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Singularity Robust Inverse Dynamics 
of Parallel Manipulators 

S. Kemal Ider 
Middle East Technical University Ankara,  

Turkey 

1. Introduction 

Parallel manipulators have received wide attention in recent years. Their parallel structures 
offer better load carrying capacity and more precise positioning capability of the end-
effector compared to open chain manipulators. In addition, since the actuators can be placed 
closer to the base or on the base itself the structure can be built lightweight leading to faster 
systems (Gunawardana & Ghorbel, 1997; Merlet, 1999; Gao et al., 2002 ).  
It is known that at kinematic singular positions of serial manipulators and parallel 
manipulators, arbitrarily assigned end-effector motion cannot in general be reached by the 
manipulator and consequently at those configurations the manipulator loses one or more 
degrees of freedom. In addition, the closed loop structure of parallel manipulators gives rise 
to another type of degeneracy, which can be called drive singularity, where the actuators 
cannot influence the end-effector accelerations instantaneously in certain directions and the 
actuators lose the control of one or more degrees of freedom. The necessary actuator forces 
become unboundedly large unless consistency of the dynamic equations are guaranteed by 
the specified trajectory.  
The previous studies related to the drive singularities mostly aim at finding only the 
locations of the singular positions for the purpose of avoiding them in the motion planning 
stage (Sefrioui & Gosselin, 1995; Daniali et al, 1995; Alici, 2000; Ji, 2003; DiGregorio, 2001; St-
Onge & Gosselin, 2000). However unlike the kinematic singularities that occur at workspace 
boundaries, drive singularities occur inside the workspace and avoiding them limits the 
motion in the workspace. Therefore, methods by which the manipulator can move through 
the drive singular positions in a stable fashion are necessary. 
This chapter deals with developing a methodology for the inverse dynamics of parallel 
manipulators in the presence of drive singularities. To this end, the conditions that should 
be satisfied for the consistency of the dynamic equations at the singular positions are 
derived. For the trajectory of the end-effector to be realizable by the actuators it should be 
designed to satisfy the consistency conditions. Furthermore, for finding the appropriate 
actuator forces when drive singularities take place, the dynamic equations are modified by 
using higher order derivative information. The linearly dependent equations are replaced by 
the modified equations in the neighborhoods of the singularities. Since the locations of the 
drive singularities and the corresponding modified equations are known (as derived in 
Section 3), in a practical scenario the actuator forces are found using the modified equations 

Source: Parallel Manipulators, New Developments, Book edited by: Jee-Hwan Ryu, ISBN 978-3-902613-20-2, pp. 498, April 2008,  
I-Tech Education and Publishing, Vienna, Austria
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in the vicinity of the singular positions and using the regular inverse dynamic equations 
elsewhere.  Deployment motions of 2 and 3 dof planar manipulators are analyzed to 
illustrate the proposed approach (Ider, 2004; Ider, 2005). 

2. Inverse dynamics and singular positions 

Consider an n degree of freedom parallel robot. Let the system be converted into an open-
tree structure by disconnecting a sufficient number of unactuated joints. Let the degree of 
freedom of the open-tree system be m, i.e. the number of the independent loop closure 

constraints in the parallel manipulator be m-n. Let [ ]1 ,...,
T

mη η=η  denote the joint variables 

of the open-tree system and [ ]1 ,...,
T

nq q=q  the joint variables of the actuated joints. The m-n 

loop closure equations, obtained by reconnecting the disconnected joints, can be written as  

 1( ,..., ) 0i mφ η η =          =1,..., -i m n   (1) 

and can be expressed at velocity level as 

 G
ij jηΓ =$ 0           =1,..., -i m n         =1,...,j m   (2) 

where G i
ij

j

φ
η
∂

Γ =
∂

. A repeated subscript index in a term implies summation over its range. 

