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Chapter

Near-Infrared Spectroscopy and 
Machine Learning: Analysis and 
Classification Methods of Rice
Pedro S. Sampaio and Carla M. Brites

Abstract

Nowadays, the conventional biochemical methods used to differentiate and 
characterize rice types, biochemical properties, authentication, and contamination 
issues are difficult to implement due to the high cost of reagents, time requirement 
and environmental issues. Actually, the success of agri-food technology is directly 
related to the quality of analysis of experimental data acquired by sensors or tech-
niques such as the infrared-spectroscopy. To overcome these technical limitations, 
a rapid and non-destructive methodology for discrimination and classification of 
rice has been investigated. Near-infrared spectroscopy is considered as fast, clean, 
and non-destructive analytical tools and its spectra present significant biomolecular 
information that must be analysed by sophisticated methodologies. Machine learn-
ing plays an important role in the analysis of the spectral data being used several 
methods such as Partial Least Squares, Principal Component Analysis, Partial 
Least Squares-Discriminant Analysis, Support Vector Machine, Artificial Neuronal 
Network, among others which can successfully be applied for food classification 
and discrimination as well as in terms of authentication and contamination issues. 
The quality control of rice is extremely important at every stage of production, 
beginning with estimation of raw agricultural materials and monitoring their qual-
ity during storage, estimating food quality during the production process and of the 
final products as well as the determination of their authenticity and the detection of 
adulterants.

Keywords: Authentication, Classification, Machine Learning, Near-Infrared, Rice, 
Spectroscopy

1. Introduction

1.1 Rice (Oryza sativa L.): biochemical and physical characteristics

Rice (Oryza sativa L.), considered as the principal staple food for half of the 
world’s population, is consumed from ancient times being considered one of the 
most important sources of dietary proteins, carbohydrates, vitamins, minerals 
and fiber [1]. Rice belongs to the family of cereal grasses, along with wheat, corn, 
millet, oats, barley, rye, and numerous others. Rice is a plant that normally grows 
for only one year, consisting of rounded, hollow, and articulated stalks (stems), 
has flat-looking leaves and a terminal panicle. Rice is considered the only cereal 
adapted to grow in either flooded or non-flooded soil. Rice is cultivated in different 
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climatic and geographic conditions and is the basis of food for a significant part of 
the world population. The diversity of rice grains and their quality are important 
factors for producers and consumers and depend on genetic characteristics and 
growing conditions. The grain is the seed of rice which, when the egg is fertilized, 
contains an embryo that has an ability to germinate and give rise to a new plant. It 
consists of the mature ovary, the lemma and palea (shell), the rachilla, the sterile 
lemmas and the wing (not always present). The embryo, present on the ventral side 
of the spikelet, close to the spikelet, has an embryonic root. The rest of the grain 
structure consists mainly of the endosperm (the edible portion), which contains 
starch, proteins, carbohydrates, fat, crude fiber and inorganic substance. The 
rough rice kernel includes the husks or hulls and pedicel, as well as the caryopsis 
(Figure 1). The weight distribution of rice caryopsis throughout the maturation 
phase is defined as follows: pericarp (1–2%), tegument and aleurone (5%), starchy 
endosperm (89–91%) and embryo (2–3%) [3]. A rice caryopsis (rice seed or whole 
rice grain) tends to accumulate rapidly during the developmental phase, over 5 to 
15 days after fertilization under ideal conditions for development. Starch is accumu-
lated in higher concentration in the starchy endosperm. Small amounts of starch are 
found in the subaleurone layer and very small amounts are present in the embryo 
and aleurone layer [4]. Functional proteins are present in different tissues of the 
embryo during development; the proteins considered storage are found accumu-
lated in these tissues [5]. Storage proteins are found in high amounts in the starchy 
endosperm, however, the protein concentration is higher in the aleurone layer 
compared to the subaleurone layer and in the starchy endosperm [3]. Lipids, in the 

Figure 1. 
Parts of rough rice grain. 1-Scutelium (Cotyledon); 2-Coleoptile; 3-Epicotyl (Plumule); 4-Apical meristem; 
5-Radicle; 6-Coleorhiza; 7-Pericarp; 8-Tegmen (Seed coat); 9-Aleurone layer; 10-Subaleurone layer; 11-Starchy 
endosperm; 12-Lemma; 13-Palea; 14-Sterile lemmas; 15-Rachilla; 16-Part of pedicel. Adapted from: [2].
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form of lipid bodies, begin to accumulate about five days after anthesis and increase 
in content in conjunction with starch and protein it can be accumulated for a longer 
period [6]. The biological activity of the pericarp and seed coat during develop-
ment is important for cereals, including rice, but the synthetic activity of the seed 
covering the maternal tissue begins to decline before the endosperm and embryo 
maturity [7].

Many characteristics of grain quality, such as milling behaviour, appearance, 
nutritional properties, and cooking qualities, have been routinely evaluated [8]. 
The evaluation methods of rice varieties are based on their chemical composition, 
namely (protein, moisture, fat, and ash), apparent amylose concentration, gelati-
nization temperature, gel consistency and dough viscosity. These procedures are 
based on standardized methods, which are often considered to be slow and expen-
sive [8]. The classification and characterization of different types of rice depends on 
several physicochemical parameters, namely, biometric data and protein, fat, ash, 
moisture, starch, amylose, among other.

Starch is one of main components in rice grain, being the essential carbohydrate 
reserve in the grain, and so its impact in the evaluated physico-chemical param-
eters. Starch is a complex polysaccharide of α-D-glucose units exclusively, which 
are joined by a sequence of α-D-(1,4)-glucosidic linkages thus giving rise to a linear 
or helical chain, being composed by two classes of glucose polymers: amylopectin 
and amylose. Amylose is a linear polymer of D-glucose units, and amylopectin is a 
highly branched polymer of glucose. These are referred to as amylose (20–30%). 
The much less frequent α-(1,6)-glucosidic linkages form the branch points between 
the chains thereby creating highly branched domains, denominated amylopectin 
(70–80%) [9]. Amylose is considered the most important determinant of the 
eating quality of rice and based on their contents, rice varieties can be classified as: 
waxy (0–2%); very low (3–12%); low (13–20%); intermediate (21–25%) and high 
(>26%) [10]. The classical and still commonly used method for the amylose and 
amylopectin determination is the iodine reaction coupled with potentiometric or 
amperometric titration. There are also other methods such as: differential scanning 
calorimetry [11], potentiometric [12], spectrophotometric [13], and chromato-
graphic [14, 15] that can be used for classification and a detailed analysis. The fine 
structure of amylose, both molecular size and chain-length distribution, are also 
significant factors of the hardness of cooked rice [16]. Amylose content is correlated 
with the retrogradation behavior, influencing the textural properties of cooked rice 
and the viscoelasticity dynamic of rice starch gel [17]. The elongation of grains, 
volume expansion as well as water absorption characteristics are accounted for 
cooked rice quality [18].

Proteins and lipid content are also characteristics currently accepted to define 
rice quality [19]. After starch, the protein is the second main component of rice, 
being found by four fractions: albumin (soluble in water), globulin (soluble in salt), 
glutelin (soluble in alkali), which represents the dominant protein in brown rice and 
white rice, and prolamine (soluble alcohol), a secondary protein in all rice mill frac-
tions [20, 21]. Lipids are the third major component of brown rice, next to carbohy-
drates and protein, playing a major role in the quality of rice during processing and 
storage. Fats or lipids are mainly concentrated in the outer bran layer of brown rice, 
up to 20% by mass; therefore, the lipids content of brown rice is greater than that of 
milled rice [19, 22].

