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Chapter

Inflammation in the Pathogenesis 
of Rheumatoid Arthritis and in 
Experimental Arthritis: Evaluation 
of Combinations of Carnosic Acid 
and Extract of Rhodiola rosea L. 
with Methotrexate
Silvester Ponist, Katarina Pruzinska and Katarina Bauerova

Abstract

The host immune response generates the pro-inflammatory immune response 
as a protective measure against invading pathogens, allergens, and/or trauma. 
However, dysregulated and chronic inflammation may result in secondary dam-
age to tissues and immune pathology to the host. Rheumatoid arthritis (RA) is a 
chronic systemic autoimmune disease which primarily involves synovial inflamma-
tion, joint pain, immobility, and stiffness. Increased infiltration of inflammatory 
immune cells and fibroblast-like synoviocytes into joints, form pannus and small 
blood vessels that lead to synovium and cartilage destruction. In this chapter we will 
focus on the role of inflammatory cytokines (IL-1β, IL-6 and IL-17), chemokine 
monocyte chemotactic protein-1 and matrix metalloproteinase-9 in the patho-
genesis of experimental arthritis in animals and in human RA. Further, we will be 
discussing about methotrexate’s (cornerstone of anti-rheumatic therapy) immune 
suppressing activity, anti-inflammatory properties of carnosic acid and extract of 
Rhodiola rosea L., and their innovative combination treatments with methotrexate 
in rat adjuvant arthritis.

Keywords: arthritis, IL-1β, IL-6, IL-17, monocyte chemotactic protein-1, matrix 
metalloproteinase-9, carnosic acid, Rhodiola rosea L

1. Introduction

Inflammation is an inherent defensive mechanism against damage of tissues, 
infection and is quickly stopped in physiological state of organism. In chronic 
diseases, the inflammation continues and is able to cause substantial organ and 
tissue damage. A lot of evidence showed that pathological inflammatory response 
is closely related with different chronic diseases, particularly autoimmune ones, 
such as systemic lupus erythematosus, rheumatoid arthritis (RA), inflammatory 
bowel disease, diabetes, and gout [1–3]. Although the key feature of inflammatory 
dysregulation in many chronic diseases has been supported by plenty of studies, 
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the pathogenesis of this dysregulation in the autoimmune diseases is not well 
understood yet. Knowledge about the signaling and mechanism of regulation of 
inflammation will bring noticeable clinical benefits for the therapy of autoimmune 
disease.

In this chapter we will present our preliminary results from new original combi-
nation treatments of methotrexate with carnosic acid and with extract of Rhodiola 
rosea L and discuss about the role of IL-1β, IL-6 and IL-17, chemokine monocyte 
chemotactic protein-1 and matrix metalloproteinase-9 in the pathogenesis of 
experimental arthritis in animals and in human RA.

2. Cytokines involved in rheumatoid arthritis

To fully understand a complex disease like a RA, animal models are indispens-
able due to their ability to mimic the conditions and demonstrate the similarity 
to the human RA. Rodent models are essential for further knowledge of the 
pathogenic processes of RA in humans and therefore are important in the process 
of testing new and already existing drugs for their efficiency and safety. There 
are many animal models used for the research of RA, but each model varies in the 
similarities to the human RA. The most frequently used animal models are collagen-
induced arthritis and adjuvant-induced arthritis models. Less often are used animal 
models with proteoglycan-induced arthritis and streptococcal cell wall-induced 
arthritis [4].

The adjuvant-induced arthritis (AIA) model has been used widely for testing 
novel drugs for inflammatory arthritis and for studies of the disease pathogenesis. 
After administering an injection with complete adjuvant, it was possible to induce 
polyarthritis [5]. AA is inducible in susceptible rat strains, for example, Lewis rat 
strain, by a single subcutaneous injection of heat-killed Mycobacterium tuberculosis 
H37Ra in oil. Following the induction, the inflammation begins in 8–10 days, the 
symptoms are the most apparent on the 15th or 16th day, and then undergo sponta-
neous recovery. Autoimmune inflammation of the paws starts with the infiltration 
of mononuclear cells, mostly lymphocytes, macrophages, and monocytes [6]. The 
severity of the RA could lead to chronic malformation of affected joints, together 
with ankylosis. Adjuvant-induced arthritis exhibit similar symptoms to human RA, 
such as joint swelling, invasion of lymphocytes, and destruction of cartilage [4].

