while physically away from the farm 
for personal or vocational reasons, although it would be challenging to address sys-
tem malfunctions. This role would need to be delegated to someone else, potentially 
contracted to an agency that would monitor and service AAMs for a fee.

Each remote supervision concept has corresponding benefits and shortcomings. 
For example, the ‘in-field’ concept would likely have the shortest response time, 
however, if the AAM breaks down or requires assistance, the entire field operation 
may come to a standstill since the manually-operated machine will also be stopped 
as its’ operator handles the problem. In the ‘edge-of-field’ and ‘from the farm office’ 
remote supervision concepts, the farmer would not be controlling any of the AAMs 
in operation. Hence, the farmer is available to manage both i) malfunctions that are 
beyond the capability of the AAM and ii) other logistics associated with the opera-
tion without assistance from other farm workers. Of these two remote supervision 
concepts, ‘edge-of-field’ supervision may be preferred over ‘from the farm office’ 
supervision because of the closer physical presence to the AAM which, in theory, 
should allow for faster response to malfunctions that require human intervention. 
Remote supervision concepts that rely on servicing of AAMs being done by profes-
sional service technicians in a fee-for-service arrangement may not be accepted 
by many farmers due to a preference for self-sufficiency and the timely manner in 
which many farm operations need to be completed.

Generally, a suitable remote supervision concept should: i) require minimal 
labour to function, ii) enable the farmer to monitor and understand the status of 
the operating machine in the field, iii) not restrict the movement of the farmer, 
iv) allow the farmer to perform other farm tasks, iv) enable the farmer to attend to 
in-field problems in a timely manner, and vi) be cost effective. Other factors that 
may influence the choice of remote supervision for monitoring the operation of 
AAMs include the size of the farm, ease of use of the automation interface, type of 
field operation being conducted, business structure of the farm, the farmer’s prefer-
ence, and future legislation that might relate to the supervision of AAMs. Based on 
an unranked paired comparison analysis of the concepts, the ‘edge-of-field’ remote 
supervision concept was determined to be the most viable remote supervision 
concept for broadacre grain producers [19].

It can also be deduced that remote supervision of AAMs requires an automation 
interface since it is the communication link that enables the human supervisor to 
interact with the AAM. Edet [19] generated the following list of functional require-
ments for an automation interface; the remote supervisor should be able to:
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1. Instruct the AAM to commence operation.

2. Monitor telemetrics of the AAM.

3. See key elements of the AAM in real-time.

4. Visualize the position of the AAM within the field.

5. Receive notifications of important events and anomalies from the AAM.

6. Query the AAM about planned actions.

7. Instruct the AAM to stop or shut down, or to alter plans.

In 2017, an important article entitled “From here to autonomy: lessons 
learned from human-automation research” was published by a leading expert 
in human-autonomy teams [20]. The key to a successful human-autonomy team 
is to assume that there will be instances where the autonomous system will 
require input from the human supervisor who is part of the human-autonomy 
team, and to ensure that the autonomous system is designed to most effectively 
share critical information with the human member of the human-autonomy 
team. In essence, [20] recommended that there should be shared situation 
awareness within the human-autonomy team where the human supervisor fully 
understands the actions being taken by the autonomous system so that appro-
priate actions can be taken by the human supervisor at any instant. Designing 
to support shared situation awareness is a non-trivial undertaking for the 
design engineer. Most autonomous systems require substantial complexity to 
fully automate the various tasks associated with the overall functioning of the 
machine. Passive monitoring of automation creates a high workload for the 
farmer [21] – this likely contradicts one of the reasons for using AAMs in produc-
tion agriculture in the first place (i.e., to reduce the workload for the farmer). In 
her “human-autonomy oversight model”, [20] recommended that a transparent 
automation interface be designed so that the human responsible for supervision 
of the automation will be able to successfully navigate from periods of passive 
supervision to periods requiring intervention. The next section of the chapter 
will focus specifically on the automation interface.

3. The automation Interface

3.1 The role of the automation interface

For decades, virtually all textbooks that have been written on the topic of ergo-
nomics or human factors engineering have had chapters devoted to the design of 
displays and the design of controls. Displays must be designed well to clearly convey 
machine status information to the operator. The design and arrangement of controls 
is essential to allow efficient communication of instructions from the operator to 
the machine. When dealing with an autonomous machine, there is perhaps limited 
reason for the supervisor to need to communicate short-term actions to the autono-
mous machine. It is more reasonable to expect that communication in this direction 
will be reserved primarily to high-level management decisions. However, the flow 
of information from the autonomous machine to the human supervisor is antici-
pated to remain important.
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The key to a successful system comprised of an autonomous machine and a 
human supervisor is a well-designed interface that allows for the exchange of 
information between the autonomous machine and the human supervisor. There 
are several papers published over the past two decades that touted the importance 
of an automation interface and have postulated on the features essential to an 
automation interface. In a paper published two decades ago, [22] explained their 
expectation that the farm manager would be responsible for overseeing the coordi-
nating process from a computer located in the farm office. They proposed the term 
of ‘tractor mimic display’ for the automation interface that would be used to display 
telemetric data from the tractor unit, show the position of the tractor unit on a map, 
and display real-time video as seen through steerable cameras placed on the tractor 
unit. In the same year, [16] published a paper that investigated how humans can 
supervise AAMs. These authors discussed the challenges associated with designing 
an autonomous system that avoids both false positives and false negatives. Although 
they stated the desire to design such to err on the side of false positives (i.e., where 
a machine sees a problem where there are none), they further suggested the use of 
humans as ‘remote troubleshooters’ to classify positives as either true or false. Their 
system was designed to transmit images of the scene whenever the tractor detects 
an obstacle in its way; the images were presented to the remote troubleshooter using 
a ‘remote operator interface’. In addition to sharing telemetric data and live video, 
the interface provided a warning when an obstacle was detected and explained what 
portion of the image was being classified as an obstacle. In a more recent paper, [23] 
described work completed to develop a team of robotic tractors for autonomous 
peat moss harvesting. In manual peat moss harvesting, a team leader supervises a 
team of three of more tractor operators using radio and/or hand signals. The auton-
omous peat moss harvesting system mimicked the manual harvesting system in that 
the human team leader communicated with the autonomous harvesters through a 
‘team leader user interface’. In this instance, the interface displayed telemetric infor-
mation from each of a team of autonomous harvesters. Furthermore, a map was 
used to show the position of each harvester and to provide a visual representation 
of harvesting progress. Moorehead et al. [24] described a system of autonomous 
tractors for orchard maintenance. The autonomous system was comprised of trac-
tors (equipped with perception systems and capable of driving autonomously) and 
a remote supervisor who assigns tasks, responds to requests when the perception 
system is unable to decide how to deal with a detected obstacle, and tracks the fleet 
of autonomous tractors. Although the tractors were equipped with cameras and the 
remote supervisor’s interface was designed to display video, it was not intended that 
the supervisor should monitor the real-time video continuously. Rather, a warning 
message appears when an obstacle is detected and the tractor has stopped forward 
motion; the supervisor must then review the available video and decide whether a 
worker needs to be sent to remove the obstacle or if the warning is a false positive 
meaning that the tractor may proceed safely.

