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Chapter

Synthetic Gene Circuits
for Antimicrobial Resistance
and Cancer Research
Kevin S. Farquhar, Michael Tyler Guinn, Gábor Balázsi

and Daniel A. Charlebois

Abstract

Mathematical models and synthetic gene circuits are powerful tools to develop
novel treatments for patients with drug-resistant infections and cancers. Mathe-
matical modeling guides the rational design of synthetic gene circuits. These sys-
tems are then assembled into unified constructs from existing and/or modified
genetic components from a range of organisms. In this chapter, we describe model-
ing tools for the design and characterization of chemical- and light-inducible syn-
thetic gene circuits in different organisms and highlight how synthetic gene circuits
are advancing biomedical research. Specifically, we demonstrate how these
quantitative model systems are being used to study drug resistance in microbes and
to probe the spatial–temporal dimensions of cancer in mammalian cells.

Keywords: antimicrobial resistance, synthetic gene circuits, mathematical models,
optogenetics, cancer

1. Introduction

A primary goal of synthetic biology is to rationally design and engineer synthetic
gene circuits as tools to advance basic research [1, 2], optimize the production of
chemicals or biofuels [3, 4], build biocomputational systems [5], and enhance
clinical therapeutics [6]. Control of synthetic gene circuits at the transcriptional
level (transcription is the process of transcribing mRNA from a DNA template) has
been demonstrated through chemical- and light-based stimuli [7, 8]. The transcrip-
tional network architecture (how genes are connected to and regulate each other
through transcription factor proteins) affects the properties of gene expression, in
terms of average expression levels as well as the degree of expression variability
inside a single cell or across a cell population [9]. Throughout this chapter, we will
use the term “synthetic gene circuits” to describe synthetic systems and the term
“gene networks” to described natural systems.

Fluctuations in the biochemical processes of transcription and translation
(translation is the process of translating amino acid-based proteins from a
nucleotide-based mRNA template) are referred to as gene expression noise [10].
Gene expression noise leads to heterogeneity among genetically identical cells in the
same environment and can affect the survival of microorganisms [11]. For instance,
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gene expression noise has been shown to promote drug resistance in microbes [12].
Similarly, gene expression noise is thought to play an important role in tumorigen-
esis and the development of resistance during cancer chemotherapy [13]. Mathe-
matical models and synthetic gene circuits have established that the architecture of
the gene network modulates gene expression noise [14].

Electronic circuits inspired the development of synthetic gene circuits, with
mathematical representations of natural and synthetic networks successfully
predicting their effects on gene expression [15]. A milestone study in E. coli dem-
onstrated that negative feedback stabilizes the gene circuit’s response to expression
fluctuations [16]. The first synthetic toggle switch circuit in E. coli mimicked the
electronic version and served as a simplified version of the naturally occurring
bacteriophage lambda switch [17, 18]. The construction of a synthetic biological
clock in E. coli permitted oscillations in gene expression to be tuned to a particular
frequency [19]. By mimicking natural gene networks, synthetic gene circuits gen-
erate insights on how complex biological systems work by breaking down natural
networks into their components, which is highly beneficial in basic biomedical
research [20].

Optogenetics is the control of cellular components using electromagnetic radia-
tion. Like other synthetic systems, optogenetic components can be engineered into
gene circuits to precisely control cellular processes such as gene expression or
protein activity in prokaryotic and eukaryotic cells; the performance of optogenetic
gene circuits can be optimized in an iterative model-experiment cycle. However,
unlike previous gene circuits, optogenetics offers the ability to control gene expres-
sion at a single-cell resolution. The fast temporal and single-cell spatial resolutions
that light provides as a stimulus for gene circuits is unmatched; chemical stimulus
regulates transcription on longer timescales and at a cell-population level. Like their
gene circuit predecessors, optogenetic gene circuits can be used to control func-
tional proteins. Optogenetic tools are especially suited to investigate gene function
at the single-cell level. For instance, researchers can take a gene of interest, such as
KRAS which is often found mutated in cancers [21], and integrate it into an
optogenetic gene circuit to explore the transcriptional and translational effects on
cellular phenotypes by stimulating individual cells with visible light. It is worth
noting that although in this chapter we focus on optogenetic applications involving
visible light, some optogenetic tools have been developed using other regions of the
electromagnetic spectrum, including near-infrared [22] and UV [23] radiation.

This chapter describes the construction and characterization of synthetic gene
circuits in yeast and mammalian cells (Section 2) and optogenetic gene circuits in
mammalian cells (Section 3) with various transcriptional network architectures,
along with their applications in biomedical research. The mathematical approaches
to model synthetic and optogenetic gene circuits are also discussed.

2. Synthetic gene circuits

2.1 Positive feedback gene circuits in yeast

A positive feedback synthetic gene circuit was first constructed in yeast to
convert a continuous gradient of a constitutively expressed transcriptional activator
into a cell phenotype switch, resembling analog to digital signal conversion [24].
Subsequently, a positive feedback (PF) gene circuit was genomically integrated into
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Figure 1.
(A) Schematic of the positive feedback (PF) synthetic gene circuit in yeast (top left). The regulator rtTA is toxic
when active, but the gene circuit prevents Zeocin toxicity by activating the ZeoR gene (top right). The role of
cellular memory in optimizing fitness is shown in the bottom panel. (B-E) dose responses. (B) Mean expression
levels of the PF gene circuit and of the cell sorted low- and high-expression states. (C) Gene expression noise as
determined from the coefficient of variation (CV). (D) Subpopulation ratio of low-expressing cells to high-
expressing cells. (E) Steady-state gene expression distributions at a single-cell resolution. From Figure 2
“characterization of gene expression in cells bearing PF circuit” by Nevozhay, D. and Adams, R. et al. in [25]
located at https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002480 under a CC BY
4.0 license with panel label font modified.
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the budding yeast Saccharomyces cerevisiae to investigate how cell population fitness
(growth rate) and subpopulations emerge from the molecular-level kinetics of gene
networks and single-cell division rates [25]. Synthetic gene circuits with positive
feedback and cooperativity can display bistability, where cells switch between two
gene expression states with a cellular “memory” that corresponds to the temporal
maintenance of each state [26, 27].

In the PF gene circuit, the regulator reverse tetracycline-controlled trans-activator
(rtTA) binds to its own promoter in the presence of tetracyclines (Figure 1A, top
left) [28]. The genetic engineering approaches mirrored the assembly of a negative
feedback (NF) circuit in yeast [29]. Unlike the NF circuit, toxicity exists after acti-
vating the regulator gene rtTA, which sequesters general transcription factors from
vital cellular processes [30]. Additionally, the construct controlled the drug resistance
gene ZeoR, which confers resistance to the antibiotic Zeocin (Figure 1A, top right).

The PF gene circuit exhibits a sigmoidal gene expression dose response at the
population level (Figure 1B). The expression dose–responses for low- and high-
expressing subpopulations were determined using a bimodality detection algorithm
[28]. The gene expression noise level peaked at an intermediate inducer
(anhydrotetracycline or ATc) concentration (Figure 1C). The shift in the gene
expression distribution peaks over increasing inducer levels is reflected by the
subpopulation ratio changes (Figure 1D). The gene expression distributions for the
ATc dose response display bimodality (Figure 1E).

