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Chapter

Fundamentals of Narrowband
Array Signal Processing

Zeeshan Ahmad

Abstract

Array signal processing is an actively developing research area connected to the
progress in optimization theory, and remains the key technological development that
attracts prevalent attention in signal processing. This chapter provides an overview of
the fundamental concepts and essential terminologies employed in narrowband array
signal processing. We first develop a general signal model for narrowband adaptive
arrays and discuss the beamforming operation. We next introduce the basic perfor-
mance parameters of adaptive arrays and the second order statistics of the array data.
We then formulate various optimal weigh vector solution criteria. Finally, we discuss
various types of adaptive filtering algorithms. Besides, this chapter emphasizes the
theory of narrowband array signal processing employed in narrowband beamforming
and direction-of-arrival (DOA) estimation algorithms.

Keywords: Adaptive algorithms, Adaptive arrays, Array signal processing,
Beamforming

1. Introduction

Array signal processing [1, 2] is an indispensable technique in signal processing
with ubiquitous applications. The fundamental principles and techniques of array
signal processing are applicable in various fields such as sonar, radar, and wireless
communications etc. Antenna array processing manipulate and process each sensor
output according to a certain algorithm to achieve better system performance than
just a single antenna, and estimate the signal parameters from the data accumulated
over the spatial aperture of an antenna array. [3, 4]. These parameters of interest
include the signal content itself, their DOAs, and power. To get this information,
the sensor array data is processed using statistical and adaptive signal processing
techniques. These techniques include parameter estimation and adaptive filtering
applied to array signal processing. Meanwhile, it also plays an important role in the
multi-input multi-output (MIMO) communication system and a waveform diver-
sity MIMO radar system, by improving its performance, reducing the clutter, and
increasing the array resolution [1-4].

All in all, there are numerous potential advantages of array signal processing
techniques, such as improved system capacity, signal bandwidth, the space division
multiple access (SDMA), high signal-to-noise ratio (SNR), frequency reuse factor,
side-lobe offsets or nulls, degree of freedoms, and the resolution of the antenna
array [5]. In this chapter, we introduce the basic principle of array signal processing
techniques to further understand its implementation process and applications. We
begin by formulating the signal mathematical model used as a basis for discussing
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array signal processing in beamforming and direction-of-arrival (DOA) estimation
algorithms. We also provide some introductory materials about beamforming tech-
niques, performance analysis parameters, and a brief overview of some basic
beamforming algorithms.

2. Adaptive array signal model

Since the real signal transmission environment is complex, so a strict mathe-
matical model is the basis for adaptive beamforming and lays the groundwork for
the discussion of beamforming algorithms. To simplify the analysis of the model,
the signal source used in this chapter is a narrowband signal, that is, the bandwidth
of the received array signal is much smaller than the carrier frequency of the signal,
assuming that [6]:

a. Each array element is an ideal omnidirectional point source, and the inter-
element spacing is less than or equal to half-a-wavelength.

b. The number of received signals is known, and less than the number of array
elements.

c. The signal sources are assumed to be in the far-field so that the signals
impinging on the array can be regarded as a plane wave;

d. The spacing between array elements are equal, i.e., evenly spaced array;

e. The noise is zero-mean Gaussian white noise, and uncorrelated with the
signal source.

f. The effect of mutual coupling between array elements is assumed to be
negligible, i.e., the different element receives the same signal amplitude.

Although the above assumptions are not valid for wideband signal source, the
fundamental model used for them is very similar. Therefore, this chapter focuses on
the mathematical model based on narrowband signal beamforming principle.

Adaptive antenna arrays may have different geometrical configurations. Differ-
ent spatial distribution of array elements leads to different array configurations,
such as linear arrays, circular arrays, rectangular arrays, and triangular arrays etc.
[7, 8]. For an arbitrary array structure with M-elements as shown in Figure 1, 6 and
¢ denote the elevation angle and the azimuth angle, respectively. Vector a and p,
respectively denote the direction vector of the signal and the coordinates of the i —
th array element. Since the signal received by each array element has a certain delay
relative to the origin of the coordinates, the delay time [9] for the signal received at
the i — th array element is

o =L ()
¢
where c is the speed of light, and
—sinf cos ¢
a= | —sinfsing |. (2)
—cos 6
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Figure 1.
Geometry of array.
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The signal received by the first sensor located at the origin of the coordinates is
3~Cl(t> = X1(t)€jwt. (4)

The overall signal received by the array can be expressed as

[ x1(2) x1(t — 1)) ]
%, (t) x2(t — 7))
x(t) = = ) (5)
EYGR | xpm(t — TM)ej“’(t_“) ]

If the received signal is a narrowband, we can ignore its amplitude changes for
different elements. Consider the phase change only [10], the array received signal is
simplified to

i xl(t) T i ejw(t—fl) ]
xz(t) eja)(t—Tz)
x(t) = = x1(t) (6)
| xm(t) | | gotm) |

Let us consider a uniform linear array (ULA) composed of M elements with
inter-element spacing 4 as shown in Figure 2. Assume the first array element
located at origin of coordinate as a reference element. Consider the far field source
with P signals so(¢),s1(¢), ...,sp—1(¢), having the same center carrier frequency f,
the narrowband signal s;(¢) impinges on the array at an angle 0; relative to the
broadside, which refers to the direction normal to the array, wherei =0, ...,P —1
(without taking into account the azimuth angle, consider only the elevation angle).