Based on this brief review of automation interfaces that have been reported in 
the published literature, there are several common elements that are envisioned 
for an effective ‘automation interface’. First, it is anticipated that the automation 
interface will provide telemetric data related to the autonomous agricultural 
machine; such information is necessary to assure the human supervisor that the 
machine is functioning within normal operating parameters. Second, there is 
a need to show the location of the autonomous machine within the context of 
its operating environment (i.e., field, orchard, peat bog, etc). Third, it is envi-
sioned that the autonomous machine will, at times, experience situations which 
will require human intervention. In these instances, a warning message will be 
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displayed for the supervisor. The autonomous machine will stop until the issue 
has been resolved by the supervisor and the machine is cleared to resume opera-
tion. To enable the supervisor to be able to see what is happening, cameras are 
necessary on the AAM to transmit real-time video which is viewed on the automa-
tion interface.

3.2 Identifying information to include on an automation interface

If the automation interface contains irrelevant information, this may result in 
overcrowding that could reduce the effectiveness of the interface. On the other hand, 
omitting essential information may impede the supervisor’s ability to perform his 
or her role effectively. Thus, providing the supervisor with the right information is 
central in designing an effective user interface [25]. Identifying the right information 
can be achieved through the completion of a requirement analysis which involves 
identifying and understanding the goals of the task as well as the role of the user 
[26]. Endsley [27] noted that the supervisor should have a high situation awareness 
(i.e., “the perception of the elements in the environment within a volume of time 
and space, the comprehension of their meaning, and the projection of their status in 
the near future”) of the automated machine to be able to take necessary action in a 
timely manner. This awareness includes: i) machine location awareness, ii) activity 
awareness, iii) status awareness, iv) surrounding awareness, and v) overall mission 
awareness [28].

The results of a requirement analysis that was conducted for the task of super-
vising an agricultural sprayer have been included to demonstrate this process. 
Both users and designers were consulted to inform the design of an automation 
interface for an autonomous agricultural sprayer. Table 2 provides a summary of 
the information arising from a survey of the farming community [8] which was 
structured to determine the types of information that should be included on an 
automation interface in order to remotely supervise an autonomous agricultural 
sprayer. Parameters listed under the ‘very useful’ column were recommended by at 
least 75% of the respondents; [8] concluded that these pieces of information should 
be included in an automation interface. In further work towards the requirement 
analysis, [19] consulted with expert designers of AAMs. Parameters such as fuel 
level, tire pressure battery status, current location, global field (coverage map), 
tank level, spray pressure, application rate, nozzle status, and boom height were 
ranked as being essential information for an automation interface by the majority of 
designers interviewed.

A majority of the users and designers consulted in the completion of the 
requirement analysis indicated that live video footage of the autonomous sprayer 
should be made available to the remote supervisor [8, 19]. Panfilov and Mann [29] 
had previously investigated the importance of live video footage to the remote 
supervisor of an autonomous sprayer in an experimental study completed using a 
simulator in a lab environment. They reported that live video provided a sense of 
security to the supervisor, but was not typically used to detect malfunctions. They 
also noted that the supervisor spent only 30% of their time viewing the video. In 
their experimental study, participants spent the majority of their time monitoring 
telemetric data displayed using traditional display elements (i.e., gauges, dials, 
etc.). Finally, they suggested that it might be appropriate to provide real-time 
video on-demand. Edet [8] reported that some respondents felt that providing 
only one view of the sprayer was not enough to properly understand the entire 
spraying operation – they suggested having multiple views of the machine during 
operation available through an automation interface.
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4.  Practical considerations associated with incorporating real-time 
visual information in an automation Interface

4.1 Determining the appropriate ‘look zones’

The previous section established the need to provide the remote supervisor of 
an AAM with real-time video showing the machine and its environment [8, 29]. 
Real-time video helps the supervisor to better understand abnormalities within the 
AAM [29]. Blackmore [22] also noted that the presence of live video will enable the 
remote supervisor to understand the machine’s environment. These statements are 
evident in studies carried out by [2, 16, 28, 30, 31]. With these potential benefits, 
the challenge is to determine where the cameras should be placed to maximize the 
benefit of the real-time visual information.