Testing multiple levels of inducer and drug determined a “fitness landscape”
that quantitatively mapped population growth rates to unique combinations of ATc
and Zeocin concentrations. The yeast PF system demonstrated the need to incorpo-
rate the cellular memory associated with gene expression states (Figure 1A, bot-
tom) to computationally predict the fitness landscape [31]; the growth rate under
Zeocin treatment was the highest at the minimal level of induction that lead to
bimodal expression [28]. These computational predictions guided laboratory
experiments to identify environmental conditions that defined a “sweet spot” of
drug resistance, which balanced the costs of expressing rtTA with benefits of
expressing ZeoR.

The yeast PF synthetic gene circuit was subsequently used to study evolutionary
dynamics under various levels of induction and drug treatment [32]. This microbial
evolution experiment included conditions at one edge or both edges (saturating
molecular levels or none) of the fitness landscape, as well as at intermediate levels
of induction with or without Zeocin. The evolved populations were frozen at spe-
cific time points and subsequently reestablished to test in various conditions com-
pared to ancestral cells. Additionally, the evolution experiments were combined
with simulations to predict the types of mutations that could arise under induction
and drug treatment [32].

Full induction without drug treatment led to breakdown of the regulator rtTA
over time through full and partial knock-out mutations, which improved fitness
without Zeocin [32]. Yet, during follow-up evolution experiments in high induction
with Zeocin partial rtTA knockout mutants regained function [31]. Full Zeocin
treatment without induction eventually established populations with higher
expression, potentially through mutations in the drug resistance gene and promoter
linked with extra-circuit mutations. High induction with Zeocin led to accumulated
mutations in rtTA, possibly lowering the effectiveness of the regulator as shown by
decreased inducer sensitivity [32]. After intermediate induction with Zeocin,
experiments on evolved populations during reintroduction of drug under interme-
diate induction uncovered the two expression distribution peaks shifting towards
each other leading to a single fitness peak; this highlighted the role of noise in
driving evolution through the trade-off between rtTA toxicity and drug resistance.
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2.2 Experiments and computational models of positive feedback and
feedforward circuits in yeast

Along with positive feedback and negative feedback circuit architectures,
feedforward loop (FFL) architectures (a three-gene network composed of two
input transcription factors, one of which regulates the other, both jointly regulating
a target gene) may have evolved in natural gene regulatory networks to enhance
fitness [26, 33]. In S. cerevisiae, the pleiotropic drug resistance (PDR) network
contains a positive feedback loop embedded in a feedforward loop (FFL + PF)
(Figure 2a) [34]. The PDR network provides multidrug resistance through an ABC
transporter pump protein encoded by the PDR5 gene. A similar FFL + PF network
may enhance drug resistance in human cancer cells [35].

Mathematical models of gene regulatory networks can predict biological
responses, which is essential to optimally design synthetic gene circuits and to guide
experiments. A minimal model of the PDR network found that the positive feed-
back and feedforward loop architectures sustain transcription and can stabilize
expression of the network when the drug is transient or fluctuating [33]. The
minimal model also predicted increased gene expression noise (in terms of
increased noise magnitude and longer cellular memory timescales) in the FFL and
FFL + PF networks. Overall, the FFL and FFL + PF network architectures were
found to enhance drug resistance in silico.

The minimal model of the PDR network was described by the following system
of coupled ordinary differential equations (ODEs) [33]:

dPDR3

dt
¼ αPDR3ω1 f PDR3 PDR1,PDR3ð Þ � PDR3 (1)

dPDR5

dt
¼ αPDR5 f PDR5 PDR1,PDR3ð Þ � PDR5

Figure 2.
(a) Natural pleiotropic drug resistance (PDR) network in yeast. (b) Synthetic PDR gene circuit. (c) Core PDR
network architecture. From Figure 1 “network schematics” by Brendan Camellato et al. in [27] located at
https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/enb.2019.0009 under a CC BY-NC-ND 3.0 license.
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where PDR1 was treated as an adjustable parameter. αPDR3 and αPDR5 are the
maximum levels of activated protein production for the variables PDR3 and PDR5,
respectively. The Boolean parameter ω1 describes the activation of PDR3 by PDR1.
Here the dilution and degradation rates of PDR3 and PDR5 were set to unity. The
functions that describe how PDR3 and PDR5 are regulated are given by:

f PDR3 PDR1,PDR3ð Þ ¼
PDR1þ ω2PDR3ð Þn

Kn þ PDR1þ ω2PDR3ð Þn
(2)

f PDR5 PDR1,PDR3ð Þ ¼
PDR1þ PDR3ð Þn

Kn þ PDR1þ PDR3ð Þn

where, n and K are the Hill coefficient and half-maximal activation parameter,
respectively. The Boolean parameter ω2 describes the presence or absence of posi-
tive feedback regulation on PDR3. The minimal model and a more comprehensive
model (presented below) were translated into biochemical reactions that were
simulated using the Gillespie stochastic simulation algorithm [36, 37].

A more comprehensive model, known as the PDR5 transcriptional network
model, incorporated the dynamics of the PDR5 efflux protein pump and the nega-
tive feedback produced when PDR5 eliminates the drug from the cell [33]. The
PDR5 transcriptional network model can be described by the following system of
coupled ODEs:

dPDR1

dt
¼ α0 þ αPDR1

Dint

KPDR1 þDint
� δPDR1PDR1

dPDR3

dt
¼ αPDR3

PDR1þ PDR3ð ÞnPDR3

KnPDR3

PDR3 þ PDR1þ PDR3ð ÞnPDR3
� δPDR3PDR3 (3)

dPDR5

dt
¼ αPDR5

PDR1þ PDR3ð ÞnPDR5

KnPDR5

PDR5 þ PDR1þ PDR3ð ÞnPDR5
� δPDR5PDR5

dDint

dt
¼ kdiff Dext �Dintð Þ � kpumpPDR5

Dint

Kint þDint

� �

where PDR1 and the intracellular drug concentration (Dint) were incorporated as
variables. α0 is the basal rate of PDR1 transcription, Dext the extracellular drug
concentration, kdiff the rate of passive diffusion of the drug across the cellular

membrane, kint half-maximum saturation coefficient for the PDR5 efflux pump,
and kpump the efflux rate of the drug via PDR5 efflux pump. It was assumed that
drug entry and exit from the cells occurred through a combination of passive and
active transport, and that the activation of PDR1 by the drug can be described by
Michaelis–Menten kinetics. The PDR5 transcriptional network model predicted that
PDR5 expression level would increase after application of the drug and that cell
population fitness would oscillate before stabilizing during drug treatment.