The difference between AIA in rats and human RA seems to be in the rapid onset 
of the erosive polyarthritis in the AIA model, Rheumatoid Factor is not present, the 
disease seems to have a monophasic course. There is also an involvement of axial 
skeleton seen in the model of AIA, affected gastrointestinal, genitourinary tract 
and skin, periostitis, ankylosis, and extra-articular manifestations not typical of 
RA [7]. Inflamed joints of rats with AIA contain activated T-cells. T-cells infiltrat-
ing joints originate from several compartments, such as the spleen, Peyer’s patches, 
lymph nodes, and T-cell pool that recirculates [8]. Specific antigen heat shock 
protein (Hsp65) has been shown to activate the immune response, with peptide 
180–186 being the responsible epitope [9]. The cytokines that are expressed in the 
joint during the early stages of inflammation include IL-17, IFN, and TNF-α, as well 
as cytokines implicated in macrophage stimulation. Increased levels of IL-4, IL-6, 
monocyte chemotactic protein 1 (MCP-1), and TGF-β can be observed as inflam-
mation progresses in the joint. TNF-α, IL-1β, IL-21, and IL-17 all contribute to the 
pathology of this disorder [8]. The main source of the irreversible tissue damage is 
in an area rich in macrophages, called the pannus, which is located at the junction 
of the synovium lining of the joint capsule together with the cartilage and a bone. 
Pannus cells migrate over the cartilage and into the subchondral bone, subsequently 
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causing the erosion of these tissues [10]. The activity of matrix metalloproteinases 
(MMPs) seems to be the reason for the irreversible destruction of the cartilage seen 
in RA. MMPs are enzymes produced as a response to proinflammatory cytokines as 
IL-1 and TNFα by activated macrophages and fibroblasts [11]. MMPs can be further 
divided into three main groups. Collagenase MMP-1 (interstitial) and MMP-8 
(neutrophil), whose major substrates are collagen forms I, II, and III, belong to the 
first group. The second group consists of the gelatinase/type IV collagenases such as 
MMP-2, the 72kD gelatinase A, and 92-kD gelatinase B (MMP-9). The main func-
tion of these matrix metalloproteinases from the second group is to degrade gelatin 
and collagen type IV in the basement membrane. Group 3 consists of the strome-
lysins, stromelysin 1 (MMP-3), stromelysin 2 (MMP-10), and pump-1 (MMP-7). 
These stromelysins have activity against a range spectrum of substrates, mainly 
proteoglycans, fibronectin, laminin, and some collagens [11]. During arthritis, 
especially MMP-1 and MMP-3 play an important role in the pathophysiology of the 
disease, and what is worse, the destruction of the connective tissue they cause is 
largely irreversible [12–14]. Fibroblasts from a healthy organism produce very low 
levels of both enzymes [12–14]. On the other hand, during RA and osteoarthritis 
levels of these enzymes rapidly increase in response to various stimuli [12–14]. 
Potent inducers of collagenases and stromelysins could be cytokines such as IL-1α 
and IL-1β, epidermal growth factor (EGF), platelet-derived growth factor, and 
tumor necrosis factor α. Inducers of these two enzymes could also be crystals of 
monosodium urate monohydrate, debris phagocytosis, and formulation of multinu-
cleated giant cells. In an environment of stimulated synovial fibroblast cells, which 
resembles proliferating rheumatoid synovial tissue, collagenase and stromelysin 
becomes major gene product of these synovial fibroblasts [14]. Patients with RA 
and OA also have higher levels of collagenase and stromelysin in cartilage and the 
synovial fluid, especially patients with RA [15, 16]. The level of enzymatic activity 
is increased concordantly with the severity of the disease [17]. Apart from MMPs, 
there are other enzymes synthesized by cells within cartilage and bone as well as 
infiltrating inflammatory cells. These enzymes include aspartic, serine, and cyste-
ine endopeptidases such as cathepsin B, which are capable of cleaving and therefore 
destructing the main components of cartilage and bone (such as proteoglycan and 
collagen type I, II, IX, X, and XI) [18].

2.1 Interleukin-1β

Interleukin-1β (IL-1β) is a cytokine belonging to the same family of cytokines 
as IL-1α, yet they show different features and are produced by two different 
genes [19]. IL-1β is mainly produced by macrophages as an inactive precursor 
(pro-IL-1β) and then cleaved by cysteine protease caspase-I into its mature form 
(IL-1β) [20]. The major distinction between IL-1β and IL-1α is that pro-IL-1β is 
biologically inactive, while pro-IL-1α and mature IL-1α can bind to their recep-
tors and therefore stimulate cellular responses. Most IL-1α also stays coupled 
with the plasma membrane and stimulates cells by direct cell–cell interaction, 
which can induce its functions [21]. IL-1β is produced by blood monocytes, 
tissue macrophages, and dendritic cells by direct cellular contact with stimulated 
T-lymphocytes, a mechanism related to chronic inflammation [22]. IL-1β mRNA 
requires an extra signal for synthesis so transcription of IL-1β is a rate-limiting 
step of its synthesis. The extra signal to induce the production of IL-1β can be 
a microbial product or cytokines as TNF-α, IL-1α, IL-18, or IL-1β itself [23]. By 
binding to the same receptors as IL-1α and IL-1β, yet not inducing any consequent 
cellular responses, IL-1 receptor antagonist (IL-I Ra) acts as a naturally occurring 
inhibitor [24]. IL-1β seems to be not present in healthy individuals, or its levels 
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are hard to detect by standard assays. Such low levels are needed to be maintained 
due to the potency of IL-1β to induce inflammatory responses [25]. During RA, 
serum levels of IL-1β are higher in patients with RA compared to healthy indi-
viduals, and the concentrations of IL-1β increase during the acute phase of the 
disease [26].

