
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

1

Chapter

Middleware Patterns for Cloud
Platforms
Gary S.D. Farrow

Abstract

This chapter explores how traditional system architectures are being affected by
the emergence of ‘Uber’ style platform models that provide business services with
huge global reach. The specific demands and characteristics of such platforms are
discussed which in turn dictate their technical requirements. The chapter will explain
how middleware technologies have evolved to support today’s requirements for such
massively scalable platform solutions. The latest preferred architectural paradigms
dictate the use of micro-services and APIs are central to the design of such platforms.
Similarly, event based architectures are another key paradigm that must be supported.
The role of modern middleware and cloud technologies to support these newly
dominant paradigms will be explained. Key architectural patterns pertinent to global
platform solutions are illustrated. The role of modern middleware in fulfilling these
patterns is highlighted using real-world examples from the field of open finance.

Keywords: Cloud architecture, migration patterns, API ecosystem,
event-based architecture, microservices, cloud migration, PSD2, open banking

1. Introduction

This Chapter describes advanced patterns relating to the use of cloud platforms
in hosting IT solutions. The context for the patterns is the evolution towards open
information ecosystems, mandated to a large degree by regulatory initiatives such
as PSD2 [1], but also by competitive necessity. In this future business environment,
there is an expectation of a significant increase in transaction volumes as new and
innovative services become available for consumers.

The Chapter describes why cloud platform are the essential technology to
provide cost effective scalability for IT solutions. The patterns highlight how new
application components in the cloud are used in conjunction with existing on
premises applications in a hybrid approach to deployment. Further, the Chapter
also highlights how the patterns can then be used as part of a phased, but fully
complete, migration to the cloud. Finally, specific real world usage scenarios for the
patterns are highlighted.

The patterns are presented in a cloud vendor agnostic way and can be imple-
mented in any of the key cloud provider technologies; Amazon Web Services
(AWS), Google Cloud Platform (GCP) or Microsoft Azure.

The Chapter is structured as follows; Section 2 provides the background in terms
of the business environment and the associated business drivers that necessitate the
move to cloud. It further explores the technology perspectives of cloud that provide
the specific advantages over conventional infrastructure technologies to support

Middleware Architecture

2

the emerging business environment. Section 3 introduces the definition of a cloud
platform in the specific business context outlined.

Section 4 provides the underpinnings of the key cloud platform patterns in the
form of relevant established architecture patterns and outlines the essential build-
ing blocks for cloud solutions. Section 5 then uses these underpinnings to describe
the proposed cloud platform architecture patterns. Section 6 illustrates the use of
the cloud patterns to achieve a migration from conventional IT solution deploy-
ment via a multi-phased approach. Finally, in Section 7, real-world scenarios are
described to which the cloud patterns are directly applicable.

2. Background

Cloud computing has revolutionised the provisioning of infrastructure for
IT services. As the maturity of the cloud offerings has increased, the richness of
the of capability has progress from, initially, Infrastructure as a Service (IaaS),
through to Platform as a Service (PaaS) and then Software as a Service (SAAS).
The latest generation of cloud services relate to the availability of cloud plat-
forms; domain specific applications connecting users of a particular services
with the service providers via the concept of a cloud platform. There are numer-
ous examples now appearing but, one of the earliest and a classic example of
such is Uber.

The Chapter introduces some key business drivers for the use of cloud platforms.
Specifically, the context of regulatory changes relating to open banking are used to
illustrate trends in financial services domain. Its consequences in terms of impacts
to IT system non-functional requirements, particularly those relating to the ability
to scale on demand and cost effectively, are highlighted. This creates a problem for
an organisation’s IT function in supporting these trends.

The use of cloud technology and cloud platforms is now ubiquitous in most
organisations IT architectural thinking, with the promise of providing:

• On demand and self-service characteristics; hence being suitable for agile
delivery lifecycles

• Highly scalable architectures supporting platforms having huge global reach

• Capability to store of huge volumes of data and derive useful insights to inform
a variety of downstream services

Various patterns for the migration of components to the cloud have been identified
previously [2]. These have focussed on basic technology migration patterns such as:

• Re-Deployment

• Cloudification

• Relocation

This focus of this Chapter is in defining advanced, application migration pat-
terns that exploit the advantages of cloud computing for use in emerging and future
open information ecosystems. The patterns highlight the essential adoption and use
of cloud platforms through:

3

Middleware Patterns for Cloud Platforms
DOI: http://dx.doi.org/10.5772/intechopen.98884

• Enabling the caching and aggregation of customer data from which insights
can be determined and further support downstream customer services

• Catering initially for a hybrid co-existence with ‘on premises’ IT systems and
services such that these can be retained in the short term and provided cost
effectively

• Ultimately supporting the complete migration of IT systems from on premises
deployment to a cloud platform

2.1 Business drivers

The introduction of new financial market regulation, notably the revised
Payments Services Directive [1] (or PSD2), has mandated banks to open up account
information and payment services to third parties. The regulation is considered
an important enabler for the creation of new and innovative customer proposi-
tions. PSD2 is recognised as a trigger for the wider concepts of ‘open banking’ and,
beyond this, ‘open finance’ in which ultimately a rich variety of financial services
are accessible to an ecosystem of third parties comprising third parties, business
partners and industry bodies.