The prescribed end-effector Cartesian variables ,ix (t )  =1,...,i n  represent the tasks of the 

non-redundant manipulator. The relations between the joint variables due to the tasks are 

 1( ,..., )i m if xη η =             =1,...,i n   (3) 

Equation (3) can be written at velocity level as 

 P
ij j ixηΓ =$ $          =1,...,i n         =1,...,j m   (4) 

where P i
ij

j

f

η
∂

Γ =
∂

. Equations (2) and (4) can be written in combined form, 

 =$Γη h   (5) 

where 
T TT G P⎡ ⎤= ⎢ ⎥⎣ ⎦

Γ Γ Γ  which is an m m×  matrix and T T⎡ ⎤= ⎣ ⎦h x$0 . The derivative of 

equation (5) gives the acceleration level relations, 

 = − +Γη Γη h$$$$ $   (6) 

The dynamic equations of the parallel manipulator can be written as  

 
T TG− − =η Γ λ$$M Z T R   (7) 
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where M is the m m×  generalized mass matrix and R is the vector of the generalized 

Coriolis, centrifugal and gravity forces of the open-tree system, λ  is the ( ) 1m - n ×  vector of 

the joint forces at the loop closure joints, T is the 1n×  vector of the actuator forces, and each 

row of Z is the direction of one actuator force in the generalized space. If the variable of the 

joint which is actuated by the i th actuator is kη , then for the i th row of Z, 1ikZ =  and 

0ijZ =  for =1,...,j m ( j k≠ ). 

Combining the terms involving the unknown forces λ  and T, one can write equation (7) as 

 T = −A τ η$$M R   (8) 

where the m m×  matrix TA  and the 1m×  vector τ  are 

 
TT TG⎡ ⎤= ⎢ ⎥⎣ ⎦

A Γ Z   (9) 

and 

 T T T⎡ ⎤= ⎣ ⎦τ λ T   (10) 

The inverse dynamic solution of the system involves first finding η$$ , η$  and η  from the 

kinematic equations and then finding τ  (and hence T) from equation (8). 

For the prescribed x(t), η$$  can be found from equation (6), η$  from equation (5) and η  can 

be found either from the position equations (1,3) or by numerical integration. However 

during the inverse kinematic solution, singularities occur when 0=Γ . At these 

configurations, the assigned x$  cannot in general be reached by the manipulator since, in 

equation (3), a vector h lying outside the space spanned by the columns of Γ  cannot be 
produced and consequently the manipulator loses one or more degrees of freedom. 
Singularities may also occur while solving for the actuator forces in the dynamic equation 

(8), when 0=A . For each different set of actuators, Z hence the singular positions are 

different. Because this type of singularity is associated with the locations of the actuators, it 

is called drive singularity (or actuation singularity). At a drive singularity the assigned η$$  

cannot in general be realized by the actuators since, in equation (8), a right hand side vector 

lying outside the space spanned by the columns of TA  cannot be produced, i.e. the 
actuators cannot influence the end-effector accelerations instantaneously in certain 
directions and the actuators lose the control of one or more degrees of freedom. (The system 
cannot resist forces or moments in certain directions even if all actuators are locked.) The 
actuator forces become unboundedly large unless consistency of the dynamic equations are 
guaranteed by the specified trajectory. 

Let GuΓ  be the ( ) ( )m - n m - n×  matrix which is composed of the columns of GΓ  that 

correspond to the variables of the unactuated joints. Since 1ikZ =  and 0ijZ =  for j k≠ , the 

drive singularity condition 0=A  can be equivalently written as Gu 0=Γ . 

In the literature the singular positions of parallel manipulators are mostly determined using 

the kinematic expression between $q  and x$  which is obtained by eliminating the variables 
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of the unactuated joints (Sefrioui & Gosselin, 1995; Daniali et al, 1995; Alici, 2000; Ji, 2003; 
DiGregorio, 2001; St-Onge & Gosselin, 2000), 

 + =J K x$$q 0   (11) 

References (Sefrioui & Gosselin, 1995 ; Daniali et al, 1995; Ji, 2003) name the condition 

0=J  as “Type I singularity” and the condition 0=K  “Type II singularity”. And in 

reference (DiGregorio, 2001) they are called “inverse problem singularity” and “direct 
problem singularity”, respectively. Since it shows the lost Cartesian degrees of freedom, the 

condition 0=Γ  shown above corresponds to 0=J . For the drive singularity, equation (2) 

can be written as 

 Gu u Ga= −Γ η Γ q$ $   (12) 

where uη  is the vector of the joint variables of the unactuated joints and GaΓ  is the matrix 

composed of the columns of GΓ  associated with the actuated joints. Since after finding uη$  

from eqn (12) one can find h and hence x$  from eqn (5) directly, the drive singularity 

condition 0=A  (i.e. Gu 0=Γ ) given above is equivalent to 0=K . It should be noted 

that the identification of the singular configurations as shown here is easier since 
elimination of the variables of the passive joints is not necessary. 