Operators of conventional tractor-seeding machines visually monitor seven 
distinct areas of the machine and its environment (termed ‘look zones’) [32]. 
These areas included: i) forward, ii) right side, iii) planter, iv) planter edge, v) 

Information Descriptions

Very useful Useful Least useful Other 

suggestions/

comments

Machine status Engine 

temperature, 

engine speed, fuel 

level, oil pressure, 

hose leakage, 

boom folding 

(open/close), and 

agitator

Tire pressure Auto-steer status, 

GPS status, 

slippage

Spraying 

functions

Boom height, 

nozzle status, 

area covered, 

spray pressure, 

application rate, 

travel speed, wind 

speed, and wind 

direction

Daily 

temperature, 

skip/double 

application, 

delivery rate, 

current task

Humidity 

and altitude

Field condition, 

tank level, chemical 

mix of what is in 

the tank, sectional 

control, gallon 

per hour sprayed, 

acres covered, 

area sprayed per 

coverage, number 

of fills, and droplet 

size

Navigation 

features

Route taken, 

current location, 

and overhead view

Distance travel Compass Planned route, and 

coverage map

Warning and 

notifications

Plugged nozzle, 

machine 

breakdown, 

Obstacle 

detection, loss 

of GPS signal, 

and unexpected 

shutdown

Tank level 

drop, fuel level 

drop, and route 

change

Task 

completed, 

and skip/

double 

application

Emergency 

shutdown,

Table 2. 
Interface requirements as determined by the farming community through survey. >75: Very useful, 51–75%: 
Useful, 25–50%: Least useful, and < 25: Not at all useful (adapted from [8]).



9

Real-Time Sensory Information for Remote Supervision of Autonomous Agricultural Machines
DOI: http://dx.doi.org/10.5772/intechopen.99496

display X (located at the top right corner from the operator’s seating position), vi) 
display Y (located close to the arm rest of the operator), and vii) other (located 
close to the front-left tire of the tractor). Other researchers [33] identified four 
sectors: i) field ahead, ii) left boom, iii) right boom, and iv) the light bar while 
investigating the “workload associated with operating an agricultural sprayer 
equipped with a navigation device.” Hence, it can be inferred from these studies 
that the visual information that is useful to operators can be derived primarily 
from i) displays located inside the machine’s cab, ii) external field cues, and iii) 
the implement.

Although these studies identified the different regions of importance, they did 
not describe what information was gained by viewing those regions. Hence, a study 
was conducted to identify what visual information about the machine and its envi-
ronment would assist the remote supervisor to make decisions [34]; the primary 
focus of this study was the high-clearance sprayer. GoPro cameras were mounted at 
difference locations on a sprayer to record the sprayer and its environment while in 
operation (Figure 1). After collection of this video footage, 29 experienced opera-
tors (defined as having at least two years experience as a sprayer operator) were 
recruited and presented with 10 distinct video clips of the high-clearance sprayer 
in operation (Figure 2). For each video clip, the operators were asked i) to describe 
what they saw in each video clip, ii) to describe the information gained from the 
viewing the video clip, and iii) to rank the importance of the visual information 
perceived using a 5-point Likert scale.

Not all video clips were equally effective at providing information that was rel-
evant to the spraying operation. Among the 10 clips, clips 1 and 2 were considered 
very important and extremely important, respectively, by the operators while clips 
3 through 7 did not provide much information that was considered relevant to the 
operators. The results of data analysis revealed that experienced operators generally 
preferred the view from the i) boom and nozzles, ii) the view ahead of the sprayer 
(front view), and iii) an aerial view of the sprayer. These regions enable them to 
determine the field/crop variability or conditions, upcoming field information 
(e.g., headland, obstacles) as well as assess if the sprayer is functioning properly 
and spraying effectively. Specifically, the information that was perceived from 
these views included the spray pattern, nozzle height and status (plugged or not), 
spray pattern/drift, obstacles in front and beside sprayer, poor areas in the field 
(i.e., crop condition), wet spots, approximate travel speed, headlands, type of crop 
being sprayed, weather (windy and sunny), location of sprayer in the field, overall 
picture of the field (aerial view), and if the sprayer was moving and following the 
right path (i.e., moving straight). This result was found to be independent of how 

Figure 1. 
A schematic showing the various camera positions on the high-clearance sprayer during the spraying operation 
(a) plan view (b) side view. This figure was originally published in [34].
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frequently a particular view (or information) was presented. A visual representa-
tion of the information gained from the operator’s ‘look zones’ is shown in Figure 3.

Camera angle and position influenced what information the operators per-
ceived from the video clips [34]. Participants tended to describe features that were 
more prominent within the frame of the camera in comparison to less-prominent 
features. For example, many participants described features that were associated 
with the spray boom in clip 2 since the clip focused mainly on the right boom. 
Similarly, clip 9 emphasized the field and correspondingly most participants 
focused on the relevant information that was gained from the field. This finding 
suggests that designers can influence which features the user will perceive by posi-
tioning the camera such that those specific features are prominent in the camera’s 
field of view.

Figure 2. 
Screen shots of clips 1–10. This figure was originally published in [34].

Figure 3. 
Visual representation of the information gained from the operator’s seated position in each of the look zones. 
This figure is adapted from a figure originally published in [34].
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One of the most suggested views was to have a camera at one end of the boom 
facing forward. However, when analyzing the videos, this view was found to have 
minimal difference from the forward view for a sprayer with a long boom. Other 
views that were suggested included i) a close-up view of the nozzle and its tip, ii) 
a view from under the sprayer facing backward to see the spray pattern behind the 
sprayer and wheels, iii) dashboard/displays, and iv) a camera that would focus on 
the wheel to show how well the sprayer was either following old tire tracks or steer-
ing within the rows of a crop.

4.2  Effect of camera placement on the usability of look-ahead visual 
information

The importance of real-time visual information in the autonomous interface has 
been demonstrated in the previous sections, however, it is also necessary to con-
sider how camera placement (i.e., camera height and camera tilt angle) influences 
the usefulness of this visual information. Previous research by [35] investigated 
the impact of camera placement on guidance performance for a manual guidance 
task in which the tractor operator relied on visual information provided by an 
implement-mounted camera that was displayed on a monitor close to the operator’s 
seat. Tang and Mann [35] described a phenomenon that they called ‘image velocity’ 
which quantified the rate at which the visual information scrolled across the monitor 
from top to bottom as the tractor drove forward through the field. Image velocity is 
based on the camera’s optical parameters, placement of the camera on the implement 
(height and tilt angle), and the tractor velocity. The reader is directed to [35] for a 
thorough description of how the parameter of image velocity was calculated.

The results published by [35] did not provide definitive evidence of a relation-
ship between image velocity and lateral guidance error, however, trends were 
observed with lateral error increasing with image velocity. Test participants self-
evaluated their performance following each trial; these results showed a decreasing 
linear trend with increasing image velocity. Participants preferred a tilt angle of 20° 
below horizontal as this gave them the best look-ahead view (i.e., the greatest look-
ahead distance); however, the 30° tilt angle yielded the statistically smallest guid-
ance error. It is unknown how the prior research by [35] will inform the current task 
of placing cameras on an AAM for the purpose of remotely supervising the machine 
on an automation interface because their research was focused primarily on trying 
to minimize lateral error associated with a manual guidance task. Nevertheless, 
their prior research inspired subsequent studies intended to determine the impact 
of camera placement on the usability of the visual information for the task of 
remotely supervising an AAM.

A lab experiment was conducted in which test participants were asked to watch 
pre-recorded video clips as a means of obtaining real-time visual information from 
the field (simulating the task of remotely supervising an AAM) [36]. Video footage 
was pre-recorded for nine unique combinations of camera placement, namely three 
camera tilt angles (20, 30, and 40°) and three camera heights (0.5, 1.0, and 1.5 m), 
to yield nine different look-ahead situations. Participants, some of whom were 
inexperienced agricultural machinery operators recruited from the university stu-
dent population and some of whom were farmers experienced in operating agricul-
tural machines, were asked to complete two distinct experimental tasks. First, they 
were asked to choose their preferred look-ahead position after watching two unique 
video clips playing side-by-side on the screen (Figure 4). Second, the participants 
responded to questions that would help determine the effect of camera placement 
on the difficulty of detecting and interpreting the randomly-placed frisbees in the 
video clips watched (Figure 5).
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An unranked pairwise comparison was used to analyze the data from part one 
of this study. This is a decision-making tool in which alternatives are compared to 
each other, one at a time, to arrive at the best choice. Each alternative is considered 
relative to other options available, with a value of one assigned to the more desir-
able option and a value of zero assigned to the less desirable option to arrive at 
alternative choice coefficients for each option being considered [37, 38]. Using this 
methodology, participants made pairwise comparisons for all nine look-ahead 
combinations. For both groups of participants (i.e., university students and experi-
enced sprayer operators), look-ahead videos of 30° were the highest ranked of the 
nine combinations of height and tilt angle (Figure 6).

In the second part of the experimental study, participants were asked to rate 
each video clip based on i) the level of difficulty associated with detecting randomly 
placed frisbees and ii) the level of difficulty associated with interpreting randomly 
placed frisbees (each on a four-point Likert scale with one indicating low difficulty). 
Look-ahead views associated with a camera tilt angle of 30° were the look-ahead 
views perceived as creating the least degree of difficulty (Figures 7 and 8). Overall, 
the results of the experimental work completed by [36] suggest that forward-facing 
cameras on AAMs should be mounted such that they are 30° below horizontal to pro-
vide the most useful look-ahead visual information for remote supervision of AAMs.

4.3  Alerting the supervisor of a problem with the autonomous agricultural 
machine

With reference to an earlier section, the reader is reminded that previous 
researchers identified the need to warn the supervisor when the AAM experiences 
an abnormality which it cannot resolve itself. In such situations, there should be 
a means to communicate the problem to the remote supervisor immediately to 
increase the operational safety of the system. Different methods have been adopted 
in non-agricultural devices for similar purposes. They primarily make use of visual, 
auditory, and tactile (haptic) modalities [39]. Other modalities include olfactory 
(smell) and gustatory (taste) [39]. Visual, tactile, and auditory modalities have 
also been adopted in agriculture to inform operators about abnormalities in current 
agricultural machines. For example, both auditory and visual modalities have been 

Figure 4. 
Screenshot of look-ahead videos side by side (part one).

Figure 5. 
Screenshot of video footage with frisbees appearing on the soil (part two).
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used to notify operators about plugged nozzles while tactile and visual modality, 
respectively, have been used to inform operators about lateral deviation of the 
machine from its desired path.

Visual stimulus can be presented as text, graphics or flashing light [40] while 
auditory warning can be a continuous or periodic tone or tones (sounds), audi-
tory icon (natural or symbolic), or verbal message [40, 41]. Tactile stimulus, on 
the other hand, communicates information through the skin (i.e., touch). Each 
modality has its benefits and shortcomings. For example, auditory modalities are 
omnidirectional unlike visual modalities that are more effective when the user 
is stationary. However, it may impede the user’s ability to perceive the source of 
auditory warning. Tactile information is valuable in an environment where noise 
must be limited [42], but may be less effective if there is minimal contact between 
the tactile medium and the user’s skin. One method that is widely used to assess the 

Figure 6. 
Alternative choice coefficients calculated based on the unranked paired comparisons of look-ahead videos.

Figure 7. 
Rated difficulty in detecting frisbees.

Figure 8. 
Rated difficulty in interpreting frisbees.
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effectiveness of these modalities to communicate information to the user is reac-
tion (response) time [43, 44]. This is the time interval between when the warning 
is communicated (using one or more modalities) to when the user reacts to the 
warning. A shorter reaction time would imply that the warning is more effective 
than a longer reaction time. Reaction times have been reported to vary with age, 
gender, experience, education level, culture, personality types, and intelligence of 
the user [45].