Open banking has led to a corresponding rise in financial technology organisa-
tions – namely the “fintechs”. Indeed, information pertaining to the take up of open
banking services confirms that 94% of fintechs view open banking as a major area
of opportunity [3].

The net effect of this is that there is likely to be a growth in financial transactions
accessing customer accounts as new services, founded on the open access regula-
tion, are brought to market. This presents a challenge for financial institutions; that
of scaling their IT systems cost effectively to support the new market dynamics
with increased transaction volumes.

To summarise:

• Within financial services, open banking is recognised a key area for driving
business growth

• To enable rapid pace of change and innovation, businesses must adopt technol-
ogy that scales effectively and enables an engaging customer experience

• Cloud technology is considered essential to achieve scalability of the banks
underlying systems to meet the demand for future services

Organisations are therefore faced with a key problem to address of how to
combine the value of their existing mature core applications with the advantages
that cloud technology provides. Superficially, they are faced with a number of
high-level architecture challenges:

• Do they lift and shift applications to the cloud?

• Do they invest in rewriting applications to take advantage of the cloud
technologies?

• Do they migrate to greenfield cloud platforms providing new implementations
of core services?

Middleware Architecture

4

This Chapter helps organisations to address these key issues by describing a
variety of patterns highlighting relevant cloud platform usage scenarios includ-
ing hybrid deployments and patterns to support, ultimately, the full migration of
services to a cloud platform.

2.2 Cloud technology drivers

In this Section, a precis of the features of cloud technologies is provided. These
reinforce what makes a cloud platform suitable for supporting the provision of scal-
able information services in general and the specific emerging trends in banking.
The notable technology features are:

• Elastic scaling. As transaction volumes increase or decrease, cloud autoscaling
technologies scale the computing resource required automatically.

• Compact Data Notation using Java Script Object Notation (JSON).
Compact data representation standard based on name-value pairs. Again this
infers requires less bandwidth than other data formats such as XML when
transmitting data, making it more suitable for internet usage.

• RESTful API standards. A RESTful API uses standard HTTP requests to invoke
remote processing on data. REST is the preferred API technology of choice as it
is based on open standards and the use of a ‘lightweight’ stateless HTTP protocol
for its requests and responses. This again reduces computing and networking
resource requirements and makes a cloud solution inherently more scalable.

• ‘No SQL’ database technology. ‘Document’ style storage databases allow
for the storage of data is the same format as which it transmitted, specifically
JSON. This approach requires no, or minimal, format translation from data
store through to payload, further reducing the computing resources required
in supporting a transaction from data deserialization through its transmission
and presentation to a consumer.

• Use of Open Source middleware. Open Source middleware is prevalent for
cloud deployments. Such software licencing models are much more scalable
as the software is free, or at the very least the pricing models are better geared
to the highly elastic solutions enabled by the cloud. Thus, cloud solution
runtime costs are close to that of a linear ‘utility’ model, rather than having the
incremental costs breaks associated with traditional middleware and vendor
software. Hence this ultimately more cost efficient.

Consider now a traditional IT architecture that supports banking and other infor-
mation systems. The underlying customer information will typically reside in a ‘system
of record’, the implementation of which typically fall into one of two categories:

1. A bespoke legacy system, such as a mainframe, developed over many years;
often difficult to maintain with rigid release cycles for enhancements

2. A vendor package, providing a complete or modular domain solution. e.g. a
core banking platform or payment engine.

In the context of open information access, the ability to scale on demand and at
a cost that is linear to the transaction load becomes a key requirement. However,

5

Middleware Patterns for Cloud Platforms
DOI: http://dx.doi.org/10.5772/intechopen.98884

both of the above implementation options present challenges in meeting the non-
functional characteristics of a new open information ecosystem outlined since the
ability to scale cost effectively becomes difficult.