Appearance quality is how the rice appears after milling and it is associated with 
grain length, width, length-width ratio (shape) and translucency/chalkiness of the 
endosperm. Generally, most markets prefer translucent rice as opposed to chalky 
ones. Appearance quality has a direct influence on marketability and success of 
commercial varieties. The physical properties of rice grain include all of its external 
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or integral characteristics, such as its appearance (size, shape, smoothness, colour), 
weight, hardness, volume, flow properties and so on (Figure 2).

Rice classification and consequent analysis is a comprehensive quality indica-
tor not only in terms of the appearance but also for its cooking and processing 
qualities. Physical properties of rice are fundamental in all activities related to 
the production, preservation and utilisation of rice [23]. The parameters such as 
dimensions, density, hardness, friction and mechanical properties are affected 
by the moisture content of the grain and its degree of milling, and also to a small 
extent by temperature. Cereal research, as well as grading and evaluation of food 
products, have encouraged the development of non-destructive, rapid and accurate 
analytical techniques to evaluate grain quality and safety being characterized by a 
huge amount of experimental data that must be accurately analysed [24]. Different 
types of rice vary in terms of size, shape, color and constitution, which cannot be 
accurately identified by human visualization. Often, rice seed cultivars, character-
ized by high quality, can be faked using low quality cultivars or confused with 
other cultivars, which complicates rice quality, yield and value. For this reason, the 
identification of rice seed cultivars is extremely important.

Grain appearance is characterized by biometric parameters (length, width, 
length/width ratio), total whiteness, vitreous whiteness, and chalkiness, being 
considered as crucial factor that affects its market acceptability. Grain shape can be 
described by biometric parameters, which are closely associated with grain weight 
[25, 26]. The ratio of the length and the width is used internationally to describe the 
shape and class of the variety. Grain weight provides information about the size and 
density of the grain. Grains of different density mill differently, and are likely to 
retain moisture differently and cook differently. Uniform grain weight is important 
for consistent grain quality [27]. Chalkiness, an opaque white discoloration of the 
endosperm, reduces the value of head rice kernels and decreases the ratio of head 
to broken rice produced during the milling process [28]. Viscosity is a characteristic 
that indicates some of the cooking properties of rice, being evaluated by Rapid Visco 
Analysis (RVA), which mimics the process of cooking and monitors the changes 
to a slurry of rice flour and water, during the test. Starch viscosity curves are use-
ful for breeding because the shape of the curve is unique to each class of rice [29]. 
The primary RVA parameters include peak viscosity, PV (first peak viscosity after 
gelatinization); trough or hot paste viscosity, HPV (paste viscosity at the end of the 
95 °C holding period) and final or cool paste viscosity, CPV (paste viscosity at the 
end of the test) [30]. The breakdown (BD = PV − HPV); setback (SB = CPV − PV); 
 consistency (CS = CPV – HPV); set back ratio (SBR = CPV/HPV) and stability 

Figure 2. 
Rice grains aspects.
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(ST = HPV/PV) are considered as secondary parameters, once are derived from 
primary ones [30–32]. Other factors include peak time (time required to reach peak 
viscosity), and pasting temperature (temperature of initial viscosity increase) [33].

Industrial processing parameters such as the milling yield husked, milling yield 
milled, and milling industrial can influence positive and negatively the acceptability 
of rice by the industrials, can also affect the commercial value of rice. Rice yield and 
milling quality determine the economic value of rice from the field to the mill and 
in the industrial market. The rice commercial quality depends on several param-
eters that are evaluated separately or are involved several time-consuming experi-
mental procedures. The evaluation of some parameters are related to biochemical or 
biological properties that allow more esasily its determination or prediction. Milling 
quality aspects affected by temperature during rice ripening include chalkiness, 
immature kernels, kernel dimensions, fissuring, protein content, amylose content, 
and amylopectin chain length [10]. Rice milling process can be subjected to dehusk-
ing of paddy which results in brown rice, and removing the bran from the kernel by 
polishing the brown rice to yield white rice. The milling quality of rice determines 
the yield and appearance of the rice after the milling process.

1.2 Near-infrared spectroscopy

Beer’s law is generally applied in analytical spectroscopy to correlate the concentra-
tions of standard samples with corresponding analyte absorbances to develop the 
calibration curve that is later used to evaluate the concentration of analyte of unknown 
samples, typically at lambda (λmax). Variation in other wavelengths/wavenumber 
regions is often not considered but contains significant information that may be 
selected to represent analyte absorption fingerprint signatures and spectral profiles for 
ultimate pattern recognition and/or quantification of analytes in unknown samples.

Analytical infrared spectra are focus on the absorption or reflection of the 
electromagnetic radiation can be divided in three regions of IR: near IR (NIR) in 
the 12.000–4000 cm−1 region, mid IR (MIR) in the 4000–400 cm−1 region, and 
far IR (FIR) beyond 400 cm−1 (Figure 3). The MIR region (4000–400 cm−1) is a 
well-recognized and reliable method through which different compounds can be 
identified and quantified, being used for biological applications, which includes the 
so-called fingerprint regions representative for lipids, proteins, amide I/II, carbo-
hydrates, and nucleic acids (Figure 3). FIR spectroscopy (400–20 cm−1) provides 
information on the highly ordered structures such as fibrillar formation and protein 
dynamics [35] since it is more sensitive to the vibrations from the peptide skeletons 
and hydrogen bonds than MIR [36]. NIR, known also “far-visible spectroscopy” 
or “overtone vibrational spectroscopy”, can measure the chemical composition of 
biological materials using the diffuse reflectance or transmittance of the sample 
at several wavelengths [37]. The NIR spectrum, from 12.000 to 4000 cm−1 lies 
between the visible and mid-infrared regions of the electromagnetic spectrum, is 
characterized by a number of absorption bands that vary in intensity due to energy 
absorption by specific functional groups in a sample [38].

NIR is a spectroscopic technique used to study of hydrogen bonding because 
it evaluates the overtones and combinations of the molecule’s vibrational modes, 
principally those involving hydrogen. NIR spectroscopy can measure the concen-
tration of components, characterized by different molecular composition such as 
protein, water, or starch [39]. The chemical bonds present in food and crop compo-
nents such as fats, water, and carbohydrates are easily detected by NIR spectroscopy 
due to the specificity of the radiation, in terms of the groups of interest such as N-H, 
C-H, and O-H bonds. Due to the macromolecular complexity of the rice sample, it is 
normal for these bands to overlap one another.
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The transmission and reflection are defined as the two major modes of NIR 
spectroscopy, that are used based on physical state of the sample. Transmission 
modes are more suitable for liquids, thin solids, and thick solids when inspecting a 
food item for its ripeness, or whether it contains pests or defects. In another side, 
reflectance mode is applied for measuring content in whole grains such as lipids, 
starch, amylose, protein, moisture, and oil content. Low reflectivity indicates that 
energy diffuses readily beneath the surface of most samples, including visually 
opaque samples. Low absorptivity represents that NIR light energy easily penetrates 
the samples without fast attenuation [40]. This technique is extensively used in 
breeding procedures for quality improvement of any cereals, and crop manage-
ment, receivable testing, and on-line process control [41, 42].

The NIR methodology presents some advantages such as no sample prepara-
tion or pre-treatment process, no need for dangerous reagents or solvents, and no 
disposal problem, either. These advantages can eliminate sampling errors caused by 
manual sample handling and reagent contamination. The samples also can be used 
in additional studies, being carried out by technically untrained personnel. On the 
other hand, through NIR analysis, it is possible to obtain a set of spectra, simultane-
ously, in a certain range of wavelengths, which may serve as a basis for the develop-
ment of specific calibration curves for each analyte. In the calibration process are 
transformed during modelling using, for this purpose, chemometric techniques 
that use a representative set of training to use the program to discriminate slight 
differences that exist in the specific spectra of the sample [43]. A single spectrum 
can be subjected to many different calibration models, to measure any number of 
constituents.

Different techniques such as machine vision and Visible/Near-Infrared 
spectroscopy have been developed and applied to determine and character-
ize rice varieties and evaluate the biochemical characteristics. Traditional 
techniques used for rice variety evaluation such as High-pressure Liquid 
Chromatography (HPLC) or Gas chromatography-mass spectrometry (GC-MS) 

Figure 3. 
Infrared spectral region (adapted by Balan et al. [34]).
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are time-consuming and hard to apply [44]. NIR spectroscopy, compared to the 
traditional analysis methods, is characterized by many advantages, such as is 
easy-to-use, real-time analysis, fast and accurate, highly reproducible results, 
non-destructive sampling, no sample preparation, multiple components analysis 
with a single measurement, high precision and non-destructive detection, being 
widely used in the measurement of agricultural and food products [45, 46].

1.3 Spectral pre-processing techniques

Over the years, several multivariate regression analysis methods have been 
developed in order to provide significant information from spectral data, due 
in part to the limitations of univariate spectral analysis. The processing of spec-
tral data for chemical analysis usually uses the field of statistics and advanced 
mathematics for an analysis in terms of multivariate regression of spectral data. 
Simultaneous investigation of several wavenumbers or wavenumbers for biochemi-
cal analysis can be carried out through multivariate regression techniques, as these 
allow the analysis of different sample components without the need for spectral 
resolution and spectral deconvolutions. Pre-processing methods allowed eliminat-
ing noise caused by spectral data, which allow to remove the non-informative 
variability present in the spectra. Data pre-processing techniques such as normal 
variable transformation (SNV), multiplicative dispersion correction (MSC) and 
smoothing derivative are required for raw NIR spectra for proper qualitative 
classification and development of quantitative calibration models. MSC is used to 
compensate for particle size effects as it rotates the spectra to remove part of that 
effect, adjusting as close to the average spectrum as possible [47]. The first and 
second derivatives are calculated according to the Savitzky–Golay approach using a 
19 point window and a 2nd or 3rd order polynomial, which allows to remove noise 
such as baseline drift, large, reverse and so on [48–50] (Figure 4).

Figure 4. 
Rice NIR spectra data without treatment (a); and after pre-processing procedure: baseline correction; (b, c) 
and first derivative process. (Adapted from Sampaio et al. [51]).
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1.4 Machine learning methods

Machine learning is one of the most promising technologies in the field of 
artificial intelligence, that involve the use of algorithms that allow machines to learn 
by imitating the way humans learn step. Machine learning based on experimental 
data allows to optimize grouping or classification, developing models that allow to 
predict the behavior or properties of systems. There are two main types of machine 
learning: the supervised and the unsupervised process. Supervised machine learn-
ing uses algorithms that “learn” from the labeled data entered by a person without 
an algorithm. The algorithm generates expected output data as long as the input 
has been labelled and prior primary. There are two types of data that can be used in 
the development of the algorithm: (a) classification, which classifies an object into 
different classes, for example, it allows determining the type of rice according to 
its physical characteristics; (b) Regression, predicts a numerical value such as the 
concentration of any biochemical parameters such as the protein, lipids, or car-
bohydrates, etc. Supervised learning consists of learning a function from training 
examples, based on their attributes (inputs) and labels (outputs). In the unsuper-
vised machine learning, unlike the previous case, there is no human intervention, 
and the algorithms learn process is based on the data with unlabeled elements, 
looking for patterns between them without human intervention. In this case two 
types of algorithms have been developed: (a) clustering, classifies the output data 
into groups according to its similarity; (b) association, the algorithm discovers 
rules within the data set. In semi-supervised learning, both labeled and unlabeled 
data is used for training, with usually only a small amount of labeled data, but a 
large amount of unlabeled data. Instead, the learning system receives some sort of 
a reward after each action, and the goal is to maximize the cumulative reward for 
the whole process. The much recognized machine learning methods are: Principal 
Component Analysis (PCA), the most basic feature extraction unsupervised 
techniques, based on the analysis of the variance of features within the full spec-
trum; the clustering unsupervised methods, used to identify biological subtypes 
within a sample, such as Hierarchical Cluster Analysis (HCA), k-Nearest Neighbors 
(KNN), Artificial Neural Networks (ANN), discriminant analysis (DA), Partial 
Least-Squares-Discriminant Analysis (PLS-DA), Partial Least-Squares (PLS), and 
Support Vector Machines (SVM).

1.4.1 Principal Component Analysis

Principal Component Analysis (PCA) is an unsupervised technique that allows 
the dimensionality reduction of the multivariate data to n principal components 
that preserves the variance of initial data as possible in the lower dimensionality 
output data [52]. The huge number of data are transformed into a reduced number 
of uncorrelated variables called principal components (PC) where each compo-
nent represents a linear combination of the original data and the number of PCs is 
equal to the original variables. Early PCs explain most of the sample data, which 
allows for the reduction of data size. A PCA can reveal as variables that determine 
some inherent structure of the data, which can be interpreted in chemical or 
physicochemical terms. The scatter plot of PC1 and PC2 scores represent the most 
expressive variability among themselves, which account for most of the variability 
between samples and contain information from the entire spectrum. The PCA has 
been coupled with Mahalanobis distances to reduce dimensionality before carrying 
out the discriminant analysis [53]. Plots of PCs versus each other represents how 
the variables that they account for are related. To monitor the cluster together is 
important to determine a set of scaling coefficients, the scores. The scores for each 
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factor can be evaluate for every spectrum in the training set. The original spectra 
are constructed when the scores are multiplied by the load vectors and the results 
summed. In this way, knowing the set of charge vectors, how scores represent 
the spectra with the precision of the original responses at all wavelengths. PCA 
avoids the problem of overfitting by selecting too many wavelengths. This pattern 
recognition method was used to determine the Mahalanobis distances that are 
determined in units of standard deviations from the center (mean) of the train-
ing set cluster. Cross-validation is one method that is employed for evaluating the 
suitable number of factors. For performing this evaluation, each sample present 
in the calibration set is eliminated one by one and the remaining samples are used 
to build a Mahalanobis matrix for one, two, three factors, and so on. Then, the 
excluded sample is predicted, using the models developed for Mahalanobis group-
ing. The excluded sample is then put back to the calibration set, and a new sample 
is removed. The process continues until all changes have been removed from the 
calibration and prediction set. This represents an advantage of cross-validation 
compared to other methods, since the favors are not the same in relation to those 
used to define the model.

1.4.2 Discriminant Analysis

A Discriminant Analysis is a strategy that has been used successfully for a quali-
tative analysis, being called pattern recognition. This methodology aims to classify 
groups as groups into well-defined groups according to the similarities of a “training 
set” despite limited knowledge of the composition of those belonging to the group. 
Johnson and Wichern [54] concluded that the use of discriminant analysis uses sev-
eral variables and analyzed how to solve the grouping together. The development of 
calibration models in discriminant analysis is based on two methods: Mahalanobis 
distances, considered the unit distance vector in multidimensional space, and PCA 
coupled with Mahalanobis distances [54, 55]. The Mahalanobis distance can be 
defined by an ellipsoid in a multidimensional space that circumscribes the data. 
This method is based on a matrix that represents the inverse of the matrix formed 
by combining the covariance matrices within the group of all groups, which is gen-
erated by combining information from all different materials of interest in a single 
matrix. Studies developed by and Williams considered the Mahalanobis distance 
as the mathematical number that defines the position, size and shape of the ellip-
soid for all clusters [38]. According to of statistical perspective, the Mahalanobis 
distance considers the sample variability to be valid, while the Euclidean distance 
method does not consider the variability of values in all dimensions to be valid. 
The Mahalanobis distances look at not only variation between the responses at the 
same wavelengths, but also at the inter-wavelength variations. Instead of treating 
all values equally when calculating the distance from the mean point, it weights 
the differences by the range of variability in the direction of the sample point. The 
place of each cluster in multidimensional space is defined by the mean value of the 
absorbances (the group mean) at each wavelength. Dunmire and Williams indicated 
that the sample can be classified clearly if it falls within three times the Mahalanobis 
distance from the respective centroid and at least six times the Mahalanobis dis-
tance from the ellipses of other groups [38]. Meanwhile, the Mahalanobis distance 
represents a multidimensional distance D defined by the matrix equation as follows 
(Eq. (1)) [55]:

 ( ) ( )D x x’ M x x’= − −2   (1)



Integrative Advances in Rice Research

10

where x represents a vector related to optical readings at several wavelengths 
which describes the position in multidimensional space corresponding to the 
spectrum of a given sample, x’ is a vector that represents the position of a reference 
point in space, while M is the pooled inverse covariance matrix describing distance 
measures in the multidimensional space.

1.4.3 Partial Least Squares-Discriminant Analysis

Partial Least Squares-Discriminant Analysis (PLS-DA) is defined as a linear clas-
sification method that permits to estimate the predictive models based on partial 
least squares regression algorithm that follows for latent variables with maximum 
covariance, representing the significative sources of data variability with linear 
combinations of the original variables is considered an example of machine learn-
ing tool applied to conduct a global cellular analysis of bioprocess as an exploratory 
technique, gaining increasing attention as a useful feature selector and classifier 
[56–60]. Multivariate classification methods aimed at finding mathematical models 
able to recognize the membership of each sample to its appropriate class, by a set 
of measurements. PLS-DA have shown promising results in the detection of food 
adulteration without identifying specific compounds [61]. PLS-DA is a discrimi-
nant classifier, being particularly suitable for handling correlated features (e.g., 
spectroscopic variables). The predicted value is a number, but not a dummy integer. 
Thus, a cut off value needs to be set to determine which class the sample belongs 
to. PLS-DA is computed based to full cross validation methods. More specifically, 
a predictor block is used to estimate (by PLS) a binary response called dummy Y (a 
binary response matrix encoding the class-belonging). Mathematically, the regres-
sion relation between the data matrix X and the dummy vector y for a two-class case 
is represented by the model represented in Eq. (2)

 by y e X e= + = +


 (2)

where y


, b, and e represents, respectively, the vectors of predicted responses, 

regression coefficients, and residuals. When new samples (test set) need to be 
classified, their predicted responses, ynew


, are calculated based on the measure-

ments, Xnew, and the regression coefficients, b, estimated on the training set, and 
the classification rule is then applied to assign each individual to one of the catego-
ries under study.

1.4.4 Support Vector Machine

Support Vector Machine (SVM) is a widely used supervised statistical learning 
algorithm, considered as a nonlinear classification technique, which works with 
supervised learning models that analyze data used for classification and regression 
analysis, producing linear boundaries between objects groups in a transformed 
space of the x-variables [62–64]. SVM was previously used to detect and quantify 
milk adulteration by mid-infrared spectrometry [64] and to identify rice seed 
cultivars [65]. SVM reveals advantages in dealing with small sample, non-linear 
and high dimensional data. The model performance depends of the selection of 
kernel function in SVM models, and the commonly used Radial Bias Function 
(RBF) is used as kernel function. The regularization parameter c, controls trade-off 
between the minimum training error and minimum model complexity, along with 
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the kernel parameter g of the kernel function. The parameter c reflects the degree of 
generalization, represents the width of the kernel function and reflects the degree 
of generalization are determined by a grid-search procedure in SVM.

1.4.5 Partial Least Squares

Partial Least Squares (PLS) regression and principal component regression (PCR) 
are examples of quantitative regression algorithms that are currently used for linear 
data, being considered as factor-based models. PLS and PCR use information from 
all wavelengths in the entire NIR spectrum to predict sample composition, instead of 
using a few selected wavelengths. PLS is similar to PCR but more sensitive in terms of 
variations in sample concentration. Studies performed by Wehling described that PLS 
and PCR, based on data reduction approaches, allowed to decrease a huge number 
of variables to a much smaller number of new variables that account for most of the 
variability in the samples [66]. The amount of a constituent in samples can then be 
predicted by these new variables. PLS is the most widely used supervised multivariate 
data analysis method that estimates and quantify components in a specific sample. 
Each training example is defined as a pair (x, f(x)), where x represents the input, and 
f(x) is the output of the underlying unknown function. The objective of supervised 
learning is given a set of examples of f, return a function h that best approximates f. 
Osborne et al. indicated that PLS tends to generate solutions that need fewer factors 
than calibrations of comparable performance produced by PCR [53]. PLS is defined 
as a regression algorithm that uses concentration data during the decomposition 
process and involves information as much as possible into the first few loading vectors 
[67]. It performs, simultaneously, a decomposition on the spectral and concentration 
data. A small number of factors are developed as specific data linear and regression 
on the scores of the factors used to derive a prediction equation. To remove irrelevant 
spectral variables and to improve model performance, several methods have been 
studied to select the optimal variables for multivariate calibration. The multivariate 
calibration allowed builds a predictive model, relating variables (wavenumbers) to 
properties of interest (concentration data). To address this common problem, a vari-
ety of linear regression methods based on latent variables (LVs) have been developed, 
such as partial least squares (PLS), but due to several drawbacks such as the noise in 
spectral data, the calibration and prediction errors are high, and the model can be 
affected [68]. Regardless of the regression method, the initial stage of this process 
is related to a typical development, optimization and refinement. The main objec-
tive of any multivariate regression is to predict unknown the samples’ with a degree 
of certainty and great accuracy using a process known in multivariate analysis as 
“validation”. The established regression models must be sufficiently validated, usually 
with independent validation samples of known concentrations. Root-mean-square-
error-of-prediction (RMSEP) and root-mean-square-percent-relative error (RMSRE) 
are utilized to calculate the reliability and performance of the regression model for 
accurate determination of analyte concentrations of validation or future samples.