To confirm the predictions from the PDR5 transcriptional network model, a
synthetic gene circuit (Figure 2b) was constructed with molecular cloning tech-
niques [38] and integrated into a yeast strain without a native PDR5 gene [27]. The
construction technique ran multiple overlap PCR steps, where two fragments with
overlapping regions on their ends were amplified together initially without primers,
using the overlapping sequence as a de facto primer. Homologous recombination
facilitated the integration of the synthetic gene circuit into the yeast genome. This
synthetic PDR gene circuit has rtTA activating its own expression through a
tetracycline-inducible promoter (Figure 2b), mimicking the positive feedback
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activation of PDR3 (Figure 2a). The Doxycycline inducible promoter regulating
rtTA expression is also controlled by a β-estradiol inducible GEV regulator,
representing PDR1, which also activates the PDR5 gene in this synthetic gene circuit
[27], completing the core PDR network architecture (Figure 2c) [34].

The PDR synthetic gene circuit was experimentally compared to simplified PDR
circuit components, like direct activation (DA: PDR1 directly activates PDR5),
cascade (CAS: PDR1 activates PDR5 through PDR3), a cascade with positive feed-
back loop (CAS + PF: PDR1 activates PDR5 through PDR3, with PDR3 activating its
own expression), and a feedforward loop (FFL: PDR1 activates PDR5 directly as
well as indirectly through PDR3) [27]. The FFL + PF circuit represented the PDR
network. This separation of components tested the effect of specific network motifs
in drug resistance and gene expression compared to the full PDR synthetic circuit.
Direct activation in the FFL circuit was found experimentally to increase the speed
of expression changes compared to indirect activation of PDR5. Direct activation
was required for PDR5-mediated drug resistance. Indirect activation enhanced drug
resistance, which provided evidence that the delayed reduction in PDR5 expression
protected cells from the toxic effects of drug (Cycloheximide) exposure
(Figure 3a). Figure 3b shows that strains carrying a gene circuit with a positive
feedback loop grew faster in the presence of drug compared to strains in which this
circuit architecture was missing. This provided evidence that the positive feedback
regulation of PDR5 expression protects cells from drug exposure. Finally, reducing
the strength of positive feedback regulation through mutation decreased drug
resistance (Figure 3c).

Overall, the PDR network was recapitulated in mathematical and synthetic gene
circuit models that demonstrated that the network architecture is optimized for
drug resistance, with gene expression noise making important contributions to
fitness during drug treatment.

2.3 Experiments and computational models of mammalian negative and
positive feedback gene circuits

The yeast NF gene circuit was transferred to mammalian cells to test an organ-
ism transfer workflow using design and optimization cycles aided by computational
modeling [40]. This workflow led to updates to the yeast NF gene circuit, including
the optimization of the tet promoter operator site locations, the introduction of an
intron upstream of the regulator, codon optimization for mammalian translation,

Figure 3.
(a) Genetically engineered yeast strains with direct activation (DA) and indirect activation networks (FFL and
CAS). (b) Yeast strains with indirect activation alone (CAS) or combined with positive feedback (CAS +
PFL). (c) Yeast strains with feedforward activation alone (FFL) or combined with positive feedback (FFL
+PFL) or mutated positive feedback (FFL+PFLm). Plates contain 5 μg/ml doxycycline (inducer), 0.025 (a) or
0.05 μg/ml (b, c) Cycloheximide (drug) and no β-estradiol (inducer). Gray triangles represent decreasing
density of the spotted cell culture, 1:10 serial dilutions from OD600 0.1 to 1 x 10–3. From Figure 6 “indirect
activation and positive feedback enhance drug resistance in spot assay experiment” by Brendan Camellato et al.
in [27] located at https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/enb.2019.0009 under a CC BY-
NC-ND 3.0 license.
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and the addition of a Kozak sequence near the start codon, which was stably but
randomly transfected into MCF-7 breast cancer cells. This NF circuit in mammalian
cells exhibited a linear dose response with low gene expression noise, similar to the
NF circuit in yeast cells [29]. Though the adaptability of the yeast NF circuit to
mammalian cells did not require any additional design features, optimization of
parts responsible for gene expression and protein location was required to replicate
the features of the yeast NF circuit. These results support the “abstraction princi-
ple” in the field of synthetic biology, namely that different parts of a biological
network can be optimized for improved functionality in new settings, while leaving
the original network design intact [40].

In a subsequent study, the yeast PF circuit was transferred to mammalian cells,
which was coupled with a Flp-recombinase site-specific integration system
(Figure 4a) [39]. This mammalian positive feedback (mPF) circuit displayed a
sigmoidal mean gene expression dose response (Figure 4b). Gene expression noise
increased at intermediate inducer (Doxycycline) levels (Figure 4c), with broad
unimodal gene expression distributions (Figure 4d). A lack of bimodality is unex-
pected for an induced bistable circuit and may have been attributed to similar
cellular growth and cellular memory time scales.

The previously reported mammalian negative feedback circuit was also
connected to the Flp-In integration system in Chinese Hamster Ovary (CHO) cells
(Figure 5a) [40]. This negative feedback circuit was separately integrated into the
same genomic site as the mPF circuit and subsequently called the mammalian
negative feedback (mNF) circuit. The mNF circuit displayed a linear dose response
in mean gene expression (Figure 5b). Gene expression noise was low across all
inducer (Doxycycline) levels (Figure 5c) with narrow gene expression distributions
(Figure 5d).

Figure 4.
(a) Schematic of the mammalian positive feedback (mPF) synthetic gene network. (b-d) dose responses. (b) Mean
gene expression. (c) Gene expression noise determined from the coefficient of variation (CV). (d) Single-cell gene
expression distributions. From Figure 2 “dose–response of the mPF-PuroR gene circuit” by Farquhar, K.S. et al. in
[39] located at https://www.nature.com/articles/s41467-019-10330-w under a CC BY 4.0 license.

8

Synthetic Genomics - From BioBricks to Synthetic Genomes



The mPF and mNF gene circuits controlled the EGFP fluorescent protein and the
PuroR drug resistance gene each separated by self-cleaving 2A motifs [39, 40]. The,
the integration into the same genomic site and the introduction of self-cleaving 2A
motifs and the PuroR drug resistance gene did not affect the function of these
circuits.

In an evolution experiment with multiple drug (Puromycin) concentrations, the
mNF and mPF circuits were tuned to the same mean expression level to decouple
gene expression noise from the mean gene expression prior to drug treatment [39].
After adaptation, the drug was removed while induction was either maintained or
removed. Finally, the adapted populations were retreated with the previous level of
drug to uncover potential adaptation mechanisms. The evolution experiment dem-
onstrated that low gene expression noise from the mNF circuit was beneficial in
adaptation compared to mPF under low levels of drug [39]. In contrast, the high
noise from the mPF circuit was beneficial compared to the mNF circuit under high
levels of drug.

Mutations were found in the TetR regulator gene from the mNF circuit that
knocked out repression, which explained why the mNF populations maintained
high expression with or without inducer after the temporary removal of the drug.
The mPF circuits did not mutate, which was consistent with the drug retreatment
period where uninduced mPF populations struggled to adapt while the induced
populations adapted faster [39]. Overall, the decoupling of gene expression noise
from the mean demonstrated the power of using synthetic gene circuits to uncover
novel insights into mammalian drug resistance.

A stochastic population dynamics model was developed to predict the emer-
gence and switching dynamics of persister (P), nongenetically drug-resistant (N),

Figure 5.
(a) Schematic of the mammalian negative feedback (mNF) synthetic gene network. (b-d) dose responses. (b)
Mean gene expression. (c) Gene expression noise determined from the coefficient of variation (CV). (d) Single-
cell gene expression distributions. From Figure 3 “dose–response of the mNF-PuroR gene circuit” by Farquhar,
K.S. et al. in [39] located at https://www.nature.com/articles/s41467-019-10330-w under a CC BY 4.0
license.
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and genetically drug-resistant (G) subpopulations (Figure 6a), which was
described mathematically by the following set of coupled ODEs [39]:

dP

dt
¼ rP,NN � rN,PP� rG,PP

dN

dt
¼ �rP,NN þ rN,PP� rG,NN þ kNN � gNN (4)

dG

dt
¼ rG,PPþ rG,NN þ kGG� gGG

Figure 6.
(a) Schematic depicting the effects of drug (Puromycin) concentration on Chinese hamster ovary (CHO) cell
population composition and survival. Nongenetically drug-resistant cells (green cells – Brighter cells have higher
PuroR expression level and are therefore more resistant) and nongrowing persister cells (gray cells) can switch
phenotypes (dashed bidirectional arrow). Persister cells and growing nongenetically resistant cells can also
become stably drug-resistant cells (black cells). When no drug is present, a genetically identical (clonal) cell
population with heterogeneous gene expression exists (center). Under low drug treatment conditions (left
arrow), cells with low PuroR expression perish and a small fraction of the surviving clonal cells become persister
cells. For high drug treatment conditions (right arrow), only cells with high PuroR expression levels can survive
drug treatment while the rest die (dark blue cells), and a higher fraction of the surviving cells become persisters.
As persister and nongenetically resistant cells can become stably drug resistant, the population on the right panel
becomes increasingly heterogeneous over the course of treatment. (b-f) Representative growth curves for
simulated mPF-PuroR and mNF-PuroR CHO cell populations under (b) 0, (c) 10, (d) 22.5, (e) 35, and (f)
50 μg/mL of Puromycin. Growth curves shown in panels in (b-f) correspond to: (left) mPF subpopulations,
(center) mNF subpopulations, and (right) mPF and mNF populations. (g) Adaptation times corresponding to
the mPF-PuroR and mNF-PuroR populations shown in panels (b-f). From Figure 6 “Modeling the adaptation
of mPF-PuroR and mNF-PuroR cells in various concentrations of Puromycin” by Farquhar, K.S. et al. in [39]
located at https://www.nature.com/articles/s41467-019-10330-w under a CC BY 4.0 license.
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where ri,j is transition rate from genotype or phenotype j to i, ki is the growth
rate of i, and gi is the death rate of i. Noise was incorporated into this model by
drawing the parameters describing the initial number of cells that survived Puro-
mycin treatment and the carrying capacity of the cell culture environment from a
normal distribution. Numerical simulations of Eq. (4) are shown in Figure 6b–f.
These simulation results agreed with the data from the evolution experiments [39].
The modeling indicated that nongenetic phenotypic variability could facilitate the
adaptation of the mPF and mNF strains to lower drug concentrations (Figure 6c),
but that population dynamics in terms of the P to G conversion was required to
capture the long experimental adaptation times at higher drug concentrations
(Figure 6d–g).

3. Optogenetic gene circuits

A major focus of synthetic biology has been to engineer gene circuits to control
cellular processes. This has mainly been achieved through small molecules that
activate or inactivate various components of synthetic gene circuits [17, 19, 41–46].
Chemical stimuli has many advantages, including easy titration for inducing gene
expression over large dynamic ranges, characterized affinity for existing proteins,
and minimal off-target effects [9]. However, controlling gene circuits with
chemicals is often not instantaneous and makes it difficult to control individual cells
in a population.

Light stimulus can achieve many of the same advantages as chemicals without
the above limitations. Like the cellular proteins that respond to chemical stimuli,
proteins have been found in nature that respond to light [47, 48]. The discovery of
light-activated proteins provided the elements necessary to build optogenetic gene
circuits. By engineering light-responsive elements with existing components in gene
circuits, synthetic biologists were able to adapt endogenous proteins from natural
organisms to experimental model organisms, including yeast [7] and mammalian
cell lines [49].

The use of light-inducible systems in eukaryotic organisms has expanded to
cover nearly as many applications as chemical systems, including the control of
gene expression, protein alterations, metabolic reactions, epigenetic states, and
animal behavior [50–55]. A common theme among light-activated and chemical-
induced circuits is the genetic architecture of the system. For chemically regulated
gene circuits, classic engineering architectures [26] have been produced including
negative regulation, positive regulation, positive feedback, negative feedback, and
many others [39, 40, 42, 56–59]. Optogenetic systems have begun to incorporate
these circuit architectures [49, 60]. Optogenetic tools respond to a variety of
wavelengths of light [61, 62] and can be used transiently [63, 64] or as stable
systems [60].

Negative feedback is an important gene circuit architecture that has been
implemented in optogenetic circuits. Negative feedback is a desirable architecture
in synthetic biology because it provides two advantages: 1) negative feedback
reduces gene expression noise and 2) negative feedback allows tunability of system
output to a “transfer function”, which describes the relationship between an input
and an output function [65, 66]. In synthetic biology, many systems are designed
with desired inputs and outputs in mind and therefore knowing the relationship or
transfer function between these variables is crucial [67]. Additionally, such features
also occur in natural systems [68, 69], which synthetic systems are often designed
to mimic [14]. The negative feedback circuit architecture has been engineered into
synthetic gene circuits in bacterial, fungal, and mammalian systems, all controllable
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by small chemical molecules [29, 40, 70, 71]. This circuit architecture was recently
engineered in an optogenetic system and found to offer many of the same advan-
tages as the chemical-induced negative feedback gene circuits; namely, low gene
circuit noise, wide system tunability, and a characterized transfer function between
input and output (i.e., light and a fluorescence reporter) [60].

The optogenetic NF system (Figure 7A) was inspired from previous chemical
gene circuits [40] and from computational modeling [57]. A well-known
tetracycline-responsive system [72, 73] provided the foundation to engineer a light-
responsive system, by fusing the TetR protein with a LOV2 domain [52, 74, 75] and
either a degradation tag [74] or a small peptide [76] that inhibits TetR (Figure 7B).
When light is absent, the degradation tag or the inhibitory peptide remains hidden.
When blue light is present, the LOV2 protein undergoes a confirmational change
and reveals one of the two domains. By employing this engineered light protein, an
optogenetic gene circuit can be constructed with operator sites upstream of the gene
for this protein to allow down regulation of its own expression (as well as another
functional gene). The light stimulus can then be used to control gene expression
output with the benefits of low noise and titratable expression levels.

Computational modeling was used to investigate how system performance could
be enhanced in the optogenetic NF system [60]. This methodology of build, model,
improve is crucial when developing synthetic gene circuits. To achieve this, the
design and construction of the optogenetic NF system focused on changes that
could decrease gene circuit noise, lower basal expression of the circuits, increase
fold-change of the circuit, and enhance the range of circuit response to stimuli. A

Figure 7.
(A) Schematic illustrating an optogenetic gene circuit with a negative feedback architecture. Specifically, this
architecture produces a transcription factor (blue) that inhibits its own production. This transcription factor is
also engineered to have a light-responsive domain (pink) and inhibitory peptide (orange). When light is added
to the system, a confirmational change occurs and the hidden inhibitory peptide is exposed to inhibit the DNA-
binding function of the transcription factor. When this occurs, increased transcription and translation occurs for
the reporter gene. (B) Schematic illustration of the transcription factor shown in (A). The transcription factor is
the TetR protein fused with a linker peptide which is fused with the light-responsive LOV2 domain, which
contains a Jα-helix that is fused with a functional domain such as a degradation tag or an inhibitory peptide
(TIP). When light is added, the Jα-helix opens exposing the functional domain. Figure used with permission
from Guinn [55].
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quantitative gene expression model identified parameters that optimized the
performance of the optogenetic NF system. The “pipeline” for modeling the NF
optogenetic gene circuit is shown in Figure 8. The NF optogenetic circuit was
represented by a network schematic of the main optogenetic gene circuit’s compo-
nents (Figure 8A). These components were formalized as a set of chemical reac-
tions (Figure 8B). The chemical reactions were then described by a system of
ordinary differential equations (Figure 8C), which was solved numerically [57].
Lastly, the equations describing each reaction were explored to investigate whether
a given optogenetic gene circuit component should be changed experimentally
(Figure 8D). The design of the optogenetic NF system was improved by changing
the transcription and translation rates of the optogenetic inhibitory protein.

In addition to validation and improving optogenetic gene circuits, various archi-
tectures can be utilized for expressing functional proteins at precise levels inside of
single cells. Controlling gene expression in single cells can allow for exploration of
phenotypic landscapes as a function of protein levels and time. For example, the
optogenetic NF system was used to control the mutated oncogene KRAS (G12V),
which showed expression and function could be controlled in a dose-responsive
manner with low optogenetic gene circuit noise [60]. This system can be modified
to contain any functional gene allowing single-cell gene expression studies using
microscopy equipment such as digital mirror device (DMD) [77]. DMD technology
can allow system feedback for controlling optogenetic gene circuits in silico at the
computer-microscopy interface [78] and in vitro using gene architecture designs
responsive to light. Coupling technology like the DMD with optogenetic gene cir-
cuits like the optogenetic NF system will allow researchers to better understand
cellular processes and single-cell biology.

Overall, optogenetic gene circuits allow researchers to perturb single cells to
distinguish between individual and population-level behavior. Optogenetic tools are
anticipated to be important for elucidating mechanisms in drug resistance and
cancer metastasis, where single-cell behavior and spatial–temporal factors may
dictate biological fate.

4. Conclusions

The ability of synthetic gene circuits to fulfill engineered design principles and
facilitate scientific discoveries is expected to grow over time. However, evolution-
ary forces can undermine the integrity of synthetic gene circuits [25, 32]. It will be

Figure 8.
The “pipeline” used to model the NF optogenetic gene circuit. The network schematic of the system of interest
includes transcription factors, promoters that can be bound by transcription factors, reporters, RNA, etc. (A).
The network schematic is converted into a set of chemical reactions (B). These chemical reactions are then
converted into a set of ordinary differential equations (ODEs) (C). Finally, the ODEs are simulated
numerically, providing quantitative predictions that can be used to improve the optogenetic gene circuit (D).
Figure used with permission from Guinn [55].

13

Synthetic Gene Circuits for Antimicrobial Resistance and Cancer Research
DOI: http://dx.doi.org/10.5772/intechopen.99329



crucial to design gene circuits in the future to mitigate the effects of evolution to
maintain their functional integrity. One approach is to use DNA sponges to change
the response of gene circuits while lowering protein toxicity [79]. Another approach
is to use evolution itself to repair broken synthetic gene circuit components,
resulting in more robust gene circuits [31]. Overall, as the library of biological parts
increases, the discovery of new “BioBricks” (standardized and interchangeable gene
circuits components) will aid in resolving the integrity issues presently associated
with synthetic gene circuits. Genomic mining is a promising approach for
discovering BioBricks, including identifying novel TetR-family regulators from
prokaryotic genomes [80] and CRISPR-Cas systems in microbes [81].

Clinical applications of synthetic gene circuits will continue to expand and could
lead to successful treatments for various diseases, including autoimmune disorders
[82] and cancers [83]. CAR-T technologies to fight cancer increasingly include
synthetic gene circuits and synthetic intercellular pathways to avoid adverse
inflammatory reactions that damage healthy cells and to improve the targeting of
cancer cells [83, 84]. Additionally, investigating drug resistance in microbial path-
ogens will require gene circuits that can be introduced into pathogens, which have
native gene networks relevant to drug resistance that are complex and incompletely
characterized. Relatedly, increasing complexity in gene circuits remains a challenge
and will require multiple orthogonal components [80, 85] as well as more advanced
computational methods to predict the dynamics of large-scale, nonlinear networks
[86]. Ultimately, improvements in our ability to model, design, and construct
synthetic gene circuits will benefit biomedical applications as well as increase our
understanding of natural gene networks.

Optogenetic gene circuits allow researchers to utilize the strengths that have
been developed through two decades of synthetic biology research, as well as to
achieve more precise control of living cells. The use of light as a stimulus enables the
single-cell control of gene circuit response, which can complement existing systems
to study cell populations. The generation of single-cell data will allow researchers to
address questions on how individual cells give rise to population level phenomenon
and how neighboring cells affect adjacent or distal cells. Answering such questions
will be important for extracting information on biological processes such as tissue
development [87], epithelial-to-mesenchymal transition [88], and the effects of the
microenvironment on cancer progression [89, 90].

While using optogenetic tools will be important for answering a broad range
biological questions and for biomedical applications, challenges remain in terms of
the scalability and precision of cellular control. There have been applications of
optogenetic technology that address these challenges individually. For instance, the
light plate apparatus (LPA) [91] is a simple to construct and inexpensive system
that can be adapted and used for scaling light-induced conditions in vitro. Addi-
tionally technology like digital micromirror devices (DMDs) [92] have been used to
control single cells in real time. The LPA technology offers scalability but is cur-
rently limited in the precision of single-cell control. The DMD on the other hand
offers precise single-cell control but is limited by scalability of conditions that can
be controlled in a single experiment. Coupling these two types of tools, or their
subsequent technological successors, may allow researchers to maximize scalability
and optogenetic gene circuit control.

Acknowledgements

DC was supported by funding from the Government of Canada’s New Frontiers
in Research Fund – Exploration grant program (NFRFE-2019-01208) and the

14

Synthetic Genomics - From BioBricks to Synthetic Genomes



University of Alberta. GB was supported by the National Institutes of Health,
NIGMS MIRA Program (R35 GM122561) and by the Laufer Center for Physical and
Quantitative Biology. MTG was supported by the National Defense Science and
Engineering Graduate Fellowship Program.

Author details

Kevin S. Farquhar1†, Michael Tyler Guinn2,3,4†, Gábor Balázsi2,3

and Daniel A. Charlebois5,6*

1 Independent Researcher, Houston, USA

2 The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony
Brook University, Stony Brook, USA

3 Department of Biomedical Engineering, Stony Brook University, Stony Brook,
USA

4 Renaissance School of Medicine, Stony Brook University, Stony Brook, USA

5 Department of Physics, University of Alberta, Edmonton, Canada

6 Department of Biological Sciences, University of Alberta, Edmonton, Canada

*Address all correspondence to: dcharleb@ualberta.ca

†These authors contributed equally to this work.

© 2021 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

15

Synthetic Gene Circuits for Antimicrobial Resistance and Cancer Research
DOI: http://dx.doi.org/10.5772/intechopen.99329



References

[1] Sorg RA, Gallay C, Van Maele L,
Sirard JC, Veening JW. Synthetic gene-
regulatory networks in the
opportunistic human pathogen
Streptococcus pneumoniae. Proc Natl
Acad Sci U S A. 2020;117(44):
27608-27619.

[2] Angelici B, Mailand E, Haefliger B,
Benenson Y. Synthetic biology platform
for sensing and integrating endogenous
transcriptional inputs in mammalian
cells. Cell Rep. 2016;16(9):2525-2537.

[3] Siu Y, Fenno J, Lindle JM,
Dunlop MJ. Design and selection of a
synthetic feedback loop for optimizing
biofuel tolerance. ACS Synth Biol. 2018;
7(1):16-23.

[4]Honjo H, Iwasaki K, Soma Y,
Tsuruno K, Hamada H, Hanai T.
Synthetic microbial consortium with
specific roles designated by genetic
circuits for cooperative chemical
production. Metab Eng. 2019;55:
268-275.

[5]Daniel R, Rubens JR, Sarpeshkar R,
Lu TK. Synthetic analog computation in
living cells. Nature. 2013;497(7451):
619-623.

[6]Huang H, Liu Y, Liao W, Cao Y,
Liu Q, Guo Y, et al. Oncolytic
adenovirus programmed by synthetic
gene circuit for cancer immunotherapy.
Nat Commun. 2019;10(1):4801.

[7] Shimizu-Sato S, Huq E,
Tepperman JM, Quail PH. A light-
switchable gene promoter system. Nat
Biotechnol. 2002;20(10):1041-1044.

[8] Gossen M, Bujard H. Tight control of
gene expression in mammalian cells by
tetracycline-responsive promoters. Proc
Natl Acad Sci U S A. 1992;89(12):
5547-5551.

[9]Hasty J, McMillen D, Collins JJ.
Engineered gene circuits. Nature. 2002;
420(6912):224-230.

[10] Kaern M, Elston TC, Blake WJ,
Collins JJ. Stochasticity in gene
expression: From theories to
phenotypes. Nature Reviews Genetics.
2005;6(6):451-464.

[11] Fraser D, Kaern M. A chance at
survival: Gene expression noise and
phenotypic diversification strategies.
Molecular Microbiology. 2009;71(6):
1333-1340.

[12] Farquhar KS, Koohi SR,
Charlebois DA. Does transcriptional
heterogeneity facilitate the development
of genetic drug resistance? BioEssays.
2021:e2100043.

[13] Brock A, Chang H, Huang S. Non-
genetic heterogeneity – A mutation-
independent driving force for the
somatic evolution of tumours. Nature
Reviews Genetics. 2009;10(5):336-342.

[14] Farquhar KS, Flohr H,
Charlebois DA. Advancing
antimicrobial resistance research
through quantitative Modeling and
synthetic biology. Frontiers in
Bioengineering and Biotechnology.
2020;8:583415.

[15]McAdams HH, Shapiro L. Circuit
simulation of genetic networks. Science.
1995;269(5224):650-656.

[16] Becskei A, Serrano L. Engineering
stability in gene networks by
autoregulation. Nature. 2000;405
(6786):590-593.

[17]Gardner TS, Cantor CR, Collins JJ.
Construction of a genetic toggle switch
in Escherichia coli. Nature. 2000;403
(6767):339-342.

[18]Weisberg RA. A genetic switch:
Phage lambda and higher organisms.
Mark Ptashne. The Quarterly Review of
Biology. 1994;69(2):267-268.

[19] Elowitz MB, Leibler S. A synthetic
oscillatory network of transcriptional

16

Synthetic Genomics - From BioBricks to Synthetic Genomes



regulators. Nature. 2000;403(6767):
335-338.

[20]Weber W, Schoenmakers R,
Keller B, Gitzinger M, Grau T, Daoud-El
Baba M, et al. A synthetic mammalian
gene circuit reveals antituberculosis
compounds. Proc Natl Acad Sci U S A.
2008;105(29):9994-9998.

[21] Jancik S, Drabek J, Radzioch D,
Hajduch M. Clinical relevance of KRAS
in human cancers. J Biomed Biotechnol.
2010;2010:150960.

[22] Chen S, Weitemier AZ, Zeng X,
He L, Wang X, Tao Y, et al. Near-
infrared deep brain stimulation via
upconversion nanoparticle-mediated
optogenetics. Science. 2018;359(6376):
679-684.

[23] Eickelbeck D, Rudack T,
Tennigkeit SA, Surdin T, Karapinar R,
Schwitalla JC, et al. Lamprey
Parapinopsin (“UVLamP”): A Bistable
UV-sensitive Optogenetic switch
for ultrafast control of GPCR
pathways. ChemBioChem. 2020;21(5):
612–617.

[24] Becskei A, Séraphin B, Serrano L.
Positive feedback in eukaryotic gene
networks: Cell differentiation by graded
to binary response conversion. EMBO J.
2001;20(10):2528–2535.

[25]Nevozhay D, Adams RM, Van
Itallie E, Bennett MR, Balazsi G.
Mapping the environmental fitness
landscape of a synthetic gene circuit.
PLoS Computational Biology. 2012;8(4):
e1002480.

[26] Alon U. Network motifs: Theory
and experimental approaches. Nat Rev
Genet. 2007;8(6):450-461.

[27] Camellato B, Roney IJ, Azizi A,
Charlebois D, Kaern M. Engineered
gene networks enable non-genetic drug
resistance and enhanced cellular
robustness. Engineering Biology. 2019;3
(4):72-79.

[28]Nevozhay D, Adams RM, Van
Itallie E, Bennett MR, Balazsi G.
Mapping the environmental fitness
landscape of a synthetic gene circuit.
PLoS Comput Biol. 2012;8(4):e1002480.

[29]Nevozhay D, Adams RM,
Murphy KF, Josic K, Balázsi G. Negative
autoregulation linearizes the dose-
response and suppresses the
heterogeneity of gene expression. Proc
Natl Acad Sci USA. 2009;106:5123-5128.

[30] Baron U, Gossen M, Bujard H.
Tetracycline-controlled transcription in
eukaryotes: Novel transactivators with
graded transactivation potential.
Nucleic Acids Res. 1997;25(14):
2723-2729.

[31]Gouda MK, Manhart M, Balázsi G.
Evolutionary regain of lost gene circuit
function. Proc Natl Acad Sci USA. 2019;
116(50):25162-25171.

[32]Gonzalez C, Ray JC, Manhart M,
Adams RM, Nevozhay D, Morozov AV,
et al. Stress-response balance drives the
evolution of a network module and its
host genome. Mol Syst Biol. 2015;11(8):
827.

[33] Charlebois DA, Balazsi G, Kaern M.
Coherent feedforward transcriptional
regulatory motifs enhance drug
resistance. Physical Review E. 2014;89
(5):052708.

[34] Balzi E, Goffeau A. Yeast multidrug
resistance: The PDR network. J Bioenerg
Biomembr. 1995;27(1):71-76.

[35]Misra S, Ghatak S, Toole B.
Regulation of MDR1 expression and
drug resistance by a positive feedback
loop involving hyaluronan,
phosphoinositide 3-kinase, and ErbB2. J
Biol Chem. 2005;280:20310-20315.

[36]Gillespie DT. A general method for
numerically simulating the stochastic
time evolution of coupled chemical
reactions. J Comput Phys. 1976;22:
403-434.

17

Synthetic Gene Circuits for Antimicrobial Resistance and Cancer Research
DOI: http://dx.doi.org/10.5772/intechopen.99329



[37] Gillespie DT. Exact stochastic
simulation of coupled chemical
reactions. J Phys Chem. 1977;81:
2340-2361.

[38] Sambrook J. Molecular cloning: A
laboratory manual: Third edition. Cold
Spring Harbor, N.Y.: Cold Spring
Harbor Laboratory Press [2001]
©2001; 2001.

[39] Farquhar KS, Charlebois DA,
Szenk M, Cohen J, Nevozhay D, Balazsi G.
Role of network-mediated stochasticity in
mammalian drug resistance. Nat
Commun. 2019;10(1):2766.

[40]Nevozhay D, Zal T, Balazsi G.
Transferring a synthetic gene circuit
from yeast to mammalian cells. Nat
Commun. 2013;4:1451.

[41] Guinn M, Bleris L. Biological 2-
input decoder circuit in human cells.
ACS Synth Biol. 2014;3(8):627-633.

[42] Bleris L, Xie Z, Glass D, Adadey A,
Sontag E, Benenson Y. Synthetic
incoherent feedforward circuits show
adaptation to the amount of their genetic
template. Mol Syst Biol. 2011;7:519.

[43] Auslander S, Stucheli P, Rehm C,
Auslander D, Hartig JS, Fussenegger M.
A general design strategy for protein-
responsive riboswitches in mammalian
cells. Nat Methods. 2014;11(11):
1154-1160.

[44] Thibodeaux GN, Cowmeadow R,
Umeda A, Zhang Z. A tetracycline
repressor-based mammalian two-hybrid
system to detect protein-protein
interactions in vivo. Anal Biochem.
2009;386(1):129-131.

[45] Kramer BP, Fussenegger M.
Hysteresis in a synthetic mammalian
gene network. Proc Natl Acad Sci U S A.
2005;102(27):9517-9522.

[46] Bacchus W, Lang M, El-Baba MD,
Weber W, Stelling J, Fussenegger M.
Synthetic two-way communication

between mammalian cells. Nat
Biotechnol. 2012;30(10):991-996.

[47] Boyden ES, Zhang F, Bamberg E,
Nagel G, Deisseroth K. Millisecond-
timescale, genetically targeted optical
control of neural activity. Nat Neurosci.
2005;8(9):1263-1268.

[48] Zoltowski BD, Crane BR. Light
activation of the LOV protein vivid
generates a rapidly exchanging dimer.
Biochemistry. 2008;47(27):7012-7019.

[49]Wang X, Chen X, Yang Y.
Spatiotemporal control of gene
expression by a light-switchable
transgene system. Nat Methods. 2012;9
(3):266-269.

[50]Muller K, Engesser R, Metzger S,
Schulz S, Kampf MM, Busacker M, et al.
A red/far-red light-responsive bi-stable
toggle switch to control gene expression
in mammalian cells. Nucleic Acids Res.
2013;41(7):e77.

[51] Levskaya A, Weiner OD, Lim WA,
Voigt CA. Spatiotemporal control of cell
signalling using a light-switchable
protein interaction. Nature. 2009;461
(7266):997-1001.

[52]Renicke C, Schuster D, Usherenko S,
Essen LO, Taxis C. A LOV2 domain-
based optogenetic tool to control protein
degradation and cellular function. Chem
Biol. 2013;20(4):619-626.

[53] Ye H, Daoud-El Baba M, Peng RW,
Fussenegger M. a synthetic optogenetic
transcription device enhances blood-
glucose homeostasis in mice. Science.
2011;332(6037):1565-1568.

[54] Folcher M, Oesterle S, Zwicky K,
Thekkottil T, Heymoz J, Hohmann M,
et al. Mind-controlled transgene
expression by a wireless-powered
optogenetic designer cell implant. Nat
Commun. 2014;5:5392.

[55]Guinn MT. Engineering Human
Cells with Synthetic Gene Circuits

18

Synthetic Genomics - From BioBricks to Synthetic Genomes



Elucidates How Protein Levels Generate
Phenotypic Landscapes [Ph.D. Thesis].
Ann Arbor: State University of New
York at Stony Brook; 2020.

[56] Zhao W, Bonem M, McWhite C,
Silberg JJ, Segatori L. Sensitive detection
of proteasomal activation using the Deg-
on mammalian synthetic gene circuit.
Nat Commun. 2014;5:3612.

[57] Charlebois DA, Diao J, Nevozhay D,
Balazsi G. Negative regulation gene
circuits for efflux pump control.
Methods Mol Biol. 2018;1772:25-43.

[58]May T, Eccleston L, Herrmann S,
Hauser H, Goncalves J, Wirth D.
Bimodal and hysteretic expression in
mammalian cells from a synthetic gene
circuit. PLoS One. 2008;3(6):e2372.

[59] Li Y, Moore R, Guinn M, Bleris L.
Transcription activator-like effector
hybrids for conditional control and
rewiring of chromosomal transgene
expression. Sci Rep. 2012;2:897.

[60]Guinn MT, Balazsi G. Noise-
reducing optogenetic negative-feedback
gene circuits in human cells. Nucleic
Acids Res. 2019;47(14):7703-14.

[61] Lee D, Hyun JH, Jung K, Hannan P,
Kwon HB. A calcium- and light-gated
switch to induce gene expression in
activated neurons. Nat Biotechnol. 2017;
35(9):858-863.

[62] Polstein LR, Gersbach CA. A light-
inducible CRISPR-Cas9 system for
control of endogenous gene activation.
Nat Chem Biol. 2015;11(3):198-200.

[63]Ma Z, Du Z, Chen X, Wang X,
Yang Y. Fine tuning the LightOn light-
switchable transgene expression system.
Biochem Biophys Res Commun. 2013;
440(3):419-423.

[64] Chen X, Wang X, Du Z, Ma Z,
Yang Y. Spatiotemporal control of gene
expression in mammalian cells and in

mice using the LightOn system. Curr
Protoc Chem Biol. 2013;5(2):111-129.

[65]Olson EJ, Hartsough LA, Landry BP,
Shroff R, Tabor JJ. Characterizing
bacterial gene circuit dynamics with
optically programmed gene expression
signals. Nat Methods. 2014;11(4):
449-455.

[66] Bradley RW, Buck M, Wang B.
Tools and principles for microbial gene
circuit engineering. J Mol Biol. 2016;428
(5 Pt B):862-888.

[67] Sadat Mousavi P, Smith SJ, Chen JB,
Karlikow M, Tinafar A, Robinson C,
et al. A multiplexed, electrochemical
interface for gene-circuit-based sensors.
Nat Chem. 2020;12(1):48-55.

[68]Harris SL, Levine AJ. The p53
pathway: Positive and negative feedback
loops. Oncogene. 2005;24(17):
2899-2908.

[69] Yu P, Kosco-Vilbois M, Richards M,
Kohler G, Lamers MC. Negative
feedback regulation of IgE synthesis by
murine CD23. Nature. 1994;369(6483):
753-756.

[70]Deans TL, Cantor CR, Collins JJ. A
tunable genetic switch based on RNAi
and repressor proteins for regulating
gene expression in mammalian cells.
Cell. 2007;130(2):363-372.

[71]Madar D, Dekel E, Bren A, Alon U.
Negative auto-regulation increases the
input dynamic-range of the arabinose
system of Escherichia coli. BMC Syst
Biol. 2011;5:111.

[72]Gossen M, Freundlieb S, Bender G,
Muller G, Hillen W, Bujard H.
Transcriptional activation by
tetracyclines in mammalian cells.
Science. 1995;268(5218):1766-1769.

[73] Forster K, Helbl V, Lederer T,
Urlinger S, Wittenburg N, Hillen W.
Tetracycline-inducible expression
systems with reduced basal activity in

19

Synthetic Gene Circuits for Antimicrobial Resistance and Cancer Research
DOI: http://dx.doi.org/10.5772/intechopen.99329



mammalian cells. Nucleic Acids Res.
1999;27(2):708-710.

[74]Muller K, Zurbriggen MD,
Weber W. An optogenetic upgrade for
the Tet-OFF system. Biotechnol Bioeng.
2015;112(7):1483-1487.

[75]Usherenko S, Stibbe H, Musco M,
Essen LO, Kostina EA, Taxis C. Photo-
sensitive degron variants for tuning
protein stability by light. BMC Syst Biol.
2014;8:128.

[76] Klotzsche M, Berens C, Hillen W. A
peptide triggers allostery in tet repressor
by binding to a unique site. J Biol Chem.
2005;280(26):24591-24599.

[77] Sakai S, Ueno K, Ishizuka T,
Yawo H. Parallel and patterned
optogenetic manipulation of neurons in
the brain slice using a DMD-based
projector. Neurosci Res. 2013;75(1):
59-64.

[78] Rullan M, Benzinger D,
Schmidt GW, Milias-Argeitis A,
Khammash M. An Optogenetic
platform for real-time, single-cell
interrogation of stochastic
transcriptional regulation. Mol Cell.
2018;70(4):745-756 e6.

[79]Wan X, Pinto F, Yu L, Wang B.
Synthetic protein-binding DNA
sponge as a tool to tune gene
expression and mitigate protein toxicity.
Nature Communications. 2020;11(1):
5961.

[80] Stanton BC, K NAA, Tamsir A,
Clancy K, Peterson T, Voigt CA.
Genomic mining of prokaryotic
repressors for orthogonal logic gates.
Nature Chemical Biology. 2014;10(2):
99-105.

[81] Burstein D, Harrington LB,
Strutt SC, Probst AJ, Anantharaman K,
Thomas BC, et al. New CRISPR-Cas
systems from uncultivated microbes.
Nature 2017;542(7640):237-241.

[82] Smole A, Lainscek D, Bezeljak U,
Horvat S, Jerala R. A synthetic
mammalian therapeutic gene circuit for
sensing and suppressing inflammation.
Mol Ther. 2017;25(1):102-119.

[83]Nissim L, Wu MR, Pery E, Binder-
Nissim A, Suzuki HI, Stupp D, et al.
Synthetic RNA-Based
Immunomodulatory Gene Circuits for
Cancer Immunotherapy. Cell. 2017;171
(5):1138-50 e15.

[84] Choe JH, Watchmaker PB,
Simic MS, Gilbert RD, Li AW,
Krasnow NA, et al. SynNotch-CAR T
cells overcome challenges of specificity,
heterogeneity, and persistence in
treating glioblastoma. Sci Transl Med.
2021;13(591).

[85] Szenk M, Yim T, Balázsi G.
Multiplexed gene expression tuning
with orthogonal synthetic gene circuits.
ACS Synth Biol. 2020;9(4):930-939.

[86] Bashor CJ, Patel N, Choubey S,
Beyzavi A, Kondev J, Collins JJ, et al.
Complex signal processing in synthetic
gene circuits using cooperative regulatory
assemblies. Science. 2019;364(6440):593.

[87]Mayr U, Serra D, Liberali P.
Exploring single cells in space and time
during tissue development, homeostasis
and regeneration. Development. 2019;
146(12).

[88] Li C, Balazsi G. a landscape view on
the interplay between EMT and cancer
metastasis. NPJ Syst Biol Appl. 2018;4:34.

[89]HorsmanMR, Vaupel P.
Pathophysiological basis for the formation
of the tumormicroenvironment. Front
Oncol. 2016;6:66.

[90] Bailey PC, Lee RM, Vitolo MI,
Pratt SJP, Ory E, Chakrabarti K, et al.
Single-Cell Tracking of Breast Cancer
Cells Enables Prediction of Sphere
Formation from Early Cell Divisions.
iScience. 2018;8:29-39.

20

Synthetic Genomics - From BioBricks to Synthetic Genomes



[91]Gerhardt KP, Olson EJ, Castillo-Hair
SM, Hartsough LA, Landry BP,
Ekness F, et al. An open-hardware
platform for optogenetics and
photobiology. Sci Rep. 2016;6:35363.

[92]Milias-Argeitis A, Summers S,
Stewart-Ornstein J, Zuleta I, Pincus D,
El-Samad H, et al. In silico feedback for
in vivo regulation of a gene expression
circuit. Nat Biotechnol. 2011;29(12):
1114-1116.

21

Synthetic Gene Circuits for Antimicrobial Resistance and Cancer Research
DOI: http://dx.doi.org/10.5772/intechopen.99329