One reason for this is that both legacy and vendor product pricing are typically
very dependent on supporting hardware and the number of CPUs required. Hence
cost breaks relating to hardware and vendor product licencing tend to be highly
non-linear. To accommodate the open information ecosystem and expected transac-
tion growth via a traditional IT architecture typically means over-engineering to
allow for sufficient headroom in the capacity. Thus, mitigating the scalability risk
in a traditional IT architecture is likely to be highly cost inefficient given the wide
range of loads that could be experienced.

2.3 Open information ecosystem requirements

The difference in usage profiles between open banking and traditional banking
are now explored. In general, traditional banking is subject to highly predictable
loads based on:

• A finite customer base for a given banks

• Online usage patterns that are well understood and predictable

• System processing that is based on periodic cycles

 ○ Daily processing cycles such as overnight batch processing

 ○ Monthly processing cycles, such a billing

It is reasonable to assume that net transaction volumes will inevitably increase
substantially as third parties develop their propositions and these gain maturity
in the marketplace. This alone will result in customers interacting with their bank
more frequently, albeit indirectly via the third parties applications in ‘customer
present’ scenarios. Also, there will be an increase in transaction volume driven
from the third parties directly. Third parties, having obtained consent from the
customer for specific account information, will exercise their right under PSD2 to
access that information up to four times daily in ‘customer not present’ scenarios.

However, with open banking, transactional loads are likely to be significantly less
predictable. The open banking transaction volumes have a more complex and less
deterministic relationship with existing customer volumes and their access patterns:

• Customers may employ the services of several third parties and thus a
multiplier will apply to the volume of transactions normally associated with a
given customer base. This multiplier is difficult to quantify as:

i. The percentage of account holders that subscribe to use PSD2 services is not
yet known

ii. The number of PSD2 services that customers subscribe to is likely to be
highly variable

• third parties will undoubtedly access account information and transaction
history without the customer being present up to the limit defined by the
regulation.

Middleware Architecture

6

• Information access patterns are less predictable and determined by the third
party rather than via predictable customer access patterns that are well
understood by the banks’.

These characteristics translate to specific IT issues for the account information
provider, notably:

• How to achieve scalability of the mandated services to meet a, potentially huge,
increase in transactions volume

• How to accommodate peak loads at non predictable times

• How to ensure performance and availability of the regulatory interface to
support the open information services

3. Cloud platform approach

Given the challenges highlighted for open information access, the role of a cloud
platforms in the providing solutions to this problem have previously been identified [4].

3.1 Platform definition

In brief, a platform is a business based on enabling value-creating interactions
between external producers and consumers. The platform provides an open,
participative infrastructure for these interactions and operates within governance
conditions set for them. The platform’s overarching purpose: to consummate
matches among users and facilitate the exchange of goods, services, or social cur-
rency, thereby enabling value creation for all participants.

3.2 Technical service provider platforms

A Technical Service Provider (TSP) is a non-regulated participant in the PSD2
ecosystem. They provide services on behalf of a regulated entity and provide the
necessary IT components to implement the required PSD2 services, intermediat-
ing between an Account Provider and a Third Party Provider via their platform, as
illustrated in Figure 1. Standards for PSD2 access to account services (e.g. from the
Berlin Group [5]) universally employ application programming interfaces (APIs),
these being the de facto standard for B2B interfaces over the Internet. Further, as the
ecosystem expands to accommodate broader open banking services, there is an expec-
tation that additional, non-regulatory, services will also be implemented using APIs.

Figure 1.
Cloud platform context.

7

Middleware Patterns for Cloud Platforms
DOI: http://dx.doi.org/10.5772/intechopen.98884

TSP platforms can accommodate such open banking services on behalf of an
account provider.

3.3 Summary

The concept of a cloud platform has been introduced and the associated advan-
tages highlighted. In practice such a platform can either be provided by a third party,
known as a TSP, or by the bank themselves in the form of a private cloud. For the
purposes of the patterns now described below and their rationale, this distinction is
not significant.

4. Pattern building blocks

4.1 Command query response segregation

Command Query Response Segregation (CQRS) is a fundamental design pattern
identified by Young [6] and Fowler [7]. Up until recently, the use of this pattern was
quite limited and, furthermore, its usage came with caveats about the additional
implementation complexity required. Through an implementation of this pattern,

Figure 2.
Abstract CQRS pattern.

Middleware Architecture

8

it will be shown that certain key benefits of a cloud platform can be realised. The
pattern is shown conceptually in Figure 2.

In its abstract form, the pattern is very simple:

• One mechanism is used to read data – the Query element of the pattern

• A different mechanism is used to write data – the Command element of the pattern

• Data subject to an update in the Data Master (illustrated) is propagated to the
Read Only Cache once an update has occurred occur.

The pattern is unspecific regarding implementation.
The significant feature of this pattern is that is reduces loading on the Data

Master, since only write operations are performed on this data store. In the context
of financial services this is highly significant. Consider the Data Master as sup-
porting a system of record such as an accounting application. Since the majority
of transactions on accounts are in fact read operations (typically 80%), by having
a separate data cache for read only transactions, this approach becomes highly
effective in reducing the net load on the system of record.

In the cloud patterns described in this Chapter, it will be shown how the query
service and the command service can be implemented independently and deployed
to a cloud platform in a phased approach if necessary. This enables scalability and
performance and ultimately can facilitate a complete migration of a system to a
cloud platform.

4.2 Publish-subscribe architecture

Publish-Subscribe is an architectural pattern that is exploited in the proposed
patterns for cloud platforms. The components of the pattern are illustrated in
Figure 3. The pattern is fundamentally about message distribution:

• An Event Publisher creates and sends a message

• An Event Subscriber receives and processes messages

• The messages delivery is facilitated by a Publish/Subscribe Engine.

Figure 3.
Publish - subscribe architecture.

9

Middleware Patterns for Cloud Platforms
DOI: http://dx.doi.org/10.5772/intechopen.98884

The Publish/Subscribe engine manages the distribution of messages based on
the set of subscriptions. When an event is published, the engine matches the sub-
scribers, typically based on the assignment of ‘topics’ and transports the message to
the destination accordingly.

4.3 API gateway

A brief description of an API Gateway is provided here for the purpose solely of
illustrating its role in the cloud patterns. In short, an API Gateway provides services
for the management of APIs. These services broadly equate to a set of policy driven
capabilities that dictate the characteristics and behaviour of an API. Typical policies
relate to:

• Security management of the API

• Performance management, viz. throttling of endpoint connections

In addition, an API Gateway acts as an audit point and the logging of API
usage. A number of commercial and open source API Gateway offerings are
available.

4.4 Micro services architecture

The Service Oriented Architecture (SOA) paradigm has previously dominated
architectural thinking. This paradigm relied on the constructs of a layered hierarchy
of web services to fulfil a request. The services were specified and implemented via
strongly typed interface definitions using XML. Similarly the invocation protocol,
SOAP, was a verbose XML implementation.

Microservices have a similar concept of an interface definition but this is speci-
fied and implemented using a much simpler data typing language, namely JSON
with services invocation via a ‘lighter’, stateless protocol, denoted Representational
State Transfer (ReST).

However, whilst there are technical differences in the way that web services and
microservices are specified and invoked, the difference in architectural style goes
much deeper that the underlying technologies. Specifically, a microservice architec-
ture has the following characteristics:

• It is not a ‘layered’ architecture in that each microservice should be designed
to perform a specific function through from data presentation to the data
persistence

• Each microservice should therefore encapsulate all the functionality to support:

 ○ Presentation of data, irrespective of whether presentation layer is a graphical
or ‘headless’ data payload.

 ○ Business logic associated with the service. e.g. business validation logic.

 ○ Data retrieval and update services.

• They employ a ‘lightweight’ ReST protocol for the invocation of each
microservice.

Middleware Architecture

10

It is useful to emphasise the difference between this and the traditional service-
oriented architecture paradigm as this is key to the effectiveness of the cloud plat-
form patterns presented here. In order to compare, Figure 4 illustrates the typical
layering of a SOA architecture. This is shown alongside the concept of a microser-
vices architecture, with each microservice encapsulating a vertical ‘slice’ through
this layering. In its simplest form, the microservice architecture is a series of such
vertical slices with each microservice being a completely independent construct and
having zero coupling to other microservices.

4.5 Event based architecture

An event-based architecture is another mature architecture paradigm that
complements perfectly a microservices architecture by supporting the commu-
nications between them. The design principle for this style of communication,
again relates to ensuring decoupling between microservices. Independence of
each microservice supports the ability to design, build and deploy microservices
without impact to other microservices supporting the concept of Domain Driven
Design [8].

Thus, rather than create dependencies between microservices using point
to point connections between them (i.e. one microservice explicitly invoking
another microservices via it interface), using an event driven architecture pattern,
a microservice will publish data via an event construct. Microservices that are
potentially impacted by the event, subscribe to the event and receive the event and
its associated data.

Figure 4.
SOA versus microservice architecture paradigm.

11

Middleware Patterns for Cloud Platforms
DOI: http://dx.doi.org/10.5772/intechopen.98884

To implement this architecture pattern a Publish-Subscribe Engine component
is required. This component manages the publication of events, typically via the
definition of topics. Consumers of the events are defined by their subscriptions to
the variety of topics.

4.6 Bounded data context

In its general from, a bounded data context defines the necessary data enti-
ties and attributes to support a given business domain. This is another idea
that is integral to the concept of Domain Driven Design [8]. In simple terms, a
bounded data context defines a key domain entity such as a Customer, an Order
or an Account. The data attributes for the bounded data context contains foreign
keys that allow linkages to other domains. For example, a ‘Customer’ bounded
context may contain a list or collection of ‘Account IDs’ to define linkages to the
Account domain entities that equate to the Account bounded context. Limited
hierarchical nesting of the data enables implementation using JSON data
type definitions rather than a stronger typed data structure implementation
such as XML.

By constraining the data set in this way, a relatively simple data structure can
thus support the microservice in respect of its CRUD services. Since the bounded
contexts each define a self-supporting and independent data set, this in turn sup-
ports low coupling between the microservices allowing for independence of design,
through to packaging and deployment.

4.7 No SQL databases

SQL databases relate to a very specific data entity relationship model and associ-
ated query model based on tables. NoSQL databases are a technology that provide
an alternative to traditional data entity relationship models and storage and support
data retrieval mechanism that are different to the traditional entity relationship
model. There are a several fundamentally different types: columnar, document (aka
object) databases, key-value pair and graph NoSQL databases.

The bounded data context approach is well suited to an implementation using
a NoSQL database, specifically the document style. Data can be serialised and
de-serialised efficiently without any paradigm shift in the data representation.
In this respect, JSON microservice payloads can translate directly to serialised
document objects and vice versa.

5. Platform patterns

A prime focus of the patterns for cloud platforms presented in this Chapter is
the notion that you for a specific functional service, you use a different approach
to update information than the approach you use to read information. The original
idea stems from a pattern known as Command Query Responsibility Segregation
outlined in Section 6 above.

Consider now the business context attributed to open banking described in
Section 2. When deconstructed into its constituent parts, the CQRS the pattern can
be seen to be highly useful in supporting organisations in meeting a number of the
business drivers that have been identified, specifically:

• To meet their regulatory requirements for open access to their
customer’s data

Middleware Architecture

12

• To scale ageing legacy systems cost effectively to meet growth needs

• To ultimately support migration of complete legacy platforms to a new cloud-
based platform, helping to meeting the requirements for an agile IT organisa-
tion supporting IT changes with a high cadence.

In this respect this Section highlights the following patterns each using ele-
ments of the original CQRS pattern to meet a specific use case. The following cloud
platform patterns are identified:

• Cloud Data Cache

• API Façade

• Data Hydration

Further, it is shown that, through the sequencing of these new patterns, they can
be used to facilitate the complete migration of a on premises legacy system of record
to a new cloud platform. The cloud patterns are now described in detail.

5.1 Data cache

This pattern relates to the provision of read only services via a cloud platform.
The business context of this pattern is that information services, traditionally
provided by an organisations’ core systems, such as a system of record, can now
be invoked indirectly via a third party, such as is mandated by the open banking
regulation. In such a scenario there arises an increase in demand for services. This
in turn places demands of increased transactions and additional load on the core
system of record.

Consider now that, for applications such as core banking systems, read transac-
tions typically account for 80% of transaction volume. In these circumstances, to
alleviate transaction load on the core system, the pattern provides a read-only data
cache of data derived from the system of record. As described in Section 2.2, this
solution therefore provides a highly scalable solution to this particular business
scenario by using the cloud platform pattern, notably through:

• Use of low-cost, open-source licencing models for the cloud component
technologies and middleware.

• Avoidance of high cost, monolithic scaling of the underlying system of record
having high cost-breaks.

The key advantage of this pattern is that, in response to such increased demand for
read only information services, the organisations information services can be scaled in
a far more cost-effective way than by scaling the underlying system of record.

The components of this pattern are illustrated in Figure 5 and their role
described in Table 1.

5.2 Hydration engine

This pattern relates to population of the data stores cache to support the Data Cache
Pattern described above. Each of the populated data stores represents a bounded data
context for the microservices in the Data Cache pattern above.

13

Middleware Patterns for Cloud Platforms
DOI: http://dx.doi.org/10.5772/intechopen.98884

The population of the data stores relies on the implementation of the
publish-subscribe pattern described in Section 4.2 To populate the data stores,
a single subscriber microservice is defined for each bounded data context
identified.

The components of this pattern are illustrated in Figure 6 and their role
described in Table 2.

Figure 5.
Data cache cloud pattern.