2.2 Interleukin-6

IL-6 has been suggested to be a major player in the pathological changes 
during RA because of the broad spectrum of activities IL-6 participates in. Il-6 is 
recognized as an endogenous pyrogen [27], and also as an inducer of acute phase 
response genes [28]. IL-6 stimulates B- and T-cells activity and promotes prolif-
eration of plasmablast into mature immunoglobulin-producing plasma cells [29]. 
IL-6 acts stimulatory on the immune system’s cells, vascular endothelial cells, 
synovial fibroblasts, and osteoclasts upon coupling with its soluble IL-6 receptor 
(sIL-6Rα). Activated sIL-6Rα complex stimulates the production of a subset of 
chemokines by endothelial cells and subsequently upregulates the expression 
of adhesion molecules, resulting in direct recruitment of leukocytes to the sites 
of inflammation [30]. Apart from that, by having stimulatory effects on syno-
vial fibroblast and osteoclast activation, IL-6 contributes to the formation of 
synovial pannus and bone resorption in inflamed joints [31, 32]. Interestingly, 
patients with various forms of arthritis have high levels of IL-6 in serum and 
synovial fluids, but on the other hand, their structural cells from joints (chon-
drocytes, fibroblasts, synoviocytes, and endothelial cells) lack expression of 
IL-6R [33]. These cells are also not responsive to IL-6 itself. The complex of IL-6 
bound to its receptor might, therefore, represents the mechanism behind the 
action of IL-6 during arthritis. In a synovial fluid of RA patients, it has been 
shown that an increase in sIL-6Rα correlates with the extent of the joint destruc-
tion which coincides with more advanced stages of RA [32].

2.3 Interleukin-17

IL-17 is another cytokine possibly contributing to the pathogenesis of RA. 
IL-17 is produced by CD4+ CD45RO+ memory T cells in synovium during RA, 
upon activation with phorbolmyristate acetate/ionomycin or CD3/CD28 Abs 
[34, 35]. IL-17A is relatively homologous to IL-17F (~50%) with which it can 
form heterodimers (IL-17A/F). Activated human CD4+ T cells produce IL-17A/F 
heterodimers along with IL-17A and IL-17F homodimers [36]. The signaling is 
based on the coupling of IL-1A and IL-1F to a multimeric receptor composed of 
two subunits IL-17RA and IL-17RC [37]. Cytokines from the IL-17 family activate 
pro-inflammatory pathways through activating NF-κB or inducing signaling 
through MAPK and the C/EBP transcription factors. It seems IL-17A signaling 
intends to activate a gene expression of an innate-type inflammatory effector 
program that mediates potent inflammation and plays a critical role in a defense 
of a host [38]. It has been shown that IL-17 can trigger the production of IL-6, 
IL-8, GM-CSF, and also prostaglandin E2 (PGE2), a strong mediator of inflamma-
tion, in human synoviocytes [34, 35, 39]. Additionally, IL-17 showed stimulating 
effect on granulopoiesis in a murine model [40], on osteoclastogenesis [41], 
up-regulated synthesis of NO in cultured human cartilage [42], stimulated the 
synthesis of proinflammatory mediators as TNF-α, IL-1β, IL-10, IL-12, stromely-
sin, and IL-1Ra in human peripheral blood macrophages [43]. Furthermore, levels 
of IL-17 in synovial fluid and serum from RA patients are high in contrast to OA 
patients [44].
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2.4 Monocyte chemoattractant protein-1

The rheumatoid synovial environment suggests a possible role for leukocyte 
chemoattractant molecules such as chemokines. Chemokines form a superfamily 
consisting of low molecular weight peptides (7–15 kDa) with conserved four- 
cysteine motif and consist of at least two subfamilies: first are the C-X-C (α) che-
mokines which all majorly attract neutrophils. Here belong IL-8, melanoma growth 
stimulating activity, and epithelial neutrophil-activating peptide 78. Secondly, C-C 
(β) chemokines are RANTES (regulated upon activation normal T cell expressed 
and secreted), monocyte chemoattractant protein 1 (MCP-1), and macrophage 
inflammatory protein 1α (MIP-1α), which chiefly recruit T cells and monocytes 
[45]. Many of the cells present in RA joints, such as endothelial cells, macrophages, 
fibroblasts, and lymphocytes can release chemokines. In the pathogenesis of RA, 
members of both subclasses of chemokines have been implicated. The production 
of MCP-1 is enhanced in human RA patients compared to osteoarthritis patients 
[46]. In the murine model of collagen-induced arthritis the earliest detectable levels 
of MIP-1α, MCP-1, and MIP-2 expression were observed 4 weeks after the initial 
collagen challenge [47].

2.5 Matrix metalloproteinase 9

Degradation of articular cartilage is important feature of RA and is caused 
by elevated activity of proteolytic enzymes [48]. In RA, synovial fibroblasts are 
extensively producing the matrix-degrading enzymes [49] known as matrix metal-
loproteinases (MMPs). MMPs are a zinc-dependent peptidases, which are degrad-
ing the components of extracellular matrix. MMPs are the key proteases associated 
with the degradation and invasion through anatomical barriers [50]. The MMP-9 
(gelatinase B) and MMP-2 (gelatinase A), are very important in the degradation of 
collagen by cleaving the denatured collagen, produced by collagenases. Moreover, 
these MMPs degrade other substrates, such as collagen I and II [51] and aggrecan, 
which is abundant in cartilage [50].

MMP-9 has a posttranscriptional regulation on multiple levels. Its activity is 
inhibited in tissues by inhibitors of metalloproteinase (TIMP-1 to TIMP-4) with 
strongest binding between TIMP-1 and MMP-9 [52]. MMPs (including MMP-9) are 
produced and secreted in latent soluble form of enzyme, which needs activation 
extra-celullarly. In tissues the mast cell-derived tryptase and chymase are effective 
activators of MMPs [53, 54]. Regulation of MMPs is situated at the level of their 
transcription. Expression of MMPs is modulated by different stimuli including also 
cytokines [55] and growth factors [56].

MMP-9 was first discovered in neutrophils [57]. MMP-9 is also present in other 
leukocytes including T cells, macrophages, and eosinophils [58]. MMP-9 cleaves 
IL-8 and increases its activity as a chemoattractant for neutrophil more than 10-fold 
according to acute and chronic inflammatory processes [59]. The evidence is now 
growing that along with the storage of serine proteases, mast cells are secreting 
significant amount of MMPs such as MMP-9 [60, 61]. Although there is limited evi-
dence for the expression of MMP-9 in mast cells in rheumatoid synovium [62], its 
regulation in RA is poorly understood. MMP-9 expression in rheumatoid synovial 
mast cells is via its regulation by TNF-α and IFN-γ in cord blood-derived human 
mast cell and the human mast cell line-1 (HMC-1). MMP-9 is not a product which 
is permanently stored in mast cells, but this enzyme is secreted under inflammatory 
conditions. MMP-9 may help in the migration of mast cell progenitors to inflamma-
tory sites and could also promote the local damage of tissues [63]. In RA, MMP-9 
is markedly elevated in serum and joint synovial fluid and positively correlates 



Inflammation in the 21st Century

6

with disease progression and severity [64]. MMP-9 knockout mice show decreased 
severity of antibody-induced arthritis [65].

3.  Innovative combination treatments of methotrexate with natural 
compounds in experimental arthritis

Current drugs for rheumatoid arthritis (RA) are: corticosteroids, disease- 
modifying anti-rheumatic drugs (DMARDs), non-steroidal anti-inflammatory 
drugs (NSAIDs), and biological response modifiers [66]. However, these antirheu-
matics have several adverse effects. NSAIDs are dangerous to patients due to the 
adverse effects such as bleeding of upper gastrointestinal tract, liver, and kidney 
adverse reactions [67]. Moreover, cognitive disorders, headaches, allergic reactions 
often force the patients to stop the treatment. This behavior is greatly limiting the 
use of NSAIDs. The long-term administration of corticosteroids can induce hyper-
splenism, hypertension, infection, osteoporosis and fractures [68]. DMARDs often 
cause diarrhea, rashes, vomiting, decreased white blood cell levels, and impaired 
kidney and liver functions [69]. Biological agents with high target specificity and 
less side effects are the new agents for therapy of RA [70]. However, these biological 
agents are expensive and not available for many patients [71]. Thus, development 
of novel anti-rheumatic drugs and strategies for RA therapy is a high priority. The 
combination treatments of low-dose methotrexate (MTX) with natural substances, 
which have the potential to improve the efficacy and to reduce adverse side effects 
of drugs, could be one possible direction in these strategies for RA therapy. Extract 
or phytochemical selected for combination therapy with MTX is expected to have 
anti-inflammatory and antioxidant activity to treat the inflammation and oxidative 
stress, occurring during RA development. Many chronic diseases with inflam-
matory pathology are abundant in elderly population. The widely administered 
anti-inflammatory drugs have many side effects and are expensive (biologic drugs). 
Alternative option are natural extracts and substances used in traditional medicine. 
These natural products offer a possibility to identify the bioactive compounds and 
for the development of new inflammatory drugs. Traditional remedies and phy-
tochemicals are being used for the treatment of inflammatory and other disorders 
since ancient times [72] and with proper scientific research background can be 
more extensively used for treatment also in the present.

3.1 Methotrexate

MTX is still for decades a primary antirheumatic drug and the cornerstone of 
the RA treatment. MTX has an acceptable safety profile, efficacy, and low cost as 
well as many years of clinical experience make it the gold standard of RA treatment 
and the key drug for combination with different biological drugs [73]. MTX is usu-
ally effective in RA treatment and patients are usually administered for several years 
with MTX, thus information about long-term safety is very important. However, 
administration of MTX is in some cases limited because of its toxic adverse effects. 
During long treatment period by MTX, often adverse reactions occur such as 
mucous ulceration, cytopenia, nausea, liver damage and serious infections. Some 
studies showed that due to toxic manifestations, the interruption of MTX treatment 
in RA patients is in the range from 10–37% [74].

Despite the introduction of numerous biologic agents for the treatment of 
RA, low-dose MTX therapy remains still the gold standard in the RA therapy. 
MTX is generally the first-line drug for the treatment of RA, psoriatic arthritis, 
and it enhances the effect of most biologic agents in RA. Methotrexate inhibits 
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polyglutamates inhibit aminoimidazole-4-carboxamide ribonucleotide (AICAR) 
transformylase (ATIC), leading to intracellular accumulation of AICAR and 
increased adenosine release; adenosine binds to cell surface receptors and sup-
presses many inflammatory and immune reactions [75].