The matrices containing the data provided by the NIR spectra, denominated by 
X and the vector Y containing the parameters that it will be determine are employed 
to build the regression model. The performance of the final PLS model is evaluated 
according to the RMSEP and the correlation coefficient (R). RMSEP was defined as:
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where n represents the number of samples in test set validation, yi is the refer-
ence measurement result for the test set sample i and ŷi is the estimated result of 
the model for the test sample i. (Eq. (3)). Correlation coefficient (R) relatively to the 
predicted and the quantified value are determined for both the calibration and the 
test set which is determined based on the (Eq. (4)), where ȳ represents the mean of 
the reference measurement for all samples in the calibration and test set. The best 
combination of spectral regions and the pre-processing techniques were selected 
by picking the PLS model with a small RMSEP, a high R and a low number of latent 
variables covering enough data variance. The model construction was based on test 
set validation composed by randomly chosen samples from the entire dataset, not 
used for model calibration. Based on PLS models, there are some procedures that 
depends on specific algorithm, spectral region selection, can considerably improve 
the performance of the full-spectrum calibration techniques, avoiding non-mod-
eled interferences and building a well-fitted model [69–71]. Studies then performed 
showed that it is fundamental to conduct a spectra region selection responsible 
for the property of interest to increase the prediction performance [72, 73]. These 
procedures can be categorized into two classes: single wavelength selection and 
wavelength interval selection. Different strategies have been suggested for selection 
of optimal set of spectral regions such an interval PLS (iPLS), synergy PLS (siPLS), 
and moving window PLS (mwPLS) [69, 74, 75]. The principle of iPLS involves of 
splitting the spectra into equal-width intervals, and developing sub-PLS models 
for each one. The sub-intervals with the lowest value of the root mean squared 
error of prediction (RMSEP) must be chosen as the best. Several methods based on 
iPLS were developed to optimize the combination of the selected intervals, such as 
synergy iPLS (siPLS) [74]. These methods present a significant advantage because 
it uses a graphical presentation to focus on a selection of better sub-intervals and 
perform comparison among the prediction execution of local models and the 
full-spectrum model. Instead of just testing a series of adjacent but non overlapping 
intervals, which would miss some more informative ones, mwPLS was proposed 
to overcome this drawback. This strategy develops a series in a window that moves 
through the complete spectra and then selects the informative intervals with low 
model complexity and low value of the sum of residuals. Because it considers all the 
possible continuous intervals, it can select all the possible informative intervals but 
not the optimized ones [76].

1.4.6 Soft Independent Modeling of Class Analogy

Soft Independent Modeling of Class Analogy (SIMCA) is a supervised discrimi-
nant analysis method based on PCA [77]. This methodology is a class-modeling 
approach, meaning that, in defining the class boundaries, the method focuses on 
the similarities among samples from the same category [61, 78]. For each class, a 
PCA model is created and consequently the residual variance of the modeled class 
with the residual variance of the unknown sample is compared to determine which 
category the sample belongs to. The number of PCs used in each class should be 
selected to achieve the best classification results. SIMCA results are presented in 
terms of “sensitivity” and “specificity”, where the former specifies the percentage of 
samples truly belonging to the category correctly accepted by the class model, while 
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the latter expresses the percentage of the objects from other classes which have 
been correctly rejected. SIMCA starts from a principal component analysis (PCA) 
of only the training objects belonging to the category to be modeled, to “capture” 
the regular variability due to the similarities among samples of the same class [79, 
80]. Once the PCA is calculated, objects are accepted or rejected by the class-model 
based to their reduced distance from the class space, referred as d. For a generic ith 
sample, the d value is calculated by Eq. (5),
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where T2 is the Mahalanobis distance of the sample from the center of the class 
space and Q is its orthogonal distance from the PC subspace. These values are 
divided by T2

0.95 and Q0.95, which are the 95th percentiles of the T2 and Q0.95 dis-
tributions, obtaining the reduced T2 (T2

red) and the reduced Q (Qred), respectively 
[79]. Due to the normalization, T2 and Q limit values are equal to 1; a sample will 
then be accepted by the class model if d < sqrt(2), otherwise it is rejected.

1.4.7 k-Nearest Neighbor

k-Nearest Neighbor (k-NN) is methodology used for a classification step based 
on the closest training examples in the feature space. If most an unknown sample’s 
k-Nearest Neighbors in training set belong to a specific class, then this unidentified 
sample is classified as this class. The parameter k affects the performance of k-NN 
model. The Euclidean distance is the most common algorithm used in k-NN [81].

1.4.8 Random Forest

Random Forest (RF) is a novel machine learning algorithm that presents many 
decision trees, and each tree is grown from a bootstrap sample of the response 
variable. The optimal split is chosen from a random subset of variables at each 
node of the tree, and then extends the tree to the maximum extent without cutting. 
Prediction procedure can be performed from new data by combining the outputs 
of all trees. RF is suitable and fast to deal with a large amount of data, showing 
the advantages to reduce variance and achieve comparable classification accuracy 
[82, 83].

1.4.9 Artificial Neural Networks

Artificial Neural Networks (ANNs) is defined a non-parametric regression 
models that capture any phenomena, to any degree of accuracy (depending on the 
adequacy of the data and the power of the predictors), without prior knowledge of 
the phenomena. ANNs are applied for classification and function mapping difficul-
ties which are tolerant of some inaccuracy and have lots of training data available, 
but to which hard and fast rules cannot easily be applied [84]. In the ANN the input 
layer is linked to an output layer, either directly or through one or numerous hidden 
layers of interconnected neurons. The amount of hidden layers defines the depth 
of a ANN, and the width depends on the amount of neurons of each layer. Rapid 
optimization algorithms are used to iteratively develop forward and backward 
passes for minimization of a loss function and to learn the weights and biases of the 
layer. The activation functions are applied to the present values of the weights at 



Integrative Advances in Rice Research

14

each layer in the forward pass. The final result of a forward pass is new predicted 
outputs. The backward pass computes the error derivatives among the expected 
outputs and the real outputs. These errors are then disseminated backwards updat-
ing the weights and calculating new error terms for each layer. Iterative repetitions 
of this process is designated as back-propagation [85]. A neural network is an 
adaptable system that learns relationships from the input and output data sets 
and then can predict a previously unseen data set of similar characteristics to the 
input set [86, 87]. Multilayer perceptron (MLP) and radial basis function (RBF) 
are widely used neural network architecture in literature for regression problems 
[88–90]. MLPs are usually used for prediction and classification using suitable 
training algorithms for the network weights. The MLP trained with the use of back 
propagation learning algorithm. Figure 5a represents a three-layer structure (MLP) 
the most basic ANN and its minimum configuration that consists of three layers of 
nodes (1) input layer, (2) hidden layer, and (3) output layer. The input layer accepts 
the data and the hidden layer processes them and finally the output layer displays 
the resultant outputs of the model [91, 92]. Each node, with the exception of the 
input, is a neuron that is based on a non-linear activation function. The MLP can be 
regarded as a hierarchical mathematical function planning some set of input values 
to output values via many simpler functions. Normally, the nodes are fully linked 
between layers and therefore the quantity of parameters quickly increases to huge 
numbers with a considerable risk of overfitting [93]. The RBF is considered the 
most broadly used structural design in ANN and simpler than MLP neural network 
(Figure 5b). The RBF has also an input, hidden and output layer. There are differ-
ent types of radial basis functions, but the most widely used type is the Gaussian 
function.

1.4.10 Multiple Linear Regression

Multiple Linear Regression (MLR) is a commonly used machine learning 
algorithm that allows to determine a mathematical relationship among a number of 
random variables, analyzing how multiple independent variables are related to one 
dependent variable. Since each of the independent factors has been determined to 
predict the dependent variable, information about the multiple variables is used to 
develop an accurate prediction about the level of effect they have on the outcome 
variable. The model generates a relationship in the form of a straight line (linear) 
that best approximates all the individual data points. The most important advantage 
of MLR is it helps us to understand the relationships among variables present in the 
dataset. This will further help in understanding the correlation between dependent 

Figure 5. 
A comparative study of artificial neural network (MLP, RBF) models for rice biochemical parameters 
prediction. Simple configuration of (a) MLP and; (b) RBF neural networks [86].
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and independent variables. MLR is one of the oldest regression methods, being used 
to establish linear relationships between several independent variables (Xi) and the 
dependent variable (sample property) (Y) that depends by them. The developed 
model can be represented in the following the Eq. (6):

 0 ,
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where y; represents the sample property, bi represents the computed coefficient 
for each variable xi, while ei,j is the error. Each independent variable is analyzed 
and correlated with the specific property yj. Regression coefficients bi represent 
the effects of each determined term. After the MLR model has been developed the 
accuracy in prediction of the dependent variable is evaluated by computation of 
the correlation coefficient, which is calculated when true values are compared to 
predicted ones. Coefficient of determination R2 is not reserved for MLR, as it is one 
of the most frequently used statistic parameters for assessment of validity of the 
developed model regardless of the model type (Eq. (7)).
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2. Practical applications of NIR spectroscopy and chemometrics

2.1 NIR spectroscopy in rice analysis: identification and classification

There are several studies that discribe the quantitative analysis by NIR spectros-
copy in different types of food, providing an exceptional method for the evaluation 
of chemical composition (i.e. protein, starch, lipid, amylose, and moisture con-
tents) in raw pork and beef [94], in cheese or other dairy products [95]. However, 
it is most widely used in the field of grains and cereal products. In some cases, such 
measurements are important to achieve the end-used objectives of a plant breeding 
program. The use of NIR spectroscopy for the quality assessment of processed foods 
has generated a lot of interest during the review period. Access to food with high 
quality is essential to human health. Thus, the accurate collection of agricultural 
food quality data in real-time is utmost importance, such as grains and flours. NIR 
spectroscopy has proven beneficial for the analysis of various cereals, grains, flours, 
and baked goods, including specific quality parameters, which influence classifica-
tion, safety, grading, and price. By analyzing numerous factors and properties of 
crops during different steps in their development, crop quality can be expected 
early on. To maximize efficiency and lessen waste of produce, it is important that 
these data collection methods be non-invasive, non-destructive, and economical. 
Gas chromatography (GC), high-pressure liquid chromatography (HPLC), or mass 
spectrometry (MS) represent some quantitative instrumental techniques used 
for quality assessment of foods. However, these techniques are not applicable for 
real-time measurements. Spectroscopic instrumentation have recently utilized in 
agricultural industries for quality analysis. NIR spectroscopy allows a detailed food 
analysts to examine the quality, composition, and the authenticity of agricultural 
and food products quickly and accurately, based on physicochemical properties of 
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crops. Machine learning methodologies have been coupled with NIR spectroscopy 
for the prediction of rice quality factors [96] and the quantitative determination 
of amylose values [51]. There have been numerous applications of portable NIR 
instruments in recent years for specific analyses such as determining adulteration 
in rice and other food quality parameters. NIR spectroscopy is highly useful in 
analyzing shelf life and maturity of agricultural products like rice. However, the 
data collection and modeling are still time consuming for portable spectrometers 
to be efficient in some applications. This can be potentially overcome by combining 
NIR spectroscopy with other analytical methods. Studies developed by [97] allowed 
to develop a tandem approach of monitoring rice germ shelf life during storage 
using NIR and a portable e-nose. Le et al. proposed a study that combines deep 
learning with NIR to provide a much faster method of cereal analysis compratively 
to traditional NIR models [98]. The deep learning algorithm removes interference 
of spectral signal developing modeling significantly efficient. Jiang et al. developed 
a portable NIR spectrometer system to dynamically evaluate the fatty acid content 
of rice during storage [99]. Another challenge in NIR spectroscopy is determining 
authenticity and the geographical location of certain agricultural products like 
grains. Studies carried out by Sampaio et al. developed a strong and accurate classi-
fication model based on machine learning methods and NIR spectroscopy, allowing 
to sorting two genotypes of rice with high accuracy based on these characteristics 
[100]. Barnaby et al. correlated the grain chalk of rice to the genomic regions of 
NIR spectra. These spectral regions can be applied in the automation of grain chalk 
quantification or for other grain products as well [101].

There are several studies based on NIR to predict viscosity properties of rice. 
Delwiche et al. developed calibration models on whole-grain milled rice using 
PLS regression to predict viscosity properties of a flour-water paste as recorded by 
the RVA, that determine the cooking and processing characteristics of rice [102]. 
Meadows and Barton later used NIR to predict RVA data in rice flour [103]. A PLS 
regression of NIR spectra vs. RVA viscosity showed a highest correlation (R = 0.961–
0.903) to NIR was at 212–228 sec, which is between the initial pasting time and 
peak viscosity. Furthermore, the pasting parameters of setback and break down, 
and gelatinization peak temperature of rice flour were predicted successfully using 
NIR [104]. Texture of cooked rice was also predicted by NIR analysis of whole grain 
rice [105]. Five of seven sensory texture attributes were predicted by NIR using PLS 
analysis, whose calibration models were developed based onf second derivative 
spectra. RVA peak viscosity and breakdown were also successfuly predicted based 
on NIR spectra and PLS regression models. Calibrations were developed using PLS 
and ANN analyses. The results showed limited precision of this method. However, 
it can be used as a rough screening method for starch amylose content. Xie et al. 
later reported that NIR spectra correlated strongly with differential scanning calo-
rimetry (DSC) for measuring amylopectin retrogradation in bread staling [106]. 
Nowadays, requirements of quality control in grain milling and food processing 
increasingly call for on-line analyses [41]. Studies developed by Sampaio et al. based 
on NIR spectroscopy associated to PCA, PLS-DA, and SVM for discrimination and 
classification of rice varieties (Indica and Japonica) were explored after different 
spectra processing steps such as MSC, first derivative and second derivative [100]. 
The PCA allowed revealing the pattern and relationship of each variety and chemi-
cal similarities that were effectively distinguished by PLS-DA and SVM, according 
to their specific properties. The SVM model, showed a significant fitting accuracy 
(97%), cross-validation (93%), and prediction (91%). These data support the 
strength of the model for efficient rice types classification. The principal differ-
ences between both rice types were present at range 7476–7095 cm−1, 7046 cm−1 and 
4264–4153 cm−1, which can be used for its discrimination, being possible to develop 
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a robust classification model for rice samples based on their specific physicochemi-
cal properties. The classification models developed using SVM tools were very 
robust compared to PLS-DA models, allowing to classify with high confidence both 
rice varieties. The machine learning tools can facilitate the process of classification 
and identification of different types of grains being possible, in the next future, to 
discriminate their origin, harvest season, state of conservation as well as the pres-
ence of contaminants and adulteration issues based on robust classification method, 
allowing to create a rice database and making in situ, real-time in classifying the 
types and origins of rice.