Component Role

API Gateway Hosts proxy APIs for each microservice and acts as the Policy Enforcement Point (PEP)

for access to the services.

Microservice A microservice is associated with each API offered via the Gateway and provides read

access to a given data cache.

Data Cache A number of data stores are provided each relating to a single bounded data context

Hydration

Engine

Its purpose is to populate the data caches and keep them synchronised with the system

of record. This component is itself a pattern and may have a number of implementation

variants.

Table 1.
Data cache pattern components and role.

Middleware Architecture

14

5.3 API Façade

This pattern is a cloud specific implementation of the well-known Bridge pat-
tern [9]. The pattern assumes that there are an existing set of services that provide
integration with the system of record. The pattern implementation provisions a set of
modern API interfaces, functionally equivalent to those provided by the combination
of the system of record overlayed by its existing integration services. Such existing
integration services could be implemented by a number of technologies, including:

Figure 6.
Hydration engine cloud pattern.

Component Role

Data Cache A number of data stores are provided each relating to a bounded data context.

Subscriber

Microservice

Each subscriber microservice subscribes to a set of event services sufficient to

populate the bounded data context of the data store.

Publish/Subscribe

Engine

This component maintains the set of events for publishing data and maintains the

set of subscribers to the events.

Connector The connector provides integration with the source system. The connector detects

changes in the underlying data in the system of record and translates these into

events for processing by the Publish/Subscribe Engine.

System of Record This component represents the master application that is the source of the data

being cached.

Table 2.
Hydration engine pattern components and roles.

15

Middleware Patterns for Cloud Platforms
DOI: http://dx.doi.org/10.5772/intechopen.98884

• SOAP web services

• Messaging services, such as MQ Series, Rabbit MQ, AWS Simple Queuing System

• CICS transaction processing technology

In this respect, the APIs represent a new interface definition and constitute a
‘façade’ for the existing integration services. The APIs are hosted within the cloud
platform, fronted by an API Gateway that provides API management controlled
through policies as described in Section 4.3.

The components of this pattern are illustrated in Figure 7 and their role
described in Table 3.

Figure 7.
API facade cloud pattern.

Component Role

API Gateway Providing policy based access to the APIs.

Facade Microservice Provides the implementation of the API interface by consuming the existing

legacy integration services.

Existing Integration

Services

This component represents existing integration services that are consumed by the

new microservices to access the underlying systems of record.

System of Record This component represents the master application that is the source of the data

and the target of data updates.

Table 3.
API facade pattern components and role.

Middleware Architecture

16

6. Cloud platform migration

This Section provides an illustration of how the three patterns outlined previ-
ously can be used to achieve a migration of an on-premises legacy application,
such as a system of record, to a modern cloud platform. Three potential phases of
the migration are identified, fulfilling gradual ‘strangulation’ [10] of the legacy
 platform as shown in Figure 8(a)-(c).

Phase 1 of the migration provides a set of selected read services via the cloud
platform using the Data Cache and the Hydration Engine patterns. This migration
step itself can be a phased approach, gradually incrementing the number of the
bounded contexts that are supported in the cloud platform.

Phase 2 of the migration then provides complementary write services for
the read services and their bounded data contexts. To affect this migration the
API Façade Pattern is used to support the write services. Having both read and
write services for a given bounded data context allows integration in the form
of update via events between the system of record and the cloud platform to be
switched off.

A caveat to this happening is that the consuming applications must be migrated
to use the new cloud platform services and not continue their use of the legacy
services. Without this occurring, the architecture becomes complicated by the
fact that any updates made via the cloud platform must also be propagated back to
system of record. To support this, the system of record must also be a subscriber
to events derived from updates via the write microservices. Similarly, any updates
made to the system of record must be propagated to the cloud platform. To support
the latter, the hydration engine must be retained in the architectural solution at
this stage.

To avoid such a complication requires the coordination of:

• Provision of the write services to complement the read services within the
cloud platform for each of the bounded contexts.

• Migration of the service consumers to the new cloud platform services as they
become available.

• Discontinuing use of the equivalent legacy services.

Achieving a clean separation of write services can be difficult, particularly if
there is not a simple correspondence between the legacy and cloud platform ser-
vices. Similarly, Phase 2 can represent the target state architecture where a residual
set of legacy services are retained that existing consumers still continue to use.
This is very much a realistic scenario in the cases where it not feasible to change
the legacy consuming applications to use the new API based cloud services. A
strategy of maintaining the legacy system of record for legacy consuming clients
may therefore be necessary. Alternatively, new consumer applications may be built
to complement the existing legacy client applications and the legacy clients may
ultimately be deprecated.

If the intention is to fully deprecate the system of record, then the migration
process can proceed on a per bounded context basis until all the data that was
originally managed by the system of record is represented in the cloud platform.
The consumers of the legacy services must be migrated to consume the new
services offered by the cloud platform as the bounded contexts are gradually

17

Middleware Patterns for Cloud Platforms
DOI: http://dx.doi.org/10.5772/intechopen.98884

migrated. Once the migration has completed, the legacy system of record can
then be deprecated. In these circumstances, to replace the legacy client applica-
tion, refactored or completely new client applications must be built on top of
the new cloud platform services. The end state architecture in post migration is
shown in Figure 9.

Figure 8.
(a)-(c). Migration to a Cloud Platform via Strangulation.

Figure 9.
End state architecture post migration.

Middleware Architecture

18

7. Pattern usage scenarios

This Section describes four specific example usage scenarios for the cloud pat-
terns introduced here.

7.1 Open banking account and transaction data

Regulatory initiatives such as the PSD2 [1] in Europe and the Competition and
Market Authority Order [11] in the UK dictated banks must provide information
services relating to customer’s account details and their historical transactions to
approved third parties, subject to customer consent.

Using the data they obtain about the customer from their banks, the third
parties are thus empowered to create innovative, value add, services that entice the
bank’s customers. These new services create a demand profile for information from
the banks that is significantly different to existing customer behaviours; these being
typically highly predictable and with a tendency to be based on a point in time
transactional need e.g., to check their account balance, to make a transfer. Given
that third parties are permitted to access customer information multiple times per
day, this will result in a significant increase in transaction frequency from the banks
perspective as third parties will take advantage of this to keep their data up to date
to reflect a given customer’s intra-day transactions.

As explained in Section 2.2, faced with a choice of scaling their existing account-
ing systems of record to accommodate this increased transaction volume, the bank
should implement the Data Cache Pattern described in Section 5.1 and the support-
ing pattern in Section 5.2 to achieve cost effective scaling to support the increased
transaction volumes.

7.2 Public and private API hosting

Once again, in response to the landmark regulatory initiatives for open
information access previously described, financial institutions, notably banks,
are mandated to provide access to account services to third parties. In terms of
the technology to offer these services the de facto architectural style for imple-
mentation of these services is that of ReSTful APIs. Similarly, to complement
the regulatory services, banks may also choose to offer their own services for
consumption by their partner organisations or to monetise additional, non-
regulatory services for consumption by third parties.

The net effect of this is that banks need to offer a wide range of ReSTful API
services for consumption by external parties. To support these services bank should
implement the API Façade cloud pattern of Section 5.3, enabling controlled policy
based access to the set of APIs implementing the functional services and leveraging
existing integrations to the systems of record where appropriate.

7.3 Customer data aggregation

A third usage scenario relates to the aggregation of customer data. Third parties
access and accrue account information for a given customer from multiple financial
institutions. This data should be captured according to the Data Cache pattern and
serves to support the third party provider in obtaining a convenient and full picture
of the customer’s financial position. This data supports their provision of value add
services to their customers. A key observation is that the cloud platform implemen-
tation is provided by the third party provider, not by the account provider, resulting
in a demand side cloud platform [5].

19

Middleware Patterns for Cloud Platforms
DOI: http://dx.doi.org/10.5772/intechopen.98884

A variant of this is that, within a given financial institution, data about a
customer may be aggregated from a number of different account systems of record
(e.g., current account savings account, credit card account) via the same Data
Cache Cloud Pattern. Conversely, this usage scenario represents a supply side
platform. The two styles of platform are illustrated in Figure 10 below.

7.4 Legacy system remediation

A common problem for banks and other financial institutions is that of vendor
lock-in to legacy technologies caused by a variety of circumstances:

• Low risk appetite of the organisation to undertake a complex migration to a
new replacement system of record

• Sheer effort to refactor the legacy application using a modern IT architecture

At the same time, drivers to move from the legacy platform have increasing
immediacy:

• Scarcity of resources to maintain and enhance the legacy system

• Correspondingly high maintenance costs

• Inability to support business resiliency due to slow development timescales and
long delivery cycles for changes

In this context, the phased migration using the strangulation pattern outlined
in Section 6 offers a viable solution to the vendor lock-in problem. By allowing for
a phased migration the approach this significantly de-risks the migration to a new
system of record.

• New services are introduced in a controlled manner, rather than one
‘big bang’

• The approach has low initial complexity, focusing on read services for new
consumers

• It has the advantage that legacy application service consumers are not initially
impacted by introduction of new services.

8. Summary

This Chapter has highlighted the key business and technical drivers to lever-
age cloud platforms in an era of open information services. Specific examples and
scenarios from the financial services domain have been provided, but these are
considered readily able to generalise to other business domains.

As open access to information becomes more prevalent, either though regula-
tion or competitive necessity, there will be a need to support increased volume of
transactions to access information. In these circumstances, to support scalability of
the underlying information systems, it is considered vital to leverage the properties
of cloud infrastructure. To do this effectively the key architecture patterns have
been identified to support this business prerogative.

Middleware Architecture

20

Figure 10.
(a) Supply side and (b) demand side cloud platforms.

The patterns accommodate both:

• A hybrid approach, leveraging existing infrastructure, co-existing with a cloud
platform and;

• A phased, but ultimately complete, migration from a conventional infrastruc-
ture deployment to that of a cloud platform

The patterns have been presented in a cloud provider agnostic manner and there
are a significant number of technology implementations that can be considered that
map to the middleware capabilities that have been highlighted. This makes them
highly realisable with current cloud middleware technologies and the key global
cloud providers; AWS, GCP and Azure.

Glossary

API Application Programming Interface
AWS Amazon Web Services
B2B Business to Business
CQRS Command Query Response Segregation
CICS Customer Information Control System
CRUD Create Read Update Delete
GCP Google Cloud Platform
HTTP Hypertext Transfer Protocol
IaaS Infrastructure as a Service
JSON Java Object Notation
MQ Message Queue
PaaS Platform as a Service
PEP Policy Enforcement Point
PSD2 Payment Services Directive 2
ReST Representational State Transfer
SaaS Software as a Service
SOA Service Oriented Architecture

21

Middleware Patterns for Cloud Platforms
DOI: http://dx.doi.org/10.5772/intechopen.98884

Author details

Gary S.D. Farrow
Triari Consulting Ltd, Manchester, UK

*Address all correspondence to: gary.farrow@triari.co.uk

SOAP Simple Object Access Protocol
SQL Structured Query Language
TSP Technical Service Provider
XML eXtensible Markup Language

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

22

Middleware Architecture

[1] Directive (EU) 2015/2366 of the
European Parliament and of the
Council of 25 November 2015 on
payment services in the internal market,
amending Directives 2002/65/EC,
2009/110/EC and 2013/36/EU and
Regulation (EU) No 1093/2010, and
repealing Directive 2007/64/EC (Text
with EEA relevance), available at:
https://eur-lex.europa.eu/legal-content/
EN/TXT/?uri=CELEX%3A32015L2366,
last accessed on 7 Feb 2020

[2] “Pattern-based Multi-Cloud
Architecture Migration”, Pooyan
Jamshidi1, Claus Pahl2, Nabor C.
Mendonc , Software Practice and.
Experience. 2016; 00:1-25

[3] Ernst & Young (2018) ‘FinTech Open
Banking Snapshot’, available at: https://
assets.ey.com/content/ dam/ey-sites/
ey-com/en_gl/topics/banking-and-
capital-markets/ey-FinTech-open-
banking-snapshot. pdf Last accessed 6
June, 2021.

[4] The Berlin Group (2020)
‘NextGenPSD2 XS2A Framework —
Implementation Guidelines, Version
1.3.6’, available at: https://www.berlin-
group.org/nextgenpsd2-downloads. Last
accessed 8 Jun 2021

[5] “Open Banking: The Rise of the Cloud
Platform”, G. S. D Farrow, Journal of
Payments Strategy & Systems, Volume
14 Number 2, 2020.

[6] Young, Greg. "CQRS Documents"
(PDF) http://cqrs.files.wordpress.
com/2010/11/cqrs_documents.pdf. Last
accessed 7 May 2021

[7] Fowler, Martin. "CQRS". https://
martinfowler.com/bliki/CQRS.html.
Last accessed on 7 May 2021

[8] Domain Driven Design: Tackling
Complexity in the Heart of Software. Eric
Evans, Sept 2003, ISBN-10032112515

[9] Erich Gamma, Richard Helm, Ralph
Johnson, John Vlissides (1994). Design
Patterns: Elements of Reusable Object-
Oriented Software. Addison Wesley.
pp. 151ff. ISBN 0-201-63361-2.

[10] An Agile Approach to a Legacy
System, Chris Stevenson and Andy Pols,
http://cdn.pols.co.uk/papers/agile-
approach-to-legacy-systems.pdf. Last
accessed 10 May, 2021

[11] ‘Competition and Marketing
Authority Report - RETAIL BANKING
MARKET INVESTIGATION, “The
Retail Banking Market Investigation
Order”’, 2017.

References