The activity of MTX has also been studied in monocyte cell lines. Different from 
fibroblast like synoviocytes and T-lymphocytes, monocytes trigger apoptosis as a 
response to MTX treatment. Moreover, MTX activates a dose-dependent elevation 
in the expression of inflammatory cytokines, such as TNF, IL-1 and IL-6, in mono-
cytic cell lines [76]. Adenosine (AS) via its receptors regulates monocyte activity, 
and hence MTX may influence monocytes indirectly by increasing AS release by 
other immune cells. AS binds to its A1 receptor on peripheral blood monocytes and 
activates the formation of giant cells with multiple nuclei [77]. Moreover, the bind-
ing of AS to A2a receptors and A3 receptors on monocytes decreases the production 
and release of IL-6 and TNF and initiates the transformation of inflammatory M1 
phenotype of monocytes to anti-inflammatory M2 phenotype.

Macrophages with M2 phenotype have are responsible for termination of 
inflammation, clearing the apoptotic cells and support wound healing by secret-
ing profibrotic and angiogenic cytokines. Adenosine, binding on A2a receptors, 
inhibits the production of inflammatory cytokines and promotes the expression of 
anti-inflammatory mediators such as vascular endothelial growth factor and IL-10 
[78]. A2a receptor stimulation triggers a switching from an M1 (pro-inflammatory 
phenotype) to a modified macrophage M2 phenotype [79]. One way by which A2a 
receptor binding affects macrophage function is by stimulating the expression of 
the NR4A - orphan nuclear receptor, which is inhibiting the activation of NFκB-
dependent nuclear gene expression [80]. A2b receptor also induces the switching 
from a M1 macrophage phenotype to a M2 phenotype [81]. Cultivating synovial 
fibroblasts and T cells from RA patients triggered T cell TNF-α, IL-17, and IFNγ 
expression, which resulted in increased fibroblast IL-6, IL8 and IL-15 expression 
[82]. Methotrexate inhibited the upregulation of IL-6, IL8 and IL-15 by stimulated 
RA synovial fibroblasts. MTX also decreased IFNγ and IL-17 expression in T cells 
co-cultured with RA synovial fibroblasts (Table 1).

3.2 Combination of methotrexate and carnosic acid

In our previous study, we have selected the carnosic acid for combination with 
methotrexate for its anti-inflammatory and antioxidative properties, to reduce the 
development of rat adjuvant arthritis.

3.2.1 Carnosic acid

Carnosic acid (CA) was discovered first by Linde in Salvia officinalis L. [83]. 
Carnosic acid (C20H28O4, Figure 1), is a phenolic diterpene that belongs to the 
terpene class of secondary metabolites [84], is localized in rosemary leaves, more 
precisely in chloroplasts of trichome cells. CA and carnosol have been reported to 
display beneficial effects against acute and chronic inflammation, cardiovascular 
diseases, obesity, and cancer [85, 86], inhibition of prostaglandin synthesis [87], 
skin inflammation [88], inhibition of NF-κB [89], inhibition of 5-lipoxygenase [90] 
and antioxidant activity in vivo [91].

CA prevented cartilage degeneration though induction of hemeoxygenase-1 
(HO-1) in cell culture with human chondrocytes. The results showed that CA 
increased enzyme levels in a dose-dependent manner. Moreover, it was able to 
restore HO-1 levels under IL-1β treatment, which specifically inhibits the antioxi-
dant effects of this enzyme. CA induced HO-1 and miR-140 expression in human 
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articular chondrocytes, thus cartilage degeneration was attenuated by CA treat-
ment [92]. The activation of macrophages triggered by exogenous infection or 
endogenous stress stimuli is thought to be implicated in the pathogenesis of various 
inflammatory diseases. In a study of Wang et al. [93], authors applied an integrated 
approach based on unbiased proteomics and bioinformatics analysis to elucidate 
the anti-inflammatory property of CA. CA significantly inhibited the increase of 
NO and TNF-α, downregulated cyclooxygenase-2 (COX-2) protein expression and 
decreased the transcriptional level of inflammatory genes including NOS-2, TNF-α, 
COX-2, in LPS-stimulated RAW264.7 macrophages. The liquid chromatography-
based assessment showed CA negatively regulated 217 proteins elicited by lipo-
polysaccharide (LPS), which are responsible for multiple inflammatory pathways 
including nuclear factor (NF)-κB, MAPK and FoxO signaling. A following analysis 
showed that CA effectively inhibited ERK/JNK/p38 MAPKs, IKKβ/IκB-α/NF-κB 
and FoxO1/3 signaling. These results illustrate the ability of CA to regulate the 
inflammatory signaling triggered by LPS [93].

In another study by de Oliveira [94] authors have found that activation of cell 
antioxidant defense is mediated via transcription factor nuclear factor erythroid 
2-related factor (Nrf2). Therefore, authors investigated whether CA is able to block 
paraquat (PQ )-induced inflammatory alterations in SH-SY5Y neuroblastoma cells. 
CA reduced the PQ-induced changes on the levels of TNF-α, IL-1β, and COX-2 via 

Figure 1. 
Chemical structure of carnosic acid.

Cell type Methotrexate action

Monocyte Inhibition of IL-1β, IL-6, and TNF-α production; downregulation of receptors FcγRI 

and IIa; increases ROS synthesis and apoptosis

Macrophage Inhibition of IL-1β, IL-6, and TNF-α production;

Th-1 lymphocyte Decreases IL-2, IFN-γ and IL-17 gene expression; increases ROS synthesis and 

apoptosis

Th-2 lymphocyte Increases IL-4 and IL-10 gene expression

Neutrophil Increases ROS synthesis

Synovial 

fibroblast

Inhibition of IL-15, IL-6, and IL-8 expression; inhibitory effect on prostaglandin E2 

production; inhibition of COX-2 and MMP expression

ROS, reactive oxygen species; COX-2, cyclooxygenase 2; MMP, synovial matrix metalloproteinase.

Table 1. 
Immune regulatory action of low dose MTX in the RA synovial tissue (according to Miranda-Carús  
et al. [82]).
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signaling responsible for the activation of the Nrf2/HO-1 pathway. Furthermore, 
they observed a crosstalk between the Nrf2/HO-1 signaling pathway and the activa-
tion of the nuclear factor-κB [94]. Two Rosemary extracts and their main compo-
nents - CA and carnosol affected the cell migration. Monocyte chemoattractant 
protein-1 (MCP-1) and matrix metalloproteinase-9 (MMP-9) were determined by 
Western blot and gelatin zymography, respectively, in RAW 264.7 macrophages and 
vascular smooth muscle cells (VSMCs). MMP-9 and MCP-1 levels were significantly 
diminished with methanol extract (RM), n-hexane fraction (RH), and CA in RAW 
264.7 macrophages. RM, RH, CA, and carnosol suppressed TNF-α induced VSMC 
migration by inhibiting MMP-9 expression. Rosemary, especially its CA compo-
nent, has potential anti-atherosclerotic effects related to cell migration [95].

Liu and colleagues [96] studied the anti-inflammatory activity of CA on 
destruction of osteoclasts, fibroblast-like synoviocytes in the collagen-induced 
arthritis model. Abovementioned in vitro and in vivo experiments showed that CA 
inhibited the expression of pro-inflammatory cytokines such as IL-1β, IL-6, TNF-α, 
IL-17, IL-8 and MMP-3, and suppressed the secretion of RANKL. Moreover, authors 
determined that CA reduced osteoclastogenesis and resorption of the bone in vitro 
and had therapeutic protective activity against joint damage in vivo. Further results 
showed that CA inhibited RANKL-induced activations of MAPKs (JNK and p38) 
and NF-κB resulting in the suppressing of NFATc1 [96].

3.2.2  Effect of the combination therapy of methotrexate and carnosic acid in rat 
adjuvant arthritis

In this section we will present our preliminary results from combination therapy 
of methotrexate (MTX) and carnosic acid in rat adjuvant arthritis.

Hind paw volume (HPV) was significantly increased on days 14, 21 and 28 dur-
ing the development of AA. CA in monotherapy was without a significant effect on 
this parameter. The administration of methotrexate in sub-therapeutic dose mark-
edly reduced HPV on days 14 and 21, but not on day 28. The combination of MTX 
and CA was more effective in decreasing the HPV on days 14, 21 and 28 than MTX 
in monotherapy. The most effective reduction of HPV was on day 21 (Table 2).

MCP-1 is responsible for recruiting monocytes on the sites of inflammation, and 
it is involved in the pathogenesis of human [46] and also in experimental arthritis 
[47]. AA caused a significant increase in the levels of MCP-1 on days 14, 21 and 
28. Neither CA nor MTX administered in monotherapy were able to significantly 
reduce the elevated MCP-1 levels on days 14, 21 and 28. On day 21, only the combi-
nation of MTX and CA significantly decreased the level of MCP-1 in plasma of AA 
animals (Table 3).

3.3 Combination of methotrexate and ethanol extract of Rhodiola rosea

Rhodiola rosea L. is known as an adaptogen and has been confirmed to possess 
protective effects against inflammatory diseases, including cardiovascular diseases, 
neurodegenerative diseases, diabetes, sepsis, and cancer [97]. Less is known about 
the anti-inflammatory activity of Rhodiola extract in the experimental arthritis, 
thus we decided to select this extract for our study in monotherapy and in combina-
tion with methotrexate.

3.3.1 Rhodiola rosea L.

In this section we will focus on the anti-inflammatory effect of Rhodiola rosea 
L. (RhR). RhR has been found to possess anti-inflammatory properties in diseases 
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such as sepsis, endotoxemia, asthma in vivo and in vitro. Pu et al. [97] have found 
that seven compounds (Ferulic acid, Kaempferol, Salidroside, Tyrosol, Catechin, 
Gallic acid and Caffeic acid phenethyl ester) isolated from RhR showed protective 
activity against LPS-induced sepsis in mice via decreasing TNF-α, nitric oxide and 
lactate dehydrogenase [97]. By many scientists, salidroside (SAL) was reported to 
possess protective ability in many disease models through particularly regulating 
different inflammatory mediators.