Studies developed by Osborne et al. using near infrared transmission spectros-
copy allowed to discriminate between Basmati and other long-grain rice samples. 
A discriminant rule was derived using the Fisher linear discriminant function 
calculated from the first few principal component scores of the NIR spectra [107]. 
The discriminant rule was assessed by cross-validation. Based on this study, nine 
Basmati varieties and 53 other rice samples were classified correctly from NIR 
spectra, but 8% of the Basmatis and 14% of the others were misclassified on the 
basis of spectra of individual grains. NIR spectroscopy technique also offers effec-
tive quantitative capability for moisture, fat, protein and gluten content in rice 
cookies [108].

According to studies performed by Chen et al., the NIR diffuse reflectance 
spectroscopy of multi-grain seeds, a spectral discriminant analysis method for the 
variety identification of multi-grain rice seed was developed using the PLS-DA 
[109]. Due to the slight differences of seeds spectra in various varieties, it’s neces-
sary to propose the novel and valid methods. In this study, the SNV pretreatment 
combined with wavelength-screening methods improved the accuracy of the 
discriminant models. The selected optimal wavelength model was the combination 
of 54 discrete wavelengths within NIR region. NIR spectral discrimination total 
recognition accuracy rates reached 94.3% for a study that involves the identification 
of one type of differentiation (negative and excellent hybrid variety) and several 
interference groups (positive, four pure groups and four mixed groups).

The Hyperspectral Imaging (HSI) technique coupled with visible (vis) and/or 
NIR spectroscopy is generally used to identify or inspect different substances of 
seed by recognizing the molecular bonds in the sample, being considered the most 
feasible methods for rapidly and non-destructively detecting the substances of agri-
cultural products, combining the technologies of spectroscopy and digital imaging. 
Studies developed by He et al. used the system NIR-HSI combined with multiple 
data preprocessing methods [110]. This approach allowed simultaneously to obtain 
spectral and spatial information from testing samples in the form of a hypercube 
constituted by two spatial dimensions and one spectral dimension. The HSI tech-
nique has the ability to collect hyperspectral information from samples of different 
sizes and shapes based on the spatial data. The detection speed of HSI is faster than 
that of point-based techniques, as many samples can be scanned and analyzed at the 
same time by using an HSI camera [111]. The classification models was developed to 
identify the vitality of rice seeds, presenting a great potential for identifying vitality 
and vigor of rice seeds. When detecting the seed vitality of the three different years, 
the extreme learning machine model with Savitzky–Golay preprocessing reached a 
significant classification accuracy of 93.67% by spectral data. In terms of the non-
viable seeds identification from viable seeds of different years, the least squares 
support vector machine model coupled with raw data and selected wavelengths 
achieved a significant classification achievement (94.38% accuracy), and can be 
adopted as an optimal combination to identify non-viable seeds from viable seeds. 
In another study, carried out by Barnaby et al., NIR hyperspectral image consists of 
numerous bands with small spectrum gaps (every 4 nm in our study) and can assess 



Integrative Advances in Rice Research

18

grain traits such as fat, starch, protein, moisture, color, and many other physico-
chemical compounds at once [101]. Genome wide association study allowed to 
confirm known genes and to identify new genes that can affect grain quality traits 
based on hyperspectral imaging technique. The PLS-DA models of hyperspectral 
data identify spectral ranges that distinguished genetic and production environ-
ment differences, and this data can support to resolve the genetics of complex traits 
such as rice grain quality.

The nitrogen content is an important chemical indicator used for monitoring 
and management of plant due to its role in photosynthesis, productivity as well 
as its effect on carbon and oxygen cycle. The nitrogen content can be measured 
by laboratory analysis, meanwhile, its spectral reflectance of NIR (700–1075 nm) 
in the field was measured using hand held spectroradiometer. Studies performed 
by Afandia et al. evaluated nitrogen content in rice crop based on NIR reflectance 
using ANN [111]. The reported study allowed to conclude that the organic mol-
ecules (nitrogen, water, etc) present a specific absorption pattern in the NIR region 
and the comparison between measured and model estimation of nitrogen content 
presented a RMSE of 0.32.

A study developed by Lin et al., based on the imaging method, a system con-
stituted by a NIR camera, filters, an automatically exchange filters device, and the 
imaging processing techniques allowed to detect the rice protein content based on 
the spectrum absorption. The NIR data allowed to establish the calibration model 
based on MLR, PLS, and ANN analysis models. In the MLR model, the NIR imag-
ing system used the calibration model that take in account 5 wavelengths (880 nm, 
910 nm, 920 nm, 1000 nm, and 1014 nm) to predict the rice protein content, and 
had R2 validation (0.782) and standard error of predicition (SEP) 0.274%, and 
respectively. The NIR imaging system used 15 filters ranging from 870 to 1014 nm 
in the PLS model, the predictive results expressed a significant performance 
(R2

val = 0.782, and SEP = 0.274%) comparatively tothe MLR model. The ANN 
model, the net input using the 5 spectrum wavelengths selected by the MLR, simpli-
fied the model, and the predicting results (R2

val = 0.806, and SEP = 0.266%) were 
similar to those of the PLS. The prediction results indicated that the developed 
NIR imaging system has the advantages of simple, convenient operation, and high 
detection accuracy as well as it presents commercial potential in non-destructive 
high accurate predicting capability detection of rice protein content [112].

NIR spectroscopy was used to develop a new discrimination method of varieties 
of rice. The several variables compressed by PCA were used as inputs of multiple 
discriminant analysis (MDA). The study showed that the combinantion of spec-
troscopy and computer data processing technology based on PCA and MDA for 
the identification of rice from different areas allowed to identify correctly about 
98% for the calibration process, and 100% for the prediction process. These results 
showed that the proposed alternative method is a feasible way for the identification 
of the specific production areas of rice [113].

2.2 NIR spectroscopy in rice authentication

NIR spectroscopy has been widely used in the evaluation of agricultural prod-
ucts due to its many advantages, such as being easy-to-use, non-destructive, fast 
and accurate, providing highly reproducible results, requiring minimum or, often, 
no sample preparation, and allowing the analysis of several constituents based on 
a single measurement. As consequence of the importance of rice at global level, in 
the literature it is possible to find several studies aimed at their analysis and charac-
terization. Due to environmental reasons and the rice the market, non-destructive 
approaches are generally preferred. NIR spectroscopy has emerged as an important 
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tool to determine fraud, adulteration, contamination in grains and flours. A sub-
stantial instrumental improvements (e.g., hyperspectral imaging, FT-NIR) and 
advances in data analysis (e.g., deep learning) have allowed for the development 
of screening methods for detecting the presence of pests (e.g., rice weevil) across a 
range of stored grains [114–116].