Due to multipath propagation, each element receive the same signal with a
different time delay. Due to the fact that the incident signal is a narrowband signal,
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Figure 2.
Structure of uniform linear array antenna.

the amplitude variation is negligible, and only phase delay is considered. This delay
is determined by the array element spacing 4 and the elevation angle of incidence.
Consider the signal received by the first array element as a reference signal, then the
analytical expression for the i — th signal received with respect to the reference
array element is

si(t) =mi(t)e> e, i=0,..,P—1 @)

where m;(t) is the complex envelope of the i — th modulated signal, and f, is the
carrier frequency.

The propagation delay of the received signal from reference array element to the
m — th array element can be expressed as

Tm(0;) = %l(m —1)sin6;, m=1,..,M. (8)

According to Eq. (7), the signal received at the m — th array element can be
expressed as the superposition of all the signals, that is

P-1

X (£) = 3 it = o (61))e L) oy 1), (9)
i=0

where 7,,(t) is the Gaussian noise signal received at the m — th array element
having zero mean and variance .

Since we consider a narrowband signal source located in the far-field, the
bandwidth B of the signal satisfy the condition B < < f,, and m;(t) changes rela-
tively slowly because the signal delay is 7,,(6;) < < % . Therefore, complex envelope
of the signal can be approximated as m;(t — 7,,,(0;))~m;(t), that is, the difference in
the array received signal complex envelope can be neglected. Thus, Eq. (9) is
simplified as

X () = Z m;(t)e 27 Em@)) oy (1), (10)

Since the carrier component in the system does not affect the analysis, and the
adaptive algorithm is often carried out in the baseband (complex envelope), so the

carrier part ¢ /2/ in the Eq. (10) can be ignored. Eq. (10) can then be expressed as
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P-1
X (1) Z m;(t)e T DkdsinG g, (1) (11)
i=0
where k is the free-space wave number given by [11].

k =2xf_./c. (12)

At time ¢, the overall received signal can be expressed as

x1(t)
) (l’)
x(t) = . =Am(t) +n(t)
| xm(t) |
[ 1 1 1 1 [ mma(2) ] EAGHE
e—jkd sin 0y e—jkd sin 6, vee e_jkd sinfpy my (t) nz(t)
— +

eI M-Dkdsindy  ,—j(M-1kdsin6, . ,~(M-1)kdsin6p mp(t) np(t)

(13)

where A = [a(0y) a(01) -+ a(0p_1)] is the direction matrix (also called the array
manifold matrix), a(0;) is the direction vector for the i — th signal 5;(¢), and n(z) is
the noise vector, expressed as

a() = [1 e fmO) .. gafom0)]" (14)
() = [m@) m@) - wwm@)] (15)

where the sign 1" denotes the transpose operation.

3. Adaptive beamforming

Beamforming is a concept originating in array signal processing. The funda-
mental aim of beamforming is to estimate the desired signal properties by adjusting
the complex weights at each sensor applied to the received signal which result in
enhancement of desired signal and place nulls in the direction of interference.
Adaptive arrays are capable to adjust its weights automatically according to the
environment.

The beamforming can be classified into two types that are analog beamforming
and digital beamforming [12].

The analog beamforming is performed in the analog domain. The block diagram
of an analog beamformer is shown in Figure 3. The analog RF signal received by the
antenna array is converted to an intermediate frequency by the RF front end, which
is the analog intermediate frequency signal. The weight vector is calculated by the
weights update algorithm. The weighted sum of the analog IF signal is obtained, and
the array received signal is synthesized. At this point the signal is still analog signal;
then by analog-to-digitical converter (A/D) the analog signal is sampled and quan-
tized, and the analog IF signal is converted to a digital intermediate frequency signa.
Then the digital IF signal is given to the next - level processing.



Adaptive Filtering - Recent Advances and Practical Implementation

RF

LFrom-emi_<g)
ey o

RF ADC
[Front-end| ® @ Sampling
yull

T e

Front-end,
T Weight Update Algorithm
Figure 3.
The structure of analog beamforming.
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Figure 4.
Structure diagram of adaptive beamforming.

The digital beamforming is carried out in the digital domain, which is shown in
the Figure 4.

Adaptive beamforming is a subclass of digital beamforming. Usually adaptive
beamformer [13] comprises of RF Front-end, A/D converter module, and the signal
processing (beam-control formation) module. A basic adaptive beamformer is
shown in Figure 4 which is composed of antenna array elements and an adaptive
signal processor.

The antenna array elements receive the spatially-propagating desired signal and
interference signal at the array aperture. In the RF Front-end, the received signal is
down-converted to baseband signal [14], and then transformed into a digital signal
through A/D converter, which is then processed by the adaptive processor. In
adaptive processor, suitable adaptive filtering algorithm according to the require-
ments is applied to get the optimal weight vector. The weights are applied to the
received signal at each array element to obtain a weighted sum of the signal. After
the adaptive processing, the weighted signals are combined to get the output of the
beamformer, which direct the main lobe in the direction of the desired signal and
nulls in the directions of the interferers. The interference and noise are suppressed,
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and the output signal-to-interference-plus-noise ratio (SINR) of beamformer is thus
improved.

Clearly, based on the adaptive beamformer structure shown in Figure 4, the
output of each element is multiplied by a complex weight and summed to form the
array output, y(¢), expressed as

M
y(t) = whx(t) = 1w xm(t) (16)
m=1

where the symbol [|” represents the Hermitian (complex conjugate) transpose,
()* indicates the conjugate, and w is the M x 1 dimensional optimal weight vector
computed by an adaptive filtering algorithm, given as

w=[w w; - wM]T. (17)

In this way, the array output, y(¢), is obtained by combining the weighted sum of
each of the sensor signals. The different weight vectors for beamforming of signals
from different directions have different response, thus pointing to the desired signal
and suppress the interference signal.

Array output signal power is expressed as

P, = E[y(t) “y(t)] = w"Ruw. (18)
where
R = E[x(t)x" (1)], (19)

is the covariance matrix of the received signal, and E[] denotes the expectation
operator. Substitute Eq. (13) into Eq. (19), the covariance matrix can be
expressed as

P-1

R=> pa(0)a(6;)" + o, (20)
=0

where p;, is the power of signals;(¢), and I represents a identity/unit matrix. If the
input signal in space has only one desired signal 5o (), and P — 1 interference signals,
then the covariance matrix can be expressed as

P-1
R =poa(0)a(0:)" + ) pa(0)a0)" + o1

=1

(21)
- Rs + Ri + Rn)

where R; is the covariance matrix of the desired signal, R; is an interference
signal covariance matrix, and R, is the covariance matrix of the noise. Substitute
Eq. (21) into Eq. (18), the output signal power can be expressed as a sum of desired
signal power Py, interference power as P,; and noise power P,y,.

P, = w'Rw (22)
P, = w"Rw (23)
P,, = w'R,w (24)
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The output SINR, a performance parameter of the beamformer, is defined as the
ratio of the output desired signal power and the output power due to interference-
plus-noise, and can be expressed as

P, wiRw

SINR,,; = = >
""" P;+P,, wWIRw+wlR,w

(25)

Adaptive antenna array takes the output SINR as an index to compute the
optimal weights by maximizing the output SINR [15].

The most important performance indicator of the beamforming is the direction
of the beampattern. It can be quite obvious to determine whether the resolution of
any beamforming method is enough to enhance the desired signal and the extent

of the suppression of interference signal is large enough. Array beampattern is
defined as

B(0) = |w"a(0)|. (26)

When using analog beamforming, the hardware circuit is very complex, and the
accuracy is low. In digital beamforming, the operations of phase shifting and
amplitude scaling for each antenna element, and summation of received signals, are
done digitally through a general-purpose DSP or dedicated beamforming chips.
Therefore, digital beamforming is more flexible and do not require modification of
the hardware structure.

Compared with analog beamforming, the digital beamforming has the following
advantages:

a. Under the condition that the output SNR is not reduced and the hardware is
not increased, digital beamforming can track multiple signals and form multi-
beam.

b. The digital beamforming can make full use of the information received by the
array antenna, real-time optimization of system performance, and achieve
the real-time tracking of the desired signal.

c. In theory, digital beamforming can be achieved by implementing various
algorithms.

d. Digital beamforming can achieve independent beamforming for each signal,
and each beamforming can be optimized.

4. Basic parameters of adaptive array antenna

The performance parameters of an adaptive array antenna are basically the same
as that of a single antenna, but because of the weight of the array, the specific values
of each parameter depend on the array element characteristics, the weight vector,
and geometry of the array [16].

4.1 Array pattern

The array pattern is the visual performance parameter of an antenna array.
According to the pattern multiplication theorem of array antenna, the overall array
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pattern is the product of the element pattern Pg(¢@, ) and the array pattern P4 (¢, 0),
that is

P((p, 0) = PE((ﬂa 9>PA <(pa 9) (27)

Generally, it is assumed that the array elements are identical and omni-
directional, hence

Pr(g,0) = 1. (28)

Thus, mostly adaptive array antenna patterns defined in the literature refers to
the array factor part only, and the relationship between the received signal and the
output signal is given as

y(t) = w'x(z). (29)

Let’s assume a single array element with the input signal power 1, the output
signal power can be expressed as
2
P(¢,60) = [w"a(p,0)] (30)
The above expression defines the power pattern of the array antenna. As can be
seen from Eq. (30), the antenna beampattern is determined by the value of the
weight vector; on the other hand, it also depends on the direction vector which is
determined by the array geometry. Since we define the power pattern P(¢, ) as the
squared magnitude of the beampattern, therefore

B(p,0) = [w"(00)a(0)|. (31)
4.2 Array directivity and directivity index

The directivity of an adaptive array is closely related to the pattern of the array,
which can be expressed as follows

D— . 477:212max((p0a 90) , (32)
Jod0]5" sin OP (¢, 0)dgp

where Ppax(@g, 00) is the maximum pattern that points to the direction of the
main lobe.

The directivity is usually expressed in dB and is called array directivity index (DI)
given by

DI =10log ,,D. (33)

4.3 Array gain

The purpose of antenna array is to improve the G/T (gain of an antenna divided
by its system temperature) ratio of the antenna. Array gain G is the main parameter
to measure the SNR of the array, which is defined as the ratio of the output signal to
noise ratio SNR, and the input signal to noise ratio SNR;.

SNR,
G= .
SNR;

(34)
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4.4 Sensitivity

The array beampattern is a function of weight vector and direction vector.
However, due to the influence of various errors, the weight vector and the direction
vector will have some errors, such as sensor position errors, covariance matrix
estimation errors, inconsistent channel errors, and the mutual coupling between the
array elements cause weight vector errors. Suppose the error-free weight vector w°
of the m — th element is

w? :gf)ne jon. (35)

m

The m — th element weight vector with error is
Wy, = (g5, + Ag, Je (80, (36)

where the error Ag, and Ag,, are zero mean Gauss random variables, and the
variance is

Var(Ag,,) = aé (37)
Var(Agp,,) = o, (38)

For the direction vector, the error is mainly derived from the array element
position errors. For the m — th element, if there is no error in the array element
position coordinates, then