SAL decreased the inflammatory injury via reducing inflammatory cytokines 
(IL-1β, TNFα, IL-6), small molecules (mainly nitric oxide), chemokines (mono-
cyte chemo-attractant protein (MCP)-1 and macrophage inflammatory protein 
(MIP)-1α) and COX-2 in animal models, such as LPS induced endotoxemia in mice 
[98], LPS induced murine acute lung injury [99], ovalbumin induced asthma in 

MCP-1 (pg/mL) Day 14 Day 21 Day 28

CO 306.43 ± 7.91 337.27 ± 17.06 137.36 ± 20.61

AA 395.68 ± 19.20** 516.31 ± 22.00*** 183.96 ± 12.48*

AA-CA 431.30 ± 21.14 510.00 ± 21.92 174.75 ± 18.45

AA-MTX 410.44 ± 9.75 491.74 ± 20.25 181.87 ± 25.07

AA-CA-MTX 411.82 ± 17.71 429.94 ± 13.38+ 165.21 ± 13.95

CO: healthy control animals, AA: untreated arthritic animals, AA-CA: arthritic animals treated with carnosic acid, 
AA-MTX: arthritic animals treated with methotrexate, AA-CA-MTX: arthritic animals treated combination of 
methotrexate and carnosic acid.
Values are expressed as average ± standard error of mean, statistical significance was calculated using ANOVA-
Tukey–Kramer post hoc test.
*p < 0.05.
**p < 0.01.
***p < 0.001 vs. CO.
+p < 0.05 vs AA.

Table 3. 
Effect of carnosic acid, methotrexate and their combination on levels of monocyte chemotactic protein-1 in 
blood plasma.

Changes in hind 

paw volume (%)

Day 7 Day 14 Day 21 Day 28

CO 4.66 ± 1.83 8.14 ± 3.23 9.79 ± 2.27 12.35 ± 1.95

AA 6.82 ± 2.13 35.90 ± 5.40* 71.79 ± 5.45** 54.81 ± 5.56***

AA-CA 4.73 ± 1.56 43.59 ± 9.70 72.63 ± 4.80 55.79 ± 5.11

AA-MTX 8.26 ± 1.85 11.63 ± 2.58+ 30.47 ± 7.85+++ 34.40 ± 9.74

AA-CA-MTX 3.84 ± 1.30 7.41 ± 1.53++ 8.43 ± 0.81+++/# 12.33 ± 1.90+++

CO: healthy control animals, AA: untreated arthritic animals, AA-CA: arthritic animals treated with carnosic acid, 
AA-MTX: arthritic animals treated with methotrexate, AA-CA-MTX: arthritic animals treated combination of 
methotrexate and carnosic acid.
Values are expressed as average ± standard error of mean, statistical significance was calculated using ANOVA-
Tukey–Kramer post hoc test.
*p < 0.05.
**p < 0.01.
***p < 0.001 vs. CO.
+p < 0.05.
++p < 0.01.
+++p < 0.001 vs. AA.
#p < 0.05 vs AA-MTX.

Table 2. 
Effect of carnosic acid, methotrexate and their combination on hind paw swelling.
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mice [100], and ethanol triggered acute gastric ulceration [101]. Further in vitro 
experiment confirmed the protective effects of SAL in neuro-inflammation. In 
murine microglial BV2 cells treated by LPS, Lee et al. showed that the main com-
pounds of RhR (salidroside and rosarin) reduced the production of nitric oxide and 
inflammatory cytokines such as IL-6, IL-1β, and TNF-α via the NF-κB and MAPK 
signaling pathways [102]. Another in vitro study showed that SAL may inhibit the 
synthesis of inflammatory mediators. Authors found that in mice macrophages 
(J774.1 and RAW264.7) activated by LPS, SAL pre-treatment can reduce the levels 
of IL-1β, TNFα, IL-6, NO and MCP-1 via NF-κB pathway [103]. Further experi-
ment showed that the mechanism might also be associated with down regulation of 
STAT3 and JAK2, and with translocation of STAT3 in nucleus [99]. STAT3 belongs 
to STAT (Signal Transducers and Activators of Transcription) family and has a key 
role in inflammatory processes. Many cytokines bind to GP130, which is a IL-6-type 
cytokines receptor, and activate Janus kinases (JAKs), what leads to the phosphory-
lation of STAT3. The phosphorylated STAT3 is translocated into the nucleus and 
regulates the expression of different target genes including also pro-inflammatory 
mediators [104].

Osteoarthritis (OA) is the most common disease, which seriously affects 
the daily life of the elderly. Currently, no drug therapy has been shown to 
explicitly block the progression of OA. The study by Gao et al. [105] showed 
that salidroside could significantly promote the proliferation of chondrocytes 
in OA rats induced by an anterior cruciate ligament transection and renew the 
OA-induced changes of cartilage. Salidroside increased the levels of aggrecan 
and collagen II and reduced the MMP-13 level. Moreover, salidroside reduced 
Th-17 cells and the levels of IKBα and p65, and IL-17, while elevated the count of 
CD4 + IL-10+ cells and IL-10. The reduction of IL-17 levels further diminished 
the dissociation of IKBα to p65, what resulted in the reduction of the release of 
VCAM-1 and TNF-α. Salidroside decreases the cartilage degradation via promot-
ing proliferation of chondrocytes, reducing collagen fibrosis, and regulating 
the inflammatory processes and immune responses through NF-κB pathway in 
anterior cruciate ligament transection-induced OA in rats [105]. Another study 
involving chondrocytes by Wu et al. [106] showed that salidroside suppressed 
IL-1β-induced apoptosis in chondrocytes. Salidroside stimulated proliferation of 
chondrocytes, reduced IL-1ß-triggered inflammation and apoptosis, and scav-
enged NO and reactive oxygen species generated by chondrocytes. Salidroside 
upregulated the level of B-cell lymphoma 2 protein and downregulated the level 
of apoptosis regulator Bax. Salidroside also inhibited the production of caspase 
3/9 and suppressed the phosphorylation of phosphoinositide-3-kinases (PI3K) 
and protein kinase B (AKT). These results indicate that salidroside prevents 
osteoarthritis by its anti-inflammatory, anti-apoptotic and pro-proliferating 
activities by suppressing the PI3K/AKT pathway [106].

3.3.2  Effect of the combination therapy of methotrexate and extract of Rhodiola 
rosea in rat adjuvant arthritis

Hind paw volume (HPV) was significantly increased on days 14 and day 21 dur-
ing the development of AA. Administration of Rhodiola rosea ethanol extract (RS) 
in monotherapy markedly decreased HPV on day 14, but it had no effect on HPV on 
day 21. MTX and the combination of MTX with RS administered in monotherapy 
significantly decreased the HPV on days 14 and 21 (Table 4).

AA caused significant increase in the levels of IL-6 on days 14 and 21. 
Administration of MTX in monotherapy significantly decreased the plasmatic 
level of IL-6 only on day 14. Administration of RS in monotherapy had no effect on 
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levels of IL-6. However, the combination treatment of MTX and RS significantly 
decreased the levels of IL-6 on both measured days (Table 5).

4. Conclusions

Animal models of rheumatoid arthritis (RA) are used widely in research on 
pathogenesis of inflammatory arthritis and in the testing of potential anti-arthritic 
agents. In this chapter we highlighted the importance of inflammatory mediators 
IL-1β, IL-6, IL-17, MCP-1 and MMP-9 in experimental arthritis and RA. We have 
demonstrated, that MTX is a therapeutic standard for human arthritis as well as for 
adjuvant arthritis in rats, which make this model suitable for studying the phar-
macotherapy of RA. Our preliminary results with combination treatments of MTX 
with carnosic acid and Rhodiola rosea ethanol extract showed, that these combina-
tions are more effective in reducing hind paw volume, and the levels of MCP-1 and 
IL-6 than MTX in monotherapy. Thus, natural compounds with anti-inflammatory 
activities could be also a perspective candidate for combination treatments with 
MTX to treat human autoimmune diseases.

IL-6 (pg/mL) Day 14 Day 21

CO 62,67 ± 4,30 51,50 ± 4,77

AA 141,45 ± 14,66* 88,33 ± 5,74*

AA-MTX 82,10 ± 18,95+ 70,19 ± 7,12

AA-RS 148,92 ± 10,44 77,99 ± 5,44

AA-RS-MTX 70,05 ± 6,84+ 43,13 ± 3,05+

CO: healthy control animals, AA: untreated arthritic animals, AA-RS: arthritic animals treated with extract of 
Rhodiola rosea, AA-MTX: arthritic animals treated with methotrexate, AA-RS-MTX: arthritic animals treated 
combination of methotrexate and extract of Rhodiola rosea.
Values are expressed as average ± standard error of mean, statistical significance was calculated using ANOVA-
Tukey–Kramer post hoc test.
*p < 0.05 vs. CO.
+p < 0.05, vs. AA.

Table 5. 
Effect of Rhodiola rosea ethanol extract, methotrexate and their combination on levels of IL-6 in blood plasma.

Changes in hind paw volume (%) Day 7 Day 14 Day 21

CO 0.55 ± 1.05 7.14 ± 1.33 11.99 ± 1.01

AA 3.16 ± 1.63 21.34 ± 3.70*** 55.38 ± 2.76***

AA-MTX 3.95 ± 0.91 5.40 ± 0.86+++ 14.79 ± 2.66+++

AA-RS 3.79 ± 1.88 8.35 ± 2.12++ 48.62 ± 5.34

AA-RS-MTX 6.13 ± 1.66 7.77 ± 2.49++ 12.10 ± 4.24+++

CO: healthy control animals, AA: untreated arthritic animals, AA-RS: arthritic animals treated with extract of 
Rhodiola rosea, AA-MTX: arthritic animals treated with methotrexate, AA-RS-MTX: arthritic animals treated 
combination of methotrexate and extract of Rhodiola rosea.
Values are expressed as average ± standard error of mean, statistical significance was calculated using ANOVA-
Tukey–Kramer post hoc test
***p < 0.001 vs. CO.
++p < 0.01.
+++p < 0.001 vs. AA.

Table 4. 
Effect of Rhodiola rosea ethanol extract, methotrexate and their combination on hind paw swelling.
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