Researchers [46–48] have also shown that there are benefits to using multiple 
modalities in comparison to single ones, especially in situations where the primary 
task or environmental condition overloads one sensory modality. For example, [49] 
found that drivers responded faster when presented with multimodal warnings in 
comparison to unimodal warnings when evaluating driver’s response time under 
different situational urgency while [50] noted that unimodal warnings yielded 
longer reaction time responses in comparison to multiple modalities while investi-
gating the effectiveness of seven warning methods (visual, auditory, tactile, visual 
and auditory, visual and tactile, auditory and tactile, and no warning) under three 
different types of interference (in-vehicle device, audio noise, and vibration of the 
vehicle). On the other hand, no significant differences were experienced between 
unimodal and bimodal warnings when informative tactile warning and audio-tac-
tile warnings were compared [51] – suggesting that single warning methods can be 
as effective as multiple warnings, depending on how they are designed or presented 
to the supervisor. Hence, as agricultural machinery moves towards full automation, 
it would be useful to distinguish which of these modalities (single or multiple) 
would be the most effective in alerting the remote supervisor about a problem with 
the machine – since these modalities vary in their ability to draw the attention of the 
supervisor.

A study was conducted to assess which of the seven modalities (visual, auditory, 
tactile, audio-visual, audio-tactile, visual-tactile, visual–auditory-tactile) would be 
the most effective in providing feedback to the remote supervisor of an autonomous 
sprayer [52]. They modified an autonomous agricultural machine control interface 
(AAMCI) simulator that was designed by [29] to include the different warning 
methods. Their experiment involved participants playing a game on the secondary 
screen, monitoring the operation of the autonomous sprayer through the AAMCI 
simulator, and clicking an ‘Alert Perceived’ button when they are notified of any 
error. Response time was used to determine the effectiveness of each modality 
(single or multiple).

One of their sessions was conducted in a quiet environment without having 
participants play the game. The remaining sessions were conducted i) in a quiet 
environment, ii) with tractor background noise and iii) with office (call center) 
background noise, respectively, to replicate the various scenarios of the four remote 
supervision concepts that were described by [12]. The experimental setup is shown 
in Figure 9. Further details of the experimental procedure can be found in [52]. 
They noticed that all seven warning modalities were able to accurately warn the 
participants of the errors, but varied in their effectiveness (i.e., response time). 
Overall, the visual and tactile (visual-tactile) warning method was found to be the 
most effective warning among all the seven warning methods since it had the lowest 
response time regardless of the background noise or environment (Figure 10). 
However, this observation was only statistically significant for the tractor back-
ground noise (p < 0.05).

The response time obtained when participants were continuously monitor-
ing the autonomous sprayer through the AAMCI was also compared with those 
obtained when participants had to play the game and monitor the simulation 
in a quiet environment. Their findings revealed that for all warning methods, 
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participants responded faster when they were monitoring the simulated sprayer 
(i.e., the interface) continuously in comparison to intermittent monitoring 
(Figure 11). This result was found to be statistically significant (t-test, α = 0.05). 
Despite this result, it was noted that most participants experienced boredom due 
to low mental workload during the ‘No-Game’ session (i.e., continuous monitor-
ing) as demonstrated either through yawning, frequent eye blinking, and body 
posture adjustment.

Overall, the findings from the study may be biased by the fact that the simula-
tion and game may have lacked the type of complexity and workload a remote 
supervisor may experience while monitoring an actual AAM. Hence, engineers 
must conduct further analysis during prototype testing to ensure that these results 
apply in an actual situation of remote supervision of an AAM.

Figure 9. 
Experimental setup for the alert study.

Figure 10. 
Effectiveness of the warning methods as a function of response time for participants exposed to tractor 
noise, quiet environment, and office/call center background noise, respectively (a = audio, T = tactile, and 
V = visual).

Figure 11. 
Comparison of participants’ response time in relation to the monitoring levels (a = audio, T = tactile, and 
V = visual).
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4.4 Latency associated with transmission of real-time visual information

Real-time visual information originates from cameras mounted on AAMs and 
must be transmitted to the automation interface, perhaps located at the edge of the 
field, to enable ‘edge-of-field’ remote supervision. This will require the transference 
of data through some method of wireless transmission. Conversion of visual data 
into electronic signals and the time required for data to propagate incurs latency, 
or delay.

Latency can be described as the difference in time between an action and a 
response and in the context of autonomous vehicle surveillance can refer to several 
delay measurements. Glass-to-glass, or capture-to-display, latency is among the 
most typical to consider for a video being delivered to a user, and refers to the full 
latency from the occurrence of an event in front of a camera to the time the event 
can be recognized in the display used to monitor the machine [53]. Delays measured 
from the beginning of the encoding process to the end of decoding are also critical 
and are simpler to measure, as they require fewer external tools to evaluate than 
for glass-to-glass latency. Delays induced by the network, encoding and decoding, 
camera capture and video display, and the queueing of data packets can all be said 
to be important elements which comprise transmission latency [54].

The selected method of encoding and decoding is a significant source of latency 
for video. Networks tend to place restrictions on available bandwidth which must 
be mitigated to provide consistent video streams for a viewer. Coder-decoder 
(CODEC) formats, such as the widely used H.264 standard, compress and simplify 
video streams based on a range of algorithms and protocols. While this compres-
sion results in a significant reduction in the size of transmitted information, a 
trade-off is present where the computations required to reduce the size take varying 
amounts of time to complete. Compression can tend to be somewhat lossy such as 
in the case of H.264 [55], sacrificing what is considered an acceptable amount of 
visual information to produce a reasonably complete image for a viewer. Alternative 
transmission formats such as MJPEG instead send the video as a steady stream of 
captured JPEG video frames without such reductions due to compression, which 
correspondingly reduces image encoding time while resulting in significantly higher 
bitrates, resulting in demonstrably lower latencies in some comparative experi-
mentation [56]. H.264 has been supplanted somewhat by H.265 video encoding 
[55], which promises faster rates of encoding and more efficient compression due 
to larger block sizes for the selection mechanisms used to simplify existing video 
frames, but still makes up a significant amount of the market today, used by 92% of 
developers in 2018 [57].