3. Consistency conditions and modified equations  

At the motion planning stage one usually tries to avoid singular positions. This is not 
difficult as far as inverse kinematic singularities are concerned because they usually occur at 

the workspace boundaries (DiGregorio, 2001). In this paper it is assumed that Γ  always has 
full rank, i.e. the desired motion is chosen such that the system never comes to an inverse 
kinematic singular position. On the other hand, drive singularities usually occur inside the 
workspace and avoiding them restricts the functional workspace. It is therefore important to 
devise techniques for passing through the singular positions while the stability of the 
control forces is maintained. To this end, equation (8) must be made consistent at the 

singular position. In other words, since the rows of TA  become linearly dependent, the 
same relation must also be present between the rows of the right hand side vector 

( −Mη R$$ ), so that it lies in the vector space spanned by the columns of TA . 

3.1 Consistency conditions and modified equations when rank(A) becomes m-1 

At a drive singularity, usually rank of A becomes m-1. Let at the singular position the s th 

row of TA  become a linear combination of the other rows of TA .  

 T T
sj p pjA Aα=           1,...,p m=   ( )p s≠ ,  1,...,j m=   (13) 

where pα  are the linear combination coefficients (which may depend also on iη ). Notice 

that only those rows of TA  which are associated with the unactuated joints can become 
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linearly dependent, hence pα  corresponding to the actuated joints are zero. Then for the 

rows of equation (6) one must have 

 sj j p pj j sj j s p pj j pA A M R M Rτ α τ η α η− = − − −$$ $$T T ( )   (14) 

Substitution of equation (13) into equation (14) yields 

 sj j s p pj j pM R M Rη α η− = −$$ $$( )   (15) 

Equation (15) represents the consistency condition that jη$$  should satisfy at the singular 

position. Since jη$$  are obtained from the inverse kinematic equations (6), the trajectory x$$  

must be planned in such a way to satisfy equation (15) at the drive singularity. Otherwise an 
inconsistent trajectory cannot be realized and the actuator forces grow without bounds as 
the drive singularity is approached. Time derivative of equation (14) is 

 sj p pj j sj p pj p pj j sj p pj jA A A A A M Mα τ α α τ α η− + − − = −$ $ $ $$$$T T T T T( ) ( ) ( )  

 sj p pj p pj j s p p p pM M M R R Rα α η α α+ − − − + +$ $ $ $$ $$ $( )   (16) 

Now, because equation (13) holds at the singular position, there exists a neighborhood in 
which the first term in equation (16) is negligible compared to the other terms. Therefore in 
that neighborhood this term can be dropped to yield 

 sj p pj p pj j sj p pj jA A A M Mα α τ α η− − = −$ $ $ $$$T T T( ) ( ) sj p pj p pj jM M Mα α η+ − −$ $ $ $$( ) s p p p pR R Rα α− + +$ $ $  (17) 

Equation (17) is the modified equation that can be used to replace the s th row of equation (8) 
or any other equation in the linearly dependent set. 

3.2 Consistency conditions and modified equations when rank(A) becomes r<m 

In the general case where the rank of TA  becomes r m<  at the singular position, let rows 

ks , 1,..., -k m r=  of TA  become linear combinations of the other r rows of TA , 

 T T

ks j kp pjA Aα=        1,...,p m=   ( )kp s≠ ,  1,...,j m= ,  1,..., -k m r=   (18) 

where kpα  are the linear combination coefficients. Then the following relations must be 

present among the rows of equation (8)  

 T T ( )
k k ks j j kp pj j s j j s kp pj j pA A M R M Rτ α τ η α η− = − − −$$ $$          1,..., -k m r=   (19)  

The consistency relations are obtained as below 

 ( )
k ks j j s kp pj j pM R M Rη α η− = −$$ $$             1,..., -k m r=   (20) 

Substitution of equation (18) into the derivative of equation (19) yields the modified 
equations, 
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 T T T( ) ( ) (
k k ks j kp pj kp pj j s j kp pj j s j kp pjA A A M M M Mα α τ α η α− − = − + −$ $ $ $$ $$$ )kp pj jMα η− $ $$   

 
ks kp p kp pR R Rα α− + +$ $ $                1,..., -k m r=  (21) 

3.3 Inverse dynamics algorithm in the presence of drive singularities 

When the linearly dependent dynamic equations in equation (8) are replaced by the 
modified equations, equation (8) takes the following form, which is valid in the vicinity of 
the singular configurations. 

 T =D τ S   (22) 

where in the case the s th row of  TA  becomes a linear combination of the other rows, 

 

T

T

T T T

ij

ij

ij p pj p pj

A i s
D

i sA A Aα α

⎧ ≠⎪= ⎨ =− −⎪⎩
$ $ $   (23) 

and  

 
( ) ( )

ij j i

i
ij p pj j ij p pj p pj j i p p p p

M R i s
S

i sM M M M M R R R

η

α η α α η α α

−⎧ ≠⎪= ⎨ =− + − − − + +⎪⎩

$
$ $ $ $$$$ $ $$ $   (24) 

In the general case when the rank of TA  becomes r, TD  and S take the following form. 

 

T

T

T T T

, 1,...,

, 1,...,

ij k
ij

kij kp pj kp pj

A i s k m r
D

i s k m rA A Aα α

⎧ ≠ = −⎪= ⎨ = = −− −⎪⎩
$ $ $

  (25) 

and  

 
, 1,...,

, 1,...,( ) ( )

ij j i k
i

kij kp pj j ij kp pj kp pj j i kp p kp p

M R i s k m r
S

i s k m rM M M M M R R R

η

α η α α η α α

−⎧ ≠ = −⎪= ⎨ = = −− + − − − + +⎪⎩

$
$ $ $ $$$$ $ $$ $

 (26) 

Notice that η$$$  in the modified equation should be found from the derivative of equation (6), 

 2= − − +Γ η Γ η Γη h$$$ $$$$$ $$ $   (27) 

η$$$  obtained from equation (27) corresponds to the prescribed end-effector jerks x$$$  (in h$$ ). 

Also the coefficients of the forces in the modified equations (17,21) depend on velocities. 
Therefore, if at the singularity the system is in motion, then by the modified equations the 
driving forces affect the end-effector jerk instantaneously in the singular directions. 
The inverse dynamics algorithm in the presence of drive singularities is given below. 
1. Find the loci of the positions where the actuation singularities occur and find the linear 

dependency coefficients associated with the singular positions. 
2. If the assigned path of the end-effector passes through singular positions, design the 

trajectory so as to satisfy the consistency conditions at the singular positions.  
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3. Set time 0t = . 

4. Calculate η , η$  and η$$  from kinematic equations. 

5. If the manipulator is in the vicinity of a singular position, i.e. 1( ,..., )mg η η ε<  where 

1( ,..., ) 0mg η η =  is the singularity condition and ε  is a specified small number, calculate 

η$$$  from eqn (27) and then find τ  (hence T) from equation (22). 

6. If the manipulator is not in the vicinity of a singular position, i.e. 1( ,..., )mg η η ε> , find 

τ  (hence T) from equation (8). 

7. Set t t t= + Δ . If the final time is reached, stop. Otherwise continue from step 3. 

4. Case studies 

4.1 Two degree of freedom 2-RRR planar parallel manipulator 

The planar parallel manipulator shown in Figure 1 has 2 degrees of freedom ( 2n = ). 

Considering disconnection of the revolute joint at P, the joint variable vector of the open-

chain system is [ ]T1 2 3 4θ θ θ θ=η . The joints at A and C are actuated, i.e. [ ]T1 2θ θ=q . 

The end point P is desired to make a deployment motion s(t) along a straight line whose 

angle with x-axis is 330oγ = , starting from initial position 0.431 m
oPx = − , 1.385 m

oPy = . 

The time of the motion is 1 sT =  and its length is 2.3 mL = in the positive s sense.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Two degree of freedom 2-RRR planar parallel manipulator. 

The moving links are uniform bars. The fixed dimensions are labelled as or AC= , 1r AB= , 

2r CD= , 3r BP=  and 4r DP= . The numerical data are 1.75mor = , 1 2 3 4 1.4mr r r r= = = = , 

1 2 6 kgm m= =  and 3 4 4kgm m= = . 

The loop closure constraint equations at velocity level are G =Γ η 0$  where 
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1 1 3 13 2 2 4 24 3 13 4 24

1 1 3 13 2 2 4 24 3 13 4 24

G r s r s r s r s r s r s

r c r c r c r c r c r c

− − + −⎡ ⎤
= ⎢ ⎥+ − − −⎣ ⎦

Γ   (28) 

Here sini is θ= , cosi ic θ= , sin( )ij i js θ θ= + