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Abstract

Biogenetic engineering is a significant technology to sensibly manage microbial 
metabolic product factories. Genome modification methods for efficiently control-
ling and modifying genes at the genome level have progressed in biogenetic engi-
neering during the last decade. CRISPR is genome editing technology that allows for 
the modification of organisms’ genomes. CRISPR and its related RNA-guided endo-
nuclease are versatile advanced immune system frameworks for defending against 
foreign DNA and RNAs. CRISPR is efficient, accessible, and trustworthy genomic 
modification tool in unparalleled resolution. At present, CRISPR-Cas9 method is 
expanded to industrially manipulate cells. Metabolically modified organisms are 
quickly becoming interested in the production of different bio-based components. 
Here, chapter explore about the control productivity of targeted biomolecules in 
divergent cells based on the use of different CRISPR-related Cas9.

Keywords: Biogenetic engineering, CRISPR, Endonuclease, Metabolic biomolecules

1. Introduction

The manufacture of biobased metabolic products by microbial production 
lines offers a viable path to a continuous future. At present, numerous bacterial 
strains have largely been employed to producediverse variety of metabolites that 
are useful for diverse industries including food and pharma [1, 2]. To increase the 
yield of metabolic products, genome editing is widely used. Genome modification 
is a form of genetic manipulation in which single bases of DNA are manipulated 
by adding, removing, or altering the genome of bacteria [3]. Despite it, most 
bacterial strains still face difficulties in genetic modification that is key impedi-
ment to metabolic engineering. Conventionally the zinc finger nucleases and 
transcription-activator like effector nucleases have been adopted for bacterial 
genetic modification [4, 5]. Both genetic modifications revolve around the prin-
ciple of DNA-protein recognition [6].

ZFNs owned by SangamoBioSciences is one of the oldest gene-editing technolo-
gies established in the 1990s [7]. ZFNs are the engineered proteins that bind to the 
desired DNA. These proteins have two domains, the first one is a manufactured 
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zinc-finger DNA binding domain and other is a DNA cleaving domain [8]. A basic 
zinc finger device has series of 4–6 binding modules. A codon is recognized by 
every unit [7]. Both domains are linked together via a chain of linker sequences. The 
DNA sequence of 24 bp is the first domain and other domain cleaves the recognized 
sequence in 5–7 bp spacer regions with the help of a restriction enzymeFokI [8]. 
FokI nucleases are type II’s restriction enzymes that cause single-stranded breaks 
in a double-helical DNA strand. ZFN was withdrawn due to shortcomings such as 
the time-consuming and costly production of target enzymes, poor specificity, and 
elevated off-target variations, which were gradually overcome by the technological 
innovation [2, 7].

TALEN is another oldest gene-editing technology that was discovered as 
a replacement for ZFNs. It is made up of extremely repetitive DNA sequences 
that promote in-vivo homologous recombination. TALENs, like ZFNs, have two 
domains: N-terminal transcription activator-like effector (TALE) DNA-binding 
domain and C-terminal restriction endonuclease FokI catalytic domain [2, 8]. Both 
type of gene-editing are similar in having two sequence-specific DNA-binding 
proteins (two zinc-finger domains/TALEN domains) adjoining a target sequence, 
with the C-terminal of zinc-finger domain/TALEN domain being accompanied by a 
FokI enzyme, which cuts the target DNA in the form of a dimer [7, 9].

These methods, however, are hampered by the need to build a new nuclease pair 
for each genomic target. Both are also unable to target several genes at the same 
time. Therefore, due to complexity in designing, processing, and verifying the 
molecular requirements for nuclease expression and its targeting, both ZFNs and 
TALENs are escaped [10]. The CRISPR/Cas systems for genome editing are a novel 
technique that allows for the simultaneous targeting of numerous genes for the 
synthesis of superior strains.

2. CRISPR/Cas gene structure

The concept of CRISPR was introduced in 1987, whilst Japanese scientist Ishino 
and team were working on the iap gene in Escherichia coli. Entire gene encodes an 
alkaline phosphatase in Escherichia coli. They discovered repeated DNAs in bacte-
rial genome that is not like other regular sequences [2, 11]. These re-occurring 
DNA sequences might be the components of recurring DNA sequences known as 
“Regularly clustered short palindrome repetitions” (CRISPR). Structurally, small 
repetitions of DNA are followed in CRISPR Systems by short spacer segments of 
genome, which are obtained via the standard bacterial path to a bacteriophage or 
plasmid. These repetitions are also related to nucleases or helicases in which par-
ticular DNA sequences are separated or unwinded [9, 12].

CRISPR is a bacterial and archaeal defense mechanism that works in hybrid with 
CRISPR-associated proteins. These were first discovered inside microorganisms 
DNA, but were subsequently extended to provide adaptive immune system for 
microorganisms [13]. CRISPR/Cas systems are easily adapted for genome modifica-
tion because to their great practicality, comparative simplicity, and robustness [14]. 
CRISPR/Cas sequences are constituted of two or maybe more direct, often partially 
palindromatic, or frequently accurate repetitions (25–35 bp), which are separated 
into one or maybe more operon modules by single spacers (typically 30–40 bp) and 
an adjacent multiple-case cluster [15].

In genome editing, CRISPR works with a double-strand DNA cleavage at the 
particular target site near gRNA [16–18]. In process, CRISPR follows three separate 
but often interrelated stages: (i) acclimatization, (ii) pre-crRNA (pre-CRISPR 
RNA) expression and processing, and (iii) interference. The Cas protein complex 
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attaches to a intended DNA molecule during the acclimatization stage and gener-
ally inserts two double-strand (ds) breakages into the target DNA, after a clear, 
short (2–4 bp) pattern, known as PAM(Protospacer-adjacent motif). The released 
fragment is subsequently transferred into the proximal repeat units of the CRISPR 
assortment. It is then fixed by cellular repair machinery, resulting in proximal 
repeat duplication [19–21].

Later, the CRISPR array is transcribed into a single long transcript by the expres-
sive processing stage. The transcribed transcript is recognized as pre-crRNA, which 
is used for producing mature crRNAs using a distinct complex of proteins from Cas, 
a dedicated processing nuclease (Cas6), a single large Cas protein, or an external 
foundation. In the end, at interference stage, cRNA is utilized to detect protospacer 
that stay attached to the gRNA and then cleaved or inactivated by Cas nuclease [15]. 
The double-stranded cleavage partakes in DNA repair by essential cellular mecha-
nisms. Usually, it entails non-homologous end-joining module and sometimes 
homology-directed repair [22, 23] (Figure 1). In between, the Cas9 is activated via 
forming single guide RNA molecule and triggers double-stranded cleavage at DNA 
target [24].

3. CRISPR classification

CRISPR-Cas systems display extraordinary diversity, including in core genes 
yielded by multiple CRISPR-Cas variations, gene structure, genomically locus 
architecture, and the original sequences [25–27]. The current CRISPR-Cas hierarchy 
contains three primary kinds (I, II and III), the less prevalent, but distinct, Type 
IV, V & VI on the basis of diversification of Cas genes (Figure 2) [28, 29]. Type I 
has the characteristic gene Cas3 that expresses the large protein with a helicase to 
unwind DNA–DNA and RNA–DNA duplexes. Sometimes the domain of helicases 
combines with an HD domain (conserved protein region with histidine (H) and/or 

Figure 1. 
Overview of CRISPR-Cas9 and recent developments in CRISPR/Cas9 genome editing.
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aspartate (D) amino acid residues) and reveals endonuclease activity to make cleav-
age of the target DNA [28, 30, 31].

The type I Cas system contains the Cas1, Cas2, Cas5, Cas7, and Cas6 transcripts. 
Cas1 and Cas2 are genes encoding the cascade complex’s components (which 
include big and small subunits). The Cas5, Cas7, and Cas6 loci are involved in 
the processing of pre-crRNA transcripts. Cas system type I is categorized into six 
sub-genotypes: I-A through I-F, each having its own unique gene and functioning 
organisms. In I-F complexes, Cas3 is also linked to Cas2 gene. In contrast to other 
variants, I-E and I-F are deficient in the Cas4 gene [32, 33].

The CRISPR-Type II contains the Cas9 gene, which codifies and controls the 
cascade complexes’ functions through a multidomain protein [17]. Six domains 
make up Cas9 protein: REC I & II, Bridge Helix, PAM Associating, HNH, and 
RuvC [34, 35]. Rec-I is indeed the primary subunit responsible for RNA bind-
ing. The purpose of the REC II section is unknown presently. The arginine-rich 
coupled helix is the area that initiates cleavage when target DNA is bound [36]. The 
PAM-Interacting region aids in the definition of the PAM specificity necessary for 
target-DNA binding. The HNH and RuvC regions are nuclease areas that catalyze 
single-stranded DNA cleavage (Figure 1) [35]. The type-II CRISPR-Cas system has 
three sub - types: II-A, II-B, and II-C [37, 38]. Additionally, the type II-A system 
has the csn2 signature gene. Although this Csn2 gene has an unknown function, 
it produces tetrameric rings that interact with double-stranded Genetic material 
through center opening [39]. Because the type II-B Cas system lacks the csn2 gene, 
it retains a distinct Cas4 gene. The protein produced by this distinct gene functions 
as a 5′ DNA exonuclease [28]. Similarly, the type II-C Cas system contains the Cas1, 
Cas2, and Cas9 protein-coding genes. Cas type II have been widely embraced as a 
powerful tool for genomic editing [40].

The CRISPR-III systems possess Cas10 as main gene and encode a palm domain-
like multi-domain protein related to that employed in PolBcyclases and polymer-
ases. Cas10 is usually fused into an HD (histidine-aspartate) family nuclease region 
unique from CRISPR-Cas type I HD domains [41].

When encoding Cas1 and Cas2, CRISPR-III systems utilize crRNAs supplied by 
the Cas array linked to either a type I or type II Cas system. This system is classified 
into III-A through III-D subtypes. Csm, Cas1, Cas2, and Cas6 proteins are present in 
III-A type. Csm is a crRNA-guided enzyme that also acts as a DNase or occasionally 
as cyclic oligoadenylate kinase. Only Cmr proteins are present in the III-B pathway, 
which is lacking of Cas1, 2, and 6 loci. According to proximity sequence of crRNA, 

Figure 2. 
The arrangement of several types of CRISPR-Cas systems.
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Cmr identifies and degrades nucleic acids. A cyclase-inactivated Cas10 protein 
is discovered in the III-C type. Type III-C includes an inactivated cyclase domain 
Cas10 protein, while type III- includes an uncharacterized functional gene [42–44].

The CRISPR-Cas type-IV systems exist with plasmid genome of numerous bac-
teria. It lacks both Cas1 and Cas2, and not typically linked to CRISPR arrays andhas 
a high-decrease effector complex (CSF1). The CSF1 consist of csf1 (highly reduced 
subunit), Receptor activity-modifying protein encoding genes belonging to Cas5 
(csf3) and Cas7 (csf2) family [28]. Although all CRISPR/Cas systems have certain 
functionality, Type II CRISPR/Cas is frequently adopted system that establishonly 
on Cas9 protein for the silencing of DNAi genes [45]. Cas9 protein is a large protein, 
involved in nucleic acid cleavage, with molecular weight of ~158 kDa. It has com-
bine structure consisting of α-helical recognition and nuclease lobes [46].

The recognition lobe is made up of extended helix, REC1 and REC2 regions. 
Thenuclease region is generated of RuvC, HNH, and PAM-interacting (PI) 
C-terminal domain (CTD) [35, 47]. RuvC is named after the RuvC segment of  
E. coli, which decides formation of Holliday junctions [23]. In structure, protein 
motifs associates with spacer precursors or protospacers from the DNA of an attack-
ing bacteriophage. These proto-spacer adjacent motifs are widely known as PAMs 
[9]. The crRNA and tracrRNA can be combined into guide-RNA, which enables the 
engagement of Cas9, which is necessary for double-stranded DNA cleavage [6].

The V-CRISPR-Cas12 system was designed for external genome editing applica-
tions such as gene expression suppression or activation, epigenome editing, in-situ 
genomic imaging, and large-scale genome screening [38, 47, 48]. CRISPR-Cas13 
type VI is a tool for various RNA handling in the context of RNA interference 
(RNAi), in-vivo RNA visualization, and nucleic acid detection [49, 50].

4. Modern achievements in CRISPR-Cas9 mediated system

CRISPR/Cas9 technology has enabled a qualitative change in the range of gene 
functions for transcriptional control, gene targeting, epigenetic correction, gene 
therapy, and drug delivery of host genomes [51]. CRISPR/Cas technology possesses 
multiloci genome editing without the integration of a gene marker on the selection 
genome and saves time and exertion in metabolic engineering. Although several 
genetic modifications are available; the CRISPR/Cas9 technology significantly 
enhanced the efficiency of genetic engineering and is adopted as an extraordinary 
“gift.” The CRISPR/Cas9 technology improved industrial micro-organisms’ perfor-
mance in strengthening of microbial factories that are valuable in processing of new 
value-added molecules from the low-cost feedstock.

There are abundant examples of bacteria, yeasts, and filamentous fungi which 
are reviewed in several studies of solicitations of the CRISPR/Cas9 system [51–57]. 
For example, E. coli, S. cerevisiae, Bacillus sp., Clostridium sp., Corynebacterium sp., 
Lactobacillus sp., Mycobacterium sp., Pseudomonas sp., Streptomyces sp. etc. [52, 58–69] 
are employed in the CRISPR/Cas system to improve yield of various metabolic 
products in field of industrial biotechnology. As a proof of concept, Zheng et al. 
employed Type I-F system to engineer Zymomonas mobilis as a synthetic chassis for 
sustainable economic biofuel and biochemical productions [70].

A study was designed to distinguish the orthogonal CRISPR method using  
E. coli for chromosomal addition of the Spd-Cas9based CRISPR module. Here 
found that out of SaCas9, St1Cas9, and FnCas12a, the St1Cas9 and SaCas9 are highly 
efficient to cause double stranded DNA break without associating with the sgRNA. 
This characteristic renders St1Cas9 into the E. coli chromosome as a hopeful Cas9 
ortholog to combine whole or inadequate modules for succinate productionwith 



Synthetic Genomics - From BioBricks to Synthetic Genomes

6

Metabolic product Engineering by 

CRISPR

Host organism Outcome Reference

2-Phenylethanol Multiple genes cassette 
related to Shikimate 
pathway was targeted 
at the ABZ1 site with an 
efficiency of 51 ± 9%.

Kluyveromyces 

marxianus

The modified strain 
revealed the highest 
biosynthesis of 
1943 ± 63 mg/L 
2-phenylethanol.

[76]

2,3-Butanediol Using CRISPR-Cas9, 
the gdh gene was 
targeted to produce 
(2R,3S)-BDO.

Bacillus 

licheniformis

As a consequence, 
fed-batch 
fermentation 
investigations 
showed 
stereospecific 
synthesis of (2R, 
3S)-BDO.

[77]

5-Aminolevulinic 
Acid

The genes involved 
in TCA cycle were 
modified

Shewanella 

oneidensis

The downregulation 
of the essential 
hemB exhibited 
2-fold increasing 
ALA production

[78]

Scleric Acid The Cassette of 
crucial transcriptional 
repressor gene was 
activated to prevent the 
creation of an entirely 
new class of hybrid 
natural products.

Streptomyces 

sclerotialus

The biosynthetic 
route that encodes 
the synthesis of 
scleric acid.

[79]

β-Carotene The β-carotene-rich 
cultivar was developed 
by targeting the fifth 
exon of the lycopene 
epsilon-cyclase (LCY) 
gene.

Musa acuminata In comparison 
to wild genome, 
modified lines 
revealed a 
6-fold increase 
in β-carotene 
concentration 
(~24 μg/g).

[80]

n-Butanol Following the deletion 
of endogenous adhE 
gene into the efficient 
xylose-using host 
genome, a synthetic 
butanol pathway 
cassette was integrated.

Escherichia coli At the bioreactor 
level, the modified 
strain produced 
1.34 g/L butanol, 
which was 21-fold 
more than the 
parent strain.

[81]

2,3-Butanediol In hostgenome, the 
2,3-BDO biosynthesis 
pathway was 
introduced with 
presence of BDH1, alsS 
and alsDgenesfrom 
Bacilus subtilis and 
noxE gene from 
Lactococcuslactis.

Saccharomyces 

cerevisiae

Engineered 
strain produced 
remarkable amount 
(178 g/L) of 2,3-
BDO from glucose 
instead of ethanol.

[82]

Itaconic Acid Targeting of cyp3, 
MEL, UA and Pria1, Petef 
genes

Ustilago maydis The deletion 
of by-product 
encoding genes 
enhanced 
itaconatetitre, rate, 
and yield.

[83]
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178% improvement. It also efficiently hinders production of byproducts including 
lactate, formate, and ethanol [71].

Another research sought to increase CRISPR/Cas9 expression in methylotrophic 
fungus Pichia pastoris. Numerous genomic areas, including the Cas9 DNA sequence, 

Metabolic product Engineering by 

CRISPR

Host organism Outcome Reference

Muconic Acid The multiple genes 
(CAN1, RFP, TKL1, 
ARO4K229L, ARO1ΔaroE, 
and ZWF1) were 
processed for 
upregulation and 
downregulation with 
a hybrid of CRISPR 
system and RNA 
interference.

Saccharomyces 

cerevisiae

The modified 
strain generated 
improved yield of 
cis,cis-muconic acid 
on feed-in-time 
medium.

[84]

Butyric Acid Aconitase genes are 
suppressed in the 
synthetic butyrate 
pathway, and 
phosphotransferase 
and butyrate kinase 
genes are introduced.

Corynebacterium 

glutamicum

Altered strain 
revealed an 
improved yield of 
butyrate production 
(0.52 ± 0.02 g/L) 
than wild strain.

[85]

Octanoic Acid Overexpression o fabZ 
and deletion of fade, 
fumAC and ackA genes

Escherichia coli Product yield 
increased by 61% 
with a titer of 
442 mg/l.

[86]

3-Hydroxybutyrate Targeted to 
transcriptional 
repression of pta& 
aor2 genes

Clostridium 

ljungdahlii

Downregulating of 
pta gene increases 
the yield of 
3-hydroxybutyrate 
with a 2.3-fold

[87]

Isopropanol The gene cassettes thl, 
atoDA, adc, and adh 
or thl, ctfAB, adc, and 
adh were targeted in 
isopropanol synthetic 
pathway.

Escherichia coli The modified 
strain produced 
maximum 
isopropanol 
productivity, above 
the original strain, 
of 0,62 g/l/h.

[88]

γ-Aminobutyric 
Acid

Three distinct genes 
(gabP, gabT, and 
Ncgl1221) were 
knockout to enhance 
the yield of product.

Corynebacterium 

glutamicum

The mutant 
strains expedite 
the production of 
γ-amino butyric 
acid metabolic 
products.

[89]

Galactaric Acid The gene cassette 
encoding putative 
metabolic enzymes was 
removed.

Aspergillus niger The modified 
strain generated 
galactaric acid from 
D-galacturonic 
acid. The modified 
strain was also 
able to convert 
pectin-rich biomass 
to galactaric acid.

[90]

Table 1. 
CRISPR biotechnology applications in production of variable metabolic product.
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gRNA regions, RNA synthetase II & III promoters, have been thoroughly examined 
and shown to have near-perfect targeting efficiency. Additionally, the altered strain 
was shown to be able to fulfill future requirements in synthetic biology, biotechnol-
ogy, and metabolic pathway engineering. Zhang et al. focused on the soya bean 
plant’s competing metabolic pathways for isoflavone production. Through the 
use of CRISPR/Cas9-mediated multiplex gene editing, the GmF3H1, GmF3H2, 
and GmFNSII-1 genes were deleted from the genistein competing route in this 
research [72].

Yang et al. utilized the RNP-based CRISPR–Cas9 technology to modify the 
genome of Aspergillus niger to increase succinic acid synthesis in CRISPR modified 
metabolic products. The desired strain was changed in this research by inter-
rupting genes responsible to synthesize gluconic acid and oxalic acid. Indeed the 
C4-dicarboxylate transporter and the NADH-dependent fumarate reductase were 
overexpressed in this manner. The resultant strain generated 17 g/L succinic acid, 
while the wild-type strain grown on a synthetic substrate produced none [73].

Generally, genome modification in Schizosaccharomyces pombe is more com-
plex than in S. cerevisiae owing to the reduced effectiveness of foreign DNA adjunc-
tion by homologous recombination [74]. As a result, Ozaki et al. modified the S. 
pombe strain using the CRISPR-Cas9 system and synthesized D-lactic acid from 
both glucose and cellobiose. The active genes for pyruvate decarboxylases, dehydro-
genase, and glycerol-3-phosphate dehydrogenase were deleted in this research, and 
the D-lactate dehydrogenase gene from Lactobacillus plantarum was incorporated 
into the S. pombegenome [75]. The applications of CRISPR biotechnology to speci-
fied host species are outlined below in order to generate varied metabolic products. 
(Table 1).

5. Challenges in CRISPR/Cas9 applications

CRISPR/Cas9 provides tremendous genome-control capabilities, but there are 
still numerous obstacles to be overcome. The lack of a reliable DNA repair is the 
most significant of the difficulties associated with CRISPR/Cas technology, accord-
ing to the researchers. As a consequence, numerous researches are increasing the 
CRISPR mechanisms, with the gene-editing technique likely to continual evolution 
for the foreseeable future. Similarly, lack of related techniques for creating single 
guide RNA is a distinct impediment. Limited methods for combining CRISPR/Cas9 
with other genome-editing technologies, Cas9 endonuclease toxicity, off-target 
effects, the incidence of undesired mutations, and ethical issues are among the 
remaining issues. To counter these limitations, researchers have attempted to create 
and access various base editing approaches [91]. Besides, human genome has only 
one-sixteenth PAM sites, restrict the number of gene targetable sequences. So, 
novel Cas9 varieties are required to search and increase PAM interaction in the new 
experiments.

6. Future perspective

The future of new genetic mutations engineering should be to enhance the 
effectiveness of imminent models by joining innovative characteristics. In com-
parison to conventional genome editing systems, the CRISPR/Cas9 approach has 
provided rapid multiple genome sites editing of industrial strains at a time. Future 
models of CRISPR-Cas9 not only enable us to predict the success of editing but also 
the outcome. In this respect, the integration of droplet-based micro fluidics with 
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CRISPR/Cas9 could begin breakthroughs in modern biology. However, researchers 
can extract particular DNA segments but through micro homology can delete spe-
cific DNA segments and control CRISPR-Cas9 results. This approach enables to take 
advantage of the micro homology-mediated repair mechanism. These features will 
combine into both on- and off-target activity predictions for an optimal projected 
pipeline of CRISPR, where a Cas9 fusion protein will modify one target sequence 
into another without cleavage.

7. Conclusions

The CRISPR/Cas9 executes genome engineering technology feasible for utiliza-
tion in many fields. The multiple genes targeting in a genome by CRISPR technol-
ogy allows the learning of synergistic outcomes via the suppression of essential 
genes. Additionally, this approach sheds new light on design of many metabolite-
producing microorganisms/bioreactors used in industrial biotechnology. However, 
certain drawbacks endure the potential uses of CRISPR-Cas systems. Conversely, 
the development of CRISPR-edited products and services faces sociopolitical 
obstacles, public acceptability, and government regulations. We must be stay update 
on the challenges by adding new features to improve CRISPR/Cas9 accuracy. We 
can anticipate that a lot of researchers from many fields concentrating their efforts 
towards this system will resolve the integrated limitations so that CRISPR will work 
its way into the emerging culture.

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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