0 T

While the coordinate with the error can be expressed as

Pm:[pmx+Apmx pmy_l—Apmy pmz+Apmz}Ta (40)

where the error quantity is Gauss random variable, which are zero mean, and
the variance is

Var(Ap,,.) = Var(Apmy) = Var(Ap,,,) = 0. (41)

The array pattern at this instant is
2 M 2 2, 2
P(p,0) = Poe(57%) + 3 (¢8)7 (14 0 — (7 2)), (42)
m

where 4 is the wavelength, and P° denotes the error-free pattern given by

g (43)

P = |w0:;10

and the variance is

2 27\’ 2
o, = = 0y (44)

From Eq. (42), it is seen that the actual pattern consists of two parts. The first
part is the error free pattern, i.e., the first term of the equation, and the error in the

10
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second term. In the second term, the coefficient g° is used to amplify the error, so
the sensitivity of the array is defined as

T.=> (9)" (45)

5. Optimal beamforming

In beamforming, the weight vector is computed by solving the optimization of
the cost function. The different cost functions corresponds to different criteria.
Some of the most frequently used performance criteria’s include minimum mean
squared error (MMSE), maximum signal-to-interference-and noise ratio (MSINR),
maximum likelihood (ML), minimum noise variance (MV), minimum output
power (MP), and maximum gain, etc. [17]. These criteria’s are often expressed as
cost functions which are typically inversely associated with the quality of the signal
at the array output. As the weights are iteratively adjusted, the cost function
becomes smaller and smaller. When the cost function is minimized, the perfor-
mance criterion is met and the algorithm is said to have converged.

5.1 Maximum signal-to-interferer-noise ratio

As can be seen from Eq. (21), the array output signal power consists of the
desired signal power, interference power and noise power, and they are mutually
uncorrelated. Since the interference signal and the noise is independent i.e.
mutually uncorrelated and zero mean, so, R; + R, is a full rank and Hermite

positive definite matrix. By unitary transformation it can be converted into unitary
matrix as

) H
U*(R; +R,)U" =U*E <Z m;(t i)) (PZ mi(t)a(ei)> U7 + 61
=0
P-1 * P-1 T (46)
—E (U Zm,-(t)a(@i)) (U Zmi(t)a(@-)> + 6’1

= ¢’1
If we make
w = Uw, (47)
the output SINR will be
WiE [(Umoa(e()» * (Umoa(eo)ﬂ W
T A
{( S omia(0)) (U gma(e;)) }w+021

) WwiE [(mOUa(eo)) * (mOU‘a(Qo))T]‘fv

SINR,,; =

(48)

~ 112
v

According to Cauchy-Schwartz inequality

11
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SINR, < |moUa(6o)||* = E|mol’| - |U* a(60)]" (49)

When the equality holds, then
w=U"a(0y). (50)
The optimal solution for the weight vector
wusivg = UTU*a(6p) = (R; +R,) 'a(6y). (51)

The optimal weight vector solution of the MSINR has the following advantages:
only the DOA of the desired signal is required, and the DOA information for the
interference signals is not needed; R; + R, can be obtained through sampling and
estimating the signal of each array element when the desired signal is interrupted;
taking into account the constraints of the interference and noise signal, the output
has a maximum SINR.

5.2 Minimum mean square error

Mean squared error refers to the mean squared difference between the
beamformer output and the desired signal. The MMSE algorithm minimizes the
error with respect to a reference signal d(z). If the signal prior knowledge is known,
the receiver can generate a local reference signal which has a strong correlation with
the desired signal. The main idea of MMSE is to adjust the weight vector in real
time, so that the mean squared error between the array output signal and the
reference signal can be minimized. The estimator is of the form

y = wx. (52)

The cost function, i.e., the mean square value of the error signal is
2
J(w) :E[}wa—d‘ } (53)

Expanding the right-side of Eq. (53) and w should be taken out of the expecta-
tion operator, E[], because it is not a statistical variable, we get

J(w) = w"E [xx™|w — E[dx" |w — wPE[xd* | + E[dd"]. (54)

According to the Lagrange multiplier method, in order to minimize the mean
squared error function, taking the derivative with respect to w of the above
expression

9 J(w) = 2E[xx"|w — 2E[xd"]

ow (55)
=2Rw — 2r,y,,

where 7,, is the cross-correlation vector between the input signal and the
reference signal. Set the above result equal to 0 and solve for w, the optimal MMSE
weights are

wymse = R 7. (56)

12
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Since the reference signal is only related to the desired signal, and is not related
to the interference signal and noise, therefore

Yyg = E[Xd*] = E[Wloﬂ(eo)d*] = E[Wlod*]ﬂ(eo) Z}’)Oﬂ(eo), (57)

and according to the matrix inversion formula

, 1
R — R+R) (58)
1+p0a(00) (R,’ —I—Rn) a(ﬁo)
Substitute Eq. (57) and Eq. (58) into Eq. (56), we get
WMMSE = Po WMSINR- (59)

1+ poa(6o)” (R + R,) "a(6o)

From the above analysis, it can be seen that the received signal is correlated with
the desired signal. Therefore, it is not required to decompose the received signal
into the desired signal and interference signal, and the correlation of the received
signal and the reference signal can be estimated by sampling, so it is not difficult to
determine.

On the other hand, from Eq. (59) it can be shown that the MMSE beamformer
Wk is a scalar multiple of the Max-SINR beamformer wysing in Eq. (51), i.e., the
adaptive weights obtained by using the MMSE and Max-SINR criteria are propor-
tional to each other. Since the multiplicative constants in adaptive weights do not
matter, these two techniques are therefore equivalent.