Transmission over the network is a key element of latency. If the required 
bitrate of video cannot be adequately accommodated by the allotted bandwidth it 
can result in increasing latency, as successive frames must wait for already queued 
frames to be received. This latency will theoretically approach infinity or some 
arbitrary limit, and frames of video will be dropped due to overflow of buffers 
used in the video stream to hold incoming video frames. The network path taken by 
video will inevitably introduce further delay, with longer paths with more frequent 
hops resulting in an increasing latency due to the travel time for data packets. 
Selection of the transmission level protocol used for the two devices to communi-
cate will also have significant implications for overall latency. While the widely used 
TCP/IP communication protocol will eventually successfully transmit frames of 
video, the required two-way acknowledgement of data reception places significant 
time constraints. As frames are lost due to travel through the network this latency 
induced due to TCP can steadily increase as successive frames are forced to wait for 
complete transmission of earlier data [58]. In comparison, a transmission protocol 
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such as UDP makes no guarantees of successful reception due to lacking this same 
handshake mechanism, but delivers video frames with lower latency due to the 
reductions in time as a result of not requiring the handshaking process with each 
transmitted data packet.

Latency has been measured using a range of methods for various applications, 
which vary depending on the specific delay that is to be measured. Kaknjo [56] 
measured latency during transmission for a robot utilizing the common method 
of placing a pulse per second enabled LED in front of a camera to act as an event 
recognizable by the system. This direct test of the camera system was coupled with 
utilization of timestamps to measure latency when transmitting video over a larger 
network. A customized application for WebRTC communication [59] transmits 
specialized video frames containing a spinning object and a continuously counting 
timestamp to measure latency between users.

An investigation of transmission latency in an agricultural setting was under-
taken at the University of Manitoba [60]. A Raspberry Pi 4 was configured using 
the GStreamer multimedia application to be able to selectively stream video over 
cellular internet and a direct radio connection. The Pi 4 was fitted with a cellular 
header and connected via Ethernet to the radio system and mounted to a riding 
mower. Open-source GStreamer libraries were then used to overlay timestamps into 
the video feed from the Raspberry Pi, which could then be decoded and extracted 
by a laptop acting as a receiver and compared against the laptop time to measure the 
latency experienced.

In a subsequent experimental study, video transmission latency was measured 
for three transmission distances (200, 400 & 600 m) and for three resolutions of 
video (480p20fps@400kbit, 480p25fps@500kbit & 576p20fps@600kbit) using 
two transmission modes (cellular and radio). Data were collected at four geographi-
cal locations within 1 h (driving time) from the university campus. Complete details 
of the experimental procedure and results can be found in [60].

For the relatively short transmission distances tested (which were selected as 
representative of the ‘edge-of-field’ remote supervision concept proposed by [12] 
there were no obvious differences or trends in transmission latency for either trans-
mission mode (cellular or radio) with a couple of exceptions which can likely be 
explained by the presence of trees adjacent to one of the test sites which may have 
interfered with radio transmission. Figure 12 shows the results of data collection at 
the Glenlea, Sanford, and university campus testing locations.

As was expected, transmission latency increased with increasing video resolu-
tion for both transmission modes (cellular and radio), but with the transmission 
times below 300 ms in most cases. Despite the more direct transmission path for 

Figure 12. 
Graphical depiction of experimental mean latency measurement results.
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radio transmission, measured latencies were less for cellular transmission at test 
sites with strong signal strength. It was observed, however, that a couple of the test 
sites had poor cellular coverage. At one site, cellular transmission of video was not 
feasible with transmission latencies up to 86 s observed.

Overall, [60] concluded that it should be feasible to transmit real-time video 
from an AAM to an automation interface located at the edge of the field using either 
cellular or radio transmission. Latencies measured fell within acceptable interna-
tional telecommunications union recommendations for acceptable one-way delay of 
less than 400 ms. These values were also in line with experiments for a telerobotic 
surgery simulator [61], where below 300 ms it was observed that performance of 
surgical tasks did not tend to degrade much with increasing latency. In locations 
where adequate cellular signal strength exists, cellular transmission is recom-
mended as it causes less transmission latency and would give a greater overall range. 
Radio transmission of real-time video is recommended only in locations where 
there is poor cellular coverage.

Despite the promising results reported by [60] related to latency of real-time 
video transmission, there are several questions that warrant further investigation. 
First, research is warranted to determine the impact of transmission latency on the 
usability of the automation interface. Assuming constant latency, is there a magni-
tude beyond which it becomes impossible to remotely supervise an AAM? A related 
question is to determine the effect of varying latency on the usability of the automa-
tion interface. A second question worthy of further investigation is to determine 
the quality of video that is required for remote supervision of an AAM. [60] have 
reported that transmission latency increases with increasing video resolution, 
suggesting that it is beneficial to use low-resolution video for this application. The 
effect of video resolution on the usability of the automation interface must be deter-
mined. It is anticipated that the optimum video resolution for real-time supervision 
of AAMs will be a compromise between transmission latency and usability. A third 
issue is that the techniques and equipment used for transmitting video data have 
not yet been optimized. With the implementation of elements such as dedicated 
specific hardware, adaptive bitrate encoding and H.265 compression, it would likely 
be possible to further reduce latency by reducing the time required for encoding 
and decoding. Similar studies have been able to obtain latencies under 200 ms with 
Raspberry Pis [62] in different environments. It is important for developers and 
product manufacturers to consider these various aspects of video transmission to be 
able to provide low latency video feeds for end users. CODEC mechanisms should 
be selected to balance the requirements of bandwidth and latency and appropriate 
transmission protocols utilized to keep video streams loss tolerant while keep-
ing latency low. Implementing the appropriate mechanisms in video streams will 
minimize delay for the AAM supervisor.

5. Case study: automation interface for an autonomous plot sprayer

This section presents a case study where knowledge gained from prior research 
activity related to the role of real-time visual information to the task of remote 
supervision has been applied to the design of an automation interface for an 
autonomous plot sprayer. The desire to design an automation interface for this 
specific machine was initiated by a group of undergraduate students interested in 
developing an AAM for the agBOT Challenge sponsored by Purdue University. To 
meet the objectives of the agBOT Challenge, the students would need to design 
and build an autonomous machine that was designed to autonomously navigate 
through a cornfield, detect and distinguish between weeds and corn plants, and 
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automatically spray the corn plants with fertilizer while spraying the weeds with 
herbicide (both in real-time). The students modified a CanAm ATV to navigate 
autonomously (Figure 13). Weed detection was achieved using a ground-facing 
camera mounted on the front of the ATV feeding data to image processing applica-
tions. Modifications were made to a Setter plot sprayer that would allow individual 
nozzles to be activated to apply herbicide to be applied when weeds were detected. 
The students desired an automation interface that could be used to remotely super-
vise the autonomous sprayer during the agBOT Challenge.

The autonomous agricultural sprayer is outfitted with four cameras (one of 
which is used for the weed and corn detection task) and a variety of sensors for the 
navigation and spraying tasks. The sensor input is processed by multiple onboard 
computers. One of these devices is dedicated to processing the visual input for the 
plant detection task, while the others process the remaining sensors and control 
actuators that allow the machine to move and spray the plants. The on-board com-
puters communicate with each other through a middleware known as the Robot 
Operating System (ROS). The computers are also connected to a web server, through 
the internet, where they dump sensor data in real-time while the machine is running.

The automation interface for the autonomous agricultural sprayer was designed 
to display both sensor data and live video for a supervisor at a remote location. To 
enable remote supervision of the machine from anywhere in the world with inter-
net connectivity, the interface is connected to the machine through a web server. 
The automation interface is shown in Figure 14.

From top to bottom, the interface is divided into three prominent sections: the 
toolbar, the video feeds, and the indicators (icons and graphical elements). The 
toolbar includes the start button and the emergency stop button. Since all other 
elements were designed for monitoring purposes, the start and stop buttons serve 
as the primary controls that the remote supervisor has over the machine. In the cur-
rent iteration of the interface, the start button initiates the machine’s autonomous 
operations, while the stop button terminates autonomous operations. The notifica-
tion bar keeps the user informed about the status of the machine, its sensors, and 
its environment. The text-based notifications are enhanced by a color-coded status 
indicator – green, yellow, and red – to indicate the corresponding severity.

Figure 13. 
CanAM ATV and setter plot sprayer used by a group of undergraduate University of Manitoba students to 
produce an autonomous sprayer for the agBOT challenge in 2019.
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Three video feeds were included in the automation interface following the 
recommendations made by [63]. The videos provide visual and auditory informa-
tion, although at a lower fidelity than experienced when inside a tractor. The middle 
video provides a view ahead of the autonomous sprayer to show what is coming. 
The videos on the left and right sides are from rearward-facing cameras that show 
the left and right booms of the plot sprayer. These videos allow the remote supervi-
sor to monitor both the machine and the spraying operation and take quick action 
in the case of an emergency.

Below the video feeds are the icons and graphical elements that display informa-
tion regarding the state of the vehicle, sprayer, and the environment. The indicators 
were organized according to two main goals: i) monitoring the machine and ii) 
monitoring the sprayer, with the most important information placed towards the 
center of the display. Towards the far right of the interface is a group of indicators 
for monitoring the vehicle, including the vehicle speed, the engine speed, and a 
coverage map. In addition to providing up to level 3 situation awareness, the design 
of the speed indicators follows common design patterns for such indicators in most 
vehicles and is expected to fit the mental model of most users. The coverage map 
provides global situation awareness of the spraying operation.

The rest of the indicators, including the tank level, application rate and boom 
height, are related to the sprayer. The tank level indicates the amount of liquid that 
is currently in each tank, while the application rate provides information about how 
much liquid is being sprayed per area of the field from all the nozzles connected 
to the tank. While the application rate indicator supports only level 1 situation 
awareness, the tank level indicator was designed to support up to level 3 situation 
awareness by utilizing a digital display and color-coded value bar. Finally, towards 
the center of the display is an indicator, which was designed to provide an intui-
tive understanding of the state of the sprayer boom and the 6 nozzles attached to 
it. This indicator moves up and down in a similar fashion to the movement of the 
boom to indicate the height of the boom above the ground. The state of the nozzle is 
indicated by a green triangle (for an active nozzle) and a red square (for a blocked 
nozzle). Weather information is also included, which in addition to the informa-
tion provided by other indicators, allows the remote supervisor to make judgments 
about the quality of the spraying operation, and project this judgment into the 
future (e.g., through available weather forecast) to take timely action.

Figure 14. 
The automation interface designed for an autonomous plot-sized agricultural sprayer.
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6. Next steps in the design of an automation interface

6.1 Utilization of real-time auditory information

Auditory information can be extremely useful to a human operator, even one 
with minimal experience, and can provide information about changes in parameters 
being independently monitored via sensors (rpm, load, etc.) [64]. There is oppor-
tunity to consider what role auditory information might play in the task of remotely 
supervising an AAM through an automation interface.

Based on anecdotal information, it was recognized that machinery operators 
are often able to detect existing or impending problems from the changes in sound 
produced by the mechanical components of the machine. Karimi [65] reported that 
the addition of auditory cues did not improve steering performance (in a simulated 
agricultural vehicle) perhaps because steering is a purely visual task, however, 
auditory cues did improve the monitoring task. Donmez [64] investigated the use 
of sonifications (continuous auditory alerts) during the control of unmanned aerial 
vehicles and found that visual information supported by sonifications yielded faster 
reaction times than visual information supported by discrete auditory signals. 
Though an autonomous controller may not use or interpret sound in the same way 
as a human does, it is important to evaluate its potential use in control applications 
given its value in monitoring non-autonomous machine operation.

Though auditory information alone may not provide sufficient information for 
automated control, it can provide qualitative information on changing parameters, 
or be an indicator of a change in state. This information can be used directly to trig-
ger certain responses, or can be used in a training set to become a single indicator of 
a specific state, replacing several other parameters that may have to be combined to 
glean the same information. Capturing high quality auditory information is gener-
ally simple and inexpensive with modern technology and can be captured from 
multiple locations within a machine or system, making it a good option for a variety 
of applications.

Classification of sounds with machine learning is already prevalent in music. 
There are a number of applications available to consumers to classify songs to both 
organize music and provide recommendations based on previous listening his-
tory. These applications use various classification algorithms (Fourier Transform, 
Mel Frequency Cepstrum Coefficients, etc.) to provide this service. The existence 
of these classification services implies that machine sounds could be classified in 
a similar manner to determine the state of operation, unexpected variations in 
parameters (i.e., malfunctions), and more. In the case where humans are control-
ling a machine with assistance from automation, sonifications have been shown 
to be very effective at helping the human operator predict the future state of the 
machine, and therefore react accordingly [64]. Thus, automation via audio feedback 
has the potential to not only improve human-machine interaction in semi-autono-
mous applications, but also to provide input to prompt automated responses in fully 
autonomous applications.

Classification is a pattern recognition problem. If a classifier can be built to 
recognize specific characteristics of an input signal that identify, within a certain 
level of confidence, what grouping or ‘state’ that input belongs to [66], it can then 
be classified, and this information can be used to produce an appropriate response. 
These specific characteristics are referred to as ‘features’ and can be comprised 
of any distinctive measurement or structural component of the signal that can be 
extracted. Multiple features may be needed for classification, but analysis can be 
performed to determine which features in which combinations produce the quickest 
classification algorithm with the highest level of confidence.



Technology in Agriculture

22

Two features that have been explored in experimentation are the spectral cen-
troid and formant (dominant) frequency. The spectral centroid is used to detect the 
‘center of mass’ of the spectrum (distribution of values) representing the frequency 
[67]. Sub band spectral centroids have been used successfully in speech recognition 
applications [68] and so are a good starting point for machinery audio classification. 
The formant frequency of a signal represents the concentration of acoustic energy 
(peak), and has also been used successfully in speech recognition, as well as  
biomedical signal analysis and musical instrumentation analysis [69].

A classification experiment was performed using video collected from the rear 
of an S680 John Deere combine harvester near the straw chopper [70]. The video 
was recorded using a GoPro Hero Session during harvest of canola in a Manitoba 
field during the 2017 harvest season. From this video, audio clips were extracted 
corresponding to the operational sounds of the machine. The audio was sampled at 
a rate of 48 kHz with AAC compression and automatic gain control and converted 
to.wav file format for analysis. Sound samples underwent a Fourier transform, and 
then eight features were extracted from each segment for analysis, all based around 
frequency characteristics. Features in each segment were analyzed to both build and 
then test a feedforward, pattern recognition neural network. Samples were divided 
into those used for training (70%), validation (15%), and testing (15%), and three 
operating modes were selected for classification: 1) Engine running with no thresh-
ing, 2) Engine running and threshing engaged, and 3) Engine running, and  
threshing engaged at 80% capacity.

By varying parameters such as segment size, accuracies of 88–100% were 
obtained with larger segment sizes (over 2048 segments) producing a consistent 
classification accuracy of 99%. This sample size allowed for a total of 1970 samples 
which is sufficient to declare a high degree of confidence in the result. The results 
of this experiment show that a relatively basic model with audio as a sole input can 
successfully be used to classify machinery operating modes in real-time. These 
results are promising enough to justify further study to better understand how to 
optimally apply this technique in a practical application.

The current study focuses on identifying three broad classes of operation based 
on a single audio input. However, it is possible that there are a number of opera-
tional modes, or even specific events, scenarios, or changes in conditions that can 
be classified through auditory input. Further research is required to understand 
what other audio inputs (location and type of sound recording), or combination 
of audio inputs can be used for classification of a broader range of machinery 
parameters. It is also critical to understand how various conditions (wind, crop 
type, machine parameters, etc.) impact classification and what types of calibrations 
or modifications may be necessary to account for variation in operating conditions. 
The previous study focused on a single crop type with all recordings taken under 
identical operating conditions. A robust field prototype would need to account for 
changing environmental conditions in order to be reliable. It would also be benefi-
cial to investigate other methods of recording and processing sound along with how 
this input is used to build the classifier.

The current study used manual inspection for feature extraction from raw 
audio, but it is likely that efficiencies could be gained through automated feature 
extraction or some level of sound processing to enhance various aspects of the 
audio that may be more useful for classification. There are many ways to build 
and train a classification system, and it is likely that a practical system could be 
optimized with further investigation. One follow-up study that was conducted with 
the same data explored the use of a 7-layer convolutional neural network (CNN) as 
a classifier [71]. Through this method, greater accuracies could be achieved when 
lower numbers of audio samples were used compared with a conventional neural 
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network analysis. Using 5000 samples of audio segments resulted in an accuracy of 
95% compared with 78% accuracy achieved with a neural network with the same 
samples.

It is likely that further investigation would provide insight into optimal audio 
sampling techniques and feature extraction and analysis to classify a greater variety 
of operating modes under more variable conditions.

7. Conclusions

The purpose of this chapter is to provide an overview of recent research that has 
been conducted to understand how to design an effective automation interface for 
the task of remotely supervising an autonomous agricultural machine (AAM). First 
of all, it has been assumed that the existence of an automation interface is essential 
because the owner of the AAM will always want to have some means of monitoring 
the status of the machine in the field and, in some instances, human input may be 
required to diagnose problems and/or to make management decisions. Secondly, it 
has been assumed that the automation interface needs to include real-time visual 
information showing the AAM within the field environment to complement 
telemetric data that is displayed using conventional means. Experimental data has 
supported the important role that is played by real-time visual information, and has 
provided insight on related issues such as i) where the cameras should be pointed 
to provide information that supports the supervisory task, ii) how the cameras 
should be positioned to yield useful look-ahead information, and iii) how to alert 
the supervisor of system problems, and iv) the latency associated with wireless 
transmission of live video. Early research results suggest that it may also be possible 
to use auditory information to provide additional information to the supervisor 
through the automation interface.
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