Direct spectroscopic measurements have been widely applied for several foods 
and commodities, especially in the grain, cereal products, such for classification of 
rice [117–121]. Furthermore, in the structure of the evaluation of rice quality, NIR 
spectroscopy has been used for the discrimination of rice [122, 123]; varieties classi-
ficationand transgenic rice detection [124]; the physico-chemical properties quan-
tification (such as moisture content, sound whole kernel, whiteness, translucency, 
color, and amylogram characteristics) [125]; cultivars classification [126], protein and 
amylose content prediction [127, 128]; wax rice detection [129]; and eating quality 
prediction [130]. Barnaby et al. correlated the grain chalk of rice to the genomic 
regions of NIR spectra [101]. These spectral regions can be applied in the automation 
of grain chalk quantification and potentially for other grain products as well [131].

Rapid and nondestructive detection of rice authenticity and quality were per-
formed based on hand-held NIR spectrometer coupled with the appropriate chemo-
metrics. The selection of different preprocessing methods with PCA and modeling 
with KNN and SVM multivariate calibration model showed that MSC + PCA plus 
KNN showed superiority in this study with more than 90% classification rate for all 
categories of rice samples studied. Based on these results, the hand-held spectrom-
eter associated to an appropriate multivariate calibration model could be used for 
quick and non-destructive detection of rice quality and authenticity [132].

Food fraud remains a significant problem for food regulators, importers, 
merchants, law enforcement personnel, and the consumer. A key feature of food 
fraud is the use of a lower value ingredient to imitate an authentic product. NIR 
analysis technology, PLS-DA, and SVM have been used to detect whether high-
quality rice was mixed with other varieties of rice. NIR spectral data analyzed using 
PLS-DA and a SVM algorithm, was shown to be a feasible method (5% detection 
limit) for the rapid identification of fraudulent rice varieties blended with authentic 
Wuchang rice samples [133].

Studies performed by Liu et al. showed that those techniques represent a sig-
nificant support to qualitative discrimination [133]. PLS was used to establish the 
quantitative analysis model to support in the recognition of the degree of fraud. As 
consequence of the direct correlation between the results of NIR analysis and the 
homogeneity of the samples, four groups of samples with different physical forms 
(full granules, 40 mesh, 70 mesh, and 100 mesh) were prepared. Regarding qualita-
tive analysis, the performance of the model has no obvious relationship with the 
physical state of the sample, the qualitative model of PLS-DA and SVM can detect 
the fraudulent rice with a 5% detection limit. The determination coefficient and 
root mean square errors of the optimal prediction result were 0.96 and 2.93, respec-
tively. Based on this study, NIR analysis technology can be considered as a reliable 
and fast strategy to determine if the premium high-quality rice is adultered with 
inferior categories of rice.

Different preprocessing approache were used for NIR signals pretreatment. 
Besides considering raw data, the first derivative (Savitzky–Golay approach, 
15 points window, 2nd order polynomial), second derivative (Savitzky–Golay 
approach, 15 points window, 3rd order polynomial), and standard normal variate 
(SNV) were also evaluated (Figure 6). NIR data were further mean-centered prior 
to the creation of any calibration model. The most suitable preprocessing approach, 
together with the optimal complexity (number of LVs or PCs to be extracted) of any 
classification model, were defined based on a cross-validation procedure. PLS-DA 
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selection, specifically, was based on the combination of pre-processing and model 
complexity leading to the lowest mean classification error, whereas for SIMCA the 
maximum efficiency was sought. A study developed by Duy Le Nguyen Doan inves-
tigate the possibility of combination NIR spectroscopy and chemometric classifiers 
with the aim of detecting adulterated rice samples [134]. Two different strategies 
were exploited: discriminant classifier (PLS-DA), and class-modelling technique 
(SIMCA). Both strategies provided different results; in particular, SIMCA appeared 
unable to solve the investigated problem. On the other hand, PLS-DA analysis 
showed to be a suitable approach. These results indicate that the high within-class 
variability can have an impact on the possibility of detecting low levels of adultera-
tion; simultaneously, was also suggested that the proposed approach could be useful 
for detecting samples adulterated. Then, this study demonstrates that the combina-
tion of NIR spectroscopy and PLS-DA can represent an effective, rapid and non-
destructive tool for the determination of adulteration in jasmine rice [134].

2.3 NIR Spectroscopy in Rice Contamination

Fast determination of heavy metals is necessary and important to ensure the 
safety of crops. The potential of NIR spectroscopy coupled with chemometric tech-
nology for quantitative analysis of cadmium in rice was investigated. The spectrum 
was pre-processed using first derivation to reduce the baseline shift and several 
chemometric techniques, such as iPLS, mwPLS, siPLS, and biPLS were proposed 
to extract and optimize spectral interval from full-spectrum data. The PLS models 
based on four chemometric algorithms outperformed the full-spectrum PLS model 
then developed. Among the techniques, biPLS performed better with the optimal 
subinterval selection [135].

Heavy metals are spectrally featureless so that spectral responses could not be 
directly used for the assessment of heavy metals in rice. With a close combination of 
protein, crude fiber, and other ingredients, heavy metals present significant correla-
tion with protein in rice [136]. The detection of heavy metal concentration in grain 
is mostly realized by physical and chemical direct methods that can exactly obtain 
the residual levels of heavy metal; however, it is time consuming, cumbersome, and 
inefficient. On the basis of the hypothesis that heavy metal concentration could 
be spectrally estimated through the correlation between heavy metal concentra-
tion and protein contents, the objectives of this study are to: (1) build quantitative 
model for the quick prediction of both heavy metal and protein content, and (2) 
to evaluate the feasibility of near-infrared spectroscopy in assessing heavy metal 
concentration in coarse rice.

Protecting people from heavy metal contamination is an important public-
health concern and a major national environmental issue. The NIR spectral 

Figure 6. 
NIR spectra (a) raw spectra of samples, (b) mean spectra of authentic (red line) and adulterated samples 
(blue line). (Adapted from [134]).
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technique is used to identify heavy metal concentration such as lead (Pb) and 
copper (Cu) in rice. The NIR spectral data were treated by some methods, includ-
ing, logarithm, baseline correction, standard normal variate, multiple scatter 
correction, first derivates, and continuum removal. The lead (Pb) was accumulated 
in rice at a high level (17.05) compared with the others heavy metals. MSC-PLSR 
models were developed, respectively, for Pb (R2 = 0.49, RMSE = 2.01 mg/kg) and 
Cu (R2 = 0.29, RMSE = 0.75 mg/kg). It is achievable to identify Pb and Cu content in 
rice by using NIR spectral technique. However, further studies should be performed 
on the application of spectral technique in discriminating the other heavy metals in 
rice due to the limitations of few samples and particles size interference.

3. Conclusions

Based on the reported studies, it was possible to develop a robust classification, 
authentication or fraud detection model for rice samples considering their specific 
physicochemical properties and using machine learning tools such as PLS-DA, 
KNN, ANN, and SVM among other methodologies applied to NIR spectroscopy 
data, revealing the pattern and relationship of each variety and chemical similari-
ties, according to their specific properties. The classification models developed 
using several models allow to classify with high confidence rice varieties using the 
spectral data. The results show that the use of these chemometric tools, combined 
with spectroscopy capabilities, can facilitate the process of classification and 
identification of different rice types. The rice discrimination by their origin, harvest 
season, state of conservation as well as the presence of contaminants and adultera-
tion issues based on robust classification methods can facilitate the creation of a 
data base, a useful tool for rice authenticity that can increase the confidence and 
producer-consumer engagement in rice-based foods.
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