5.3 Minimum variance

In the signal received by the array, the desired signal is the content of coopera-
tive communication, and the interference is often unpredictable, so the form of the
desired signal and DOA of the signal should be known. In this case, in order to
detect the desired signal more efficiently, it is necessary to eliminate the clutter
background. From Eq. (22)-(24) it is shown that the array output power includes
three parts: desired signal power, interference power and noise power, while the
interference and noise power can be considered as the variance of the desired signal
error. The smaller the variance is, the more close is it to the expectation. Interfer-
ence and noise power can be expressed as

P, +P,, = w'Rw + w'R,w (60)

For array main-lobe (desired look direction), the unit gain is considered, that is

(61)

n}yin wrR; ,w
st. wla(9y) =1

Therefore, the minimum interference and noise variance is the choice of the
appropriate w, using the Eq. (61) constraints, so that the Eq. (60) is minimized. The
weight vector w that minimizes Eq. (60) subject to the constraint in Eq. (61) can be

selected by using a vector Lagrange multiplier to form the modified performance
measure. According to Lagrange multiplier method, the objective function is

L(w) = w'Rw + w'R,w + A(w"a(6o) — 1) (62)

13
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Setting the derivative of the above expression Eq. (62) with respect to w equal to
zero to obtain optimal weight vector wysybased on minimum variance criteria,
requiring wyy to satisfy the constraint in Eq. (61) to evaluate y, and substituting
the resulting value of y into wyy gives the minimum variance weight vector
solution

%L(w) = 2(R; + R,)w + 2a(6o) = 0 (63)

Solution of the above equation yields the optimal weights vector by the mini-
mum interference and the noise variance criterion.

wyy = u(R; + Rn)_la(eo) = UWMSINR (64)

According to the constraint conditions of the main beam, using the property that
(R; + R, is the Hermitian matrix, can be obtained as

1
_ 65
M aH(00)(R; + R,) a(00) (65)

When the snapshot data used to estimate R contains only the noise and
interference environment, this processor is referred to as minimum variance
distortionless response (MVDR). In the event, the desired signal is also present in
the snapshot data, the same solution for the weight vector results, but is
sometimes referred to as minimum power distortionless response (MPDR) to
indicate the difference in the observed data [2]. In practice, the distinction makes
a significant difference in terms of the required snapshot support to achieve good
performance [18].

5.4 Minimum power

The formulation of the MV can be derived by minimizing the total output power
of the array subject to the similar constraint of distortion-less response of Eq. (61).
The total power of the output signal is considered, if the gain of the desired signal is
kept fixed, that is the same as the constraint condition of Eq. (61), which is equiv-
alent to the received power of the signal under the condition of ensuring the normal
receiving of the desired signal while suppressing interference and noise power, the
resultant criterion is defined as the minimum total output power of the array (MP).
The cost function is

min  w"Rw
Y (66)
st. wla(9y) =1

Also using the method of Lagrange multiplier, the objective function to be
minimized is

L(w) = w"Rw + A(w"a(0y) — 1) (67)
Taking the complex gradient with respect to w and setting to zero

%L(w) = 2Rw + Aa(6y) = 0 (68)

14
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Under this criterion, the optimal weight vector is
wpyp = KR71a<90) (69)
where the constant (normalize the array main beam gain to unity) is

1
7 41 (00)R 1a(6,) (70)

This criterion (MP) compared with the previously defined criterion (MV) is
almost equivalent, since minimizing the total output power of the beamformer
while preserving the desired signal is equivalent to minimizing the output power
due to interference-plus-noise. The difference is only in the optimal weight vector
of the MP criterion, and it is not necessary to separate the interference and noise,
and only the covariance matrix of the received signal is estimated and thus the two
optimization problems in Eq. (61) and Eq. (66) are equivalent.

5.5 Maximum likelihood criterion

Assume the space has only one desired signal and number of interference
signals, the input signals can be expressed as

M M
X = moag + Z m;a; +n = modag + (Z m;a; + n) (71)
i—1 i—1

If the interference signal and noise are zero mean Gaussian random process, the
above equation is a Gaussian random process, and its mean is the desired signal
moag. The output signal is defined as the likelihood function vector

M
L(x)=—In (P (x X = m;a; + n>> (72)

i=1
The expression of the conditional probability can be further changed to

L(x) = c(x — moao)™ (R; + Ry) (% — moay) (73)

where ¢ is a constant independent of x and ma, . Taking derivative of the above
expression with respect to 7 and set the result equal to zero, we will get the
maximum likelihood estimation ¢

0 _ _
~—L(x) = —24(R; + R,) 'x 4+ 2moall(R; + R,) 'ap =0 (74)
0
“IO{ (Ri + Rn>71
dgl (R, - Rn)_la()

momt(t) = (75)

The optimal weight vector is obtained by the above equation of the maximum
likelihood criterion.

R; +R,) lall
wML = EI ) —2 (76)
do (Ri + Rn) ao
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Compared with the weight vector solution under the Maximum Signal-to--
Interferer-Noise Ratio (MSINR) criterion, the above expression can be rewritten as

1

w (77)
al(R; + R,) 'ao MOINR

WML =

From Eq. (77) it is clear that, the ML beamformer wyy, is a scalar multiple of the
Max-SINR beamformer wyging in Eq. (51). i.e., the adaptive weights obtained using
the ML and Max SINR criteria are proportional to each other. Since multiplicative
constants in the adaptive weights have no impact on the array beampattern, these
two techniques have no essential difference and are therefore equivalent.

6. Adaptive filtering algorithms

The expression of the optimal weight vector is obtained by solving the equations
based on the optimization theory. In practical engineering, the optimal weight
vector is obtained by the adaptive filtering algorithms. When there is a reference
signal available, the reference signal may be the training sequence of the desired
signal or the DOA information of the desired signal, the resultant technique is
categorized as a non-blind adaptive spatial filtering. These classical adaptive algo-
rithms include Direct Matrix Inversion (DMI) [19], Least Mean Square (LMS) [20-
22], Recursive Least Square (RLS) [23-25], Conjugate Gradient (CG) and its
improved algorithms [26, 27]. When there is no reference signal available, the
optimal weight vector solution can be obtained by using other characteristics of the
signal, the resultant techniques are categorized as blind adaptive spatial filtering.
Blind algorithm mainly includes Constant Modulus (CM) algorithm [28-30],
smooth circulation (Cyclo-stationary) algorithm [31], and High Order Cumulant
(HOC) algorithm [32].

6.1 Direct matrix inversion algorithm

The basic idea of DMI algorithm is to compute the optimal weight vector directly
instead of calculating it iteratively, based on an estimate of the correlation matrix
R = E[x(t)x" ()] of the adaptive array output samples [33]. In communication
systems, the signal source consists of a desired signal, interference and noise,
therefore, the maximum SINR criterion, the minimum mean square error (MMSE)
criterion, the minimum variance (MV) criterion and the maximum likelihood (ML)
criterion need to know the covariance matrix of the interference signal and the
noise signal, and do not contain the covariance matrix of the desired signal. So these
criteria are not suitable for communication systems, and are suitable for radar
systems, because it is easy to realize the interference and noise superimposed signal
as long as the radar does not transmit the signal but only receives the signal.

For the MP criterion, the solution also needs the desired signal DOA, which is
based on Egs. (68) and (69), thus obtaining the desired signal direction vector a(0y).
On the other hand, unlike the MV criterion, the signal covariance matrix of MP
criterion is the sum of the covariance matrices of the desired signal, the interference
and the noise. Therefore, the MP criterion is suitable for the communication system.

Assume that there are P signals in the space, wherein, the desired signal is sy =
moa(6o), the power is p, and the interference signals are s; = m1a(6-), ..., sp =
mpa(0p_1) with power p,, ...,pp_;, respectively. The noise vector is 7, and power is
6. According to the definition of covariance matrix

16



Fundamentals of Narrowband Array Signal Processing
DOI: http://dx.doi.org/10.5772/intechopen.98702

P-1 P-1 H
R=E (Zsi +n> (Zsﬁ—n)
i=0 i=0

P-1 P-1 H
=F (Z m,-a(Gi) + n) (Z m,-a(&,-) + n)
i=0 i=0

(78)

Because the spatial separation between signal and interference is large enough,
they are spatially uncorrelated. When sources are uncorrelated

Ela(@)a(0;)"] =0 i#j (79)

At the same time
E[mfa(ei)a(eﬂ —p, (80)
E[nn"] = & (81)

Obviously, in practical applications, it is very difficult to estimate the covariance
matrix by the respective amount of power, instead it can be estimated from samples
of the received signal. DMI algorithm assumes that the covariance matrix has been
estimated, and the expression R is obtained by matrix inversion, combine with
the known DOA, calculate the direction vector a(6y), and the optimal weight vector
solution is obtained by MP criterion.

Because the actual covariance matrix is not ideal, the performance of the DMI
algorithm is affected by the eigen-value spread of the covariance matrix. The
divergence is determined by the temporal and spatial correlation between the
desired signal and the interference or between the interference and interference.

The optimal weight vector by DMI algorithm can be computed as:

The K snapshots constitute data matrix X, the covariance matrix R is given as

H
R :XX
K

(82)

Directly estimate the covariance matrix and then by matrix inversion, obtain the
inverse matrix R~ * combined with the desired signal direction vector, and the
optimal weight vector is calculated according to Eq. (69).

-1
R ao

w=—"
allR ag

(83)

DMI algorithm needs to choose suitable number of sampling snapshots K. When
the number of snapshots K is sufficiently large, the covariance matrix R is more
accurate, but larger number of sampling snapshots increases the computing load [34].
The major disadvantage of DMI algorithm is its computational complexity which
makes it difficult to implement on FPGA and DSP. On the other hanf, the truncated
finite number of computation makes the matrix inverse operation instable.

extremely simple and numerically robust.

6.2 Least mean square algorithm

The least mean square (LMS) algorithm proposed by Widrow et al. [20] is the
most classical algorithm in signal processing. The LMS algorithm is extremely
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simple and numerically robust. More detailed description about the LMS algorithm
is given in Ref. [18, 35]. The LMS algorithm is based on the method of steepest
descent, and therefore sometime it is referred to as a Stochastic Gradient Descent
(SGD) algorithm. The unconstrained LMS algorithm is a training sequence based
adaptive spatial filtering algorithm which recursively compute and update the opti-
mal weight vector. It uses the gradient search method to solve the weight vector,
thus avoiding the direct matrix inversion of the covariance matrix. Its iterative
equation is given as
w(k+1) =w(k)+ugw(k)) (84)

where w(k + 1) represents the new weight vector computed at the (k + 1)
iteration, g(w(k)) is the gradient vector of the squared error (objective function)
with respect to the weight vector w(k), and the scalar constant x is the step size

parameter which controls the rate of convergence [33]. The gradient vector is
given by

gw(k)) = —2x(k + 1)e” (w(k)) (85)

where x(k + 1) is the k + 1 array snapshots, namely the k + 1 array sample, and
e* (w(k)) is the error between the array output and the reference signal [33]. Thus,
the estimated gradient vector is the product of the error between the array output
and the reference signal, and the array signal received at the k& — ¢k iteration. The
error ¢* (w(k)) can be expressed as

e(x(k)) = d(k + 1) — wH (k)x(k + 1) (86)

where d(k + 1) is the reference signal at the (k + 1)™ iteration. As one of the
most classical adaptive filtering algorithms, ULMS has the advantage of computa-
tional simplicity and simple hardware requirement, but its convergence speed is
relatively slow. In order to ensure the convergence of the algorithm, the iterative
step size must meet the following condition [18, 20, 33-37].

O<u< (87)

/lrnax

where Am.x denoted the largest eigenvalue of the received signal covariance
matrix.

The algorithm is based on the gradient of the adaptive algorithm, which is an
important feature of the gradient of the average value problem. The mean of the
gradient estimate is expressed as

gw(k)) = 2Rw — 2ry (88)
In the iterative process of the algorithm, the gradient vector can be obtained by
estimation. From the mean or expected value of the gradient estimate, the estimate

is unbiased. At the same time, the estimation of the variance has also an effect on
the performance of the algorithm. The variance is defined as

E(w(k)) = E{ (k) — w (k)x(k + 1) yz} (89)

whose value is the error between the reference signal and the array output
signal. From this, we can see that the Misadjustment of LMS algorithm is
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MA = ,utr{[l - uR]_lR}

(90)

The misadjustment defined as a ratio provides a measure of how close an adap-
tive algorithm is to optimality in the mean-square-error sense. The smaller the
misadjustment, the more accurate is the steady-state solution of the algorithm. In
other words, the difference between the weights estimated by the adaptive algo-
rithm and optimal weights is further characterized by the ratio of the average excess
steady-state MSE and the MMSE. It is referred to as the misadjustment. It is a
dimensionless parameter and measures the performance of the algorithm. The
misadjustment is a kind of noise and is caused by the use of noisy estimate of the
gradient [38, 39].

From the above analysis, we can see that the LMS algorithm has different
performance when choosing different steps and different covariance matrix esti-
mation methods.

The basic steps of the LMS algorithm are as follows:

1. First initialize, w(0) =

0,k =0;

2.Iterative updates, so that k =k + 1;

e(k+1)=d(k+1)
w(k +1)

—wl(k)x(k + 1)
=w(k) + ux(k+1)e(k +1)

3.Stop iteration after the weight vector w(k) is convergent, so this time
definek = K,w(K) is the desired weight vector.

Figure 5 shows the learning curve of the LMS algorithm with different step size
parameters. It can be seen that when the step size parameter y is small, the algo-
rithm converges slowly, while the large value of step size parameter 4 make the
algorithm converge faster.

ensemble-average squared error
o o o o o o o o
LM w S w (<] ~ o (<]

o
o

Figure 5.
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The least mean square algorithm requires the training sequence, if the training
sequence in the LMS algorithm is replaced by the DOA information of the desired
signal, the Frost LMS algorithm can be obtained [40].

Iterative equation of the Frost LMS algorithm is

wk +1) = P{w(k) - ug(w(k))} + 7 (91)
where the matrix
P=1I-a (aglao)_lagl (92)

and g(w(k)) is the gradient vector of the output signal power with respect to the
weight vector w(k), and is given by

gwk)) =xk+1)y*(k+1) (93)
In the above equation, the output signal is given as
y(k +1) = w"(k)x(k + 1) (94)

Moreover, the initial value of the weights is given as

In order to ensure the convergence of the iterative algorithm, the iterative step
size still needs to meet the following conditions y <2/Amax, where A, is the largest
eigenvalue of the covariance matrix of the received signal.

Basic steps for the Frost LMS algorithm are as follows:

1.First initialize w(0) =% >k = 0
2.Iterative updates, so that k =k + 1;
y(k+1) = wh(k)x(k + 1);

ik +1) = (I ao(alao) "all ) {w(k) — px(k + 1y (k + 1)} + 3

3.Stop iteration after the weight vector w(k) is convergent, so this time define
k = K, w(K)is the desired weight vector.

The convergence rate of both the LMS algorithm and Frost LMS algorithm is
associated with the step size parameter. Since, the eigenvalues of the received signal
covariance matrix are not easy to obtain, the appropriate step size parameter cannot
be chosen easily.

If the step size is too larger than twice the reciprocal of the maximum eigenvalue
of the covariance matrix of the received signal, the weight vector diverges. Large u’s
(step-size) speed up the convergence of the algorithm but also lower the precision
of the steady-state solution of the algorithm. It should be noted that value of the
step size must be less than twice the reciprocal of the maximum eigenvalue. Simi-
larly, when the step-size is much less than twice the reciprocal of the maximum
eigenvalue of the covariance matrix of received signals, the offset (steady state
error) is small but the weight vector converges slowly.
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Learning curve of NLMS algorithm
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Figure 6.
Learning curve of the NLMS algorithm.

Another variant of the LMS family is the normalized LMS (NLMS) algorithm.
This algorithm replaces the constant-step-size of conventional LMS algorithm with
a data-dependent normalized step size at each iteration. At the k-th iteration, the
step size is given by

U
pu(k) = QW)ODC(I@ (96)

where 4 is a constant. The .convergence of the NLMS algorithm is faster as
compared to the LMS algorithm due to the data-dependent step size. Figure 6
shows the convergence behavior of the NLMS algorithm with different y.

One major advantage of the LMS algorithm is its simplicity, and when the step
size is selected appropriately, the algorithm is stable (converged properly) and easy
to be realized [21]. However, the LMS algorithm is sensitive to eigenvalues of the
covariance matrix of received signals, and the convergence of the algorithm is poor
when the eigenvalues are dispersed.

Various other variants of LMS algorithm are briefly discusses in [21]. In recent
years, adaptive filtering algorithms have been extended into DOA estimation. DOA
estimation based on adaptive filtering algorithms can be found in [41, 42].

6.3 Conjugate Gradient Method

The Conjugate Gradient Method (CGM) [43-45] proposed by Hestenes and
Stiefel in 1952 (as direct method), is generally applied to the symmetric positive
definite linear systems equations of the form Aw = b. In application of antenna
arrays, the the weight vector computation by conjugate gradient method is
discussed in [46]. Here, we have briefly outlined the conjugate gradient method
(CGM) in application to beamforming [47].

In array signal processing, w represent the array weight vector, A is a matrix
whose columns are corresponded to the consecutive samples obtained from array
elements, while b is a vector containing consecutive samples of the desired signal.
Thus, a residual vector
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r=b—Aw (97)

refers to the error between the desired signal and array output at each sample,
with the sum of the squared error given by r'r.

The process is started with weight vector w(0) as an initial guess, to get a
residual

r(0) =b — Aw(0) (98)
and the initial direction vector can be expressed as
£2(0) = AHV(O) (99)
Then moves the weights in this direction to yield a weight update equation
wk+1) =w(k)+ ulk)g(k) (100)

where the step size p(k) is

2

H
pu(k) = % (101)
The residual #(k) and the direction vector g(k) are updated using
r(k 4+ 1) = r(k) + u(k)Ag(k) (102)
and
gk +1) = Alr(k + 1) — a(k)g (k) (103)
with
(k) = % (104)

A pre-determined threshold level is defined and the algorithm is stopped when
the residual falls below the threshold level.

It should be noted that the direction vector points in the direction of error
surface gradient v (k)r(k) at the k — th iteration, which the algorithm is trying to
minimize. The method converges to the error surface minimum within at most K
iterations for a K-rank matrix equation, and thus provides the fastest convergence
of all iterative methods [46, 48].

6.4 Recursive least square algorithm

In order to further improve the convergence rate, a more sophisticated algo-
rithm is recursive least square algorithm. RLS algorithm is based on the Recursive
Least Squares Estimation (RLSE), which uses time average instead of statistical
(ensemble) average or stochastic expectations. The RLS algorithm work well even
when the eigenvalue spread of the input signal correlation matrix is large [49, 50].
So RLS algorithm has an advantage of insensitivity to variations in eigenvalue
spread of the input correlation matrix [49, 50]. These algorithms have excellent
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Learning curve of RLS algorithm
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Learning curve of the RLS algorithm.

performance when working in time-varying environments [49, 50]. Therefore, in
the practical application, the forgetting factor y is usually taken into account, and
the optimal weight vector solution is slightly different. According to the optimal
weight vector solution of MP criterion, the covariance matrix estimation is
defined as

o(k) = f: 1K (l)acH (k) (105)
k=1

where the parameter y should be chosen in the range 0 < <1.
The above equation can also be expressed as

D(k) = ud(k — 1) + x(k)x" (k) (106)

Using Matrix Inversion Lemma [14, 36, 51-54] (See Appendix A)

P(k) = & (k)
o, p 207k — 1)x(k)x (k)DL (k — 1) (107)
—u @ k1) - 1+ pu%H (k)® (k — 1)2(k)
Let
oM e — Dx(k)
glk) = 14 u~twH (k)DL (k — 1)x(k) (108)
then Eq. (106) can be expressed as
P(k) = u 'P(k — 1) — u 'g(k)x" (k)P(k — 1) (109)

The iterative formula of the algorithm can be expressed as.
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w(k) = A(k) [ P(k — 1) — u”"g (k)" (k) Pk — 1)]a(60)

o - g ] ol - 1)

(110)

By taking different values of the K, the optimal weight vector recursion expres-
sion can be obtained. Compared with the LMS algorithm, RLS has a faster conver-
gence rate, which is also a closed-loop adaptive algorithm.

The implementation of the RLS algorithm is carried out with different values of
the forgetting factor u. Figure 7 shows the learning curves of the RLS algorithm.
With the forgetting factor u = 1, the algorithm requires only 50 iterations to
converge to its steady-state. It takes only 25 adaptation cycles to converge the RLS
algorithm with a lower forgetting factor of 4 = 0.9.

7. Conclusion

In this chapter, we have introduced the basic principles and theoretical back-
ground of narrowband array signal processing. In particular, this chapter empha-
sized the fundamentals of narrowband signal processing exclusively used for the
narrowband beamforming and DOA estimation. Furthermore, we reviewed the
geometry of adaptive array antennas, the mathematical approaches for the devel-
opment of signal models of the receiver array, and the selection criteria of the
received signal processing technique, i.e. the criteria and guidelines related to
adaptive filtering algorithms for solving the optimal weights. Considering the far-
field narrowband signal using a uniform linear array as an example, the mathemat-
ical model is established in this chapter for the adaptive array antenna beamforming
system. The basic theory of this chapter also laid a foundation for the theory of the
wideband signal beamforming, which is then convenient for us to understand.

Appendix A
Matrix Inversion Lemma [52]: Let A and B be two positive-definite N x N
matrices, C a N x M matrix, and D a positive definite M x M matrix. If they are
related by
A=B+CD'CT,

then the inverse of the matrix A is

A7'=B'-B'C(D+C"B'C) 'C"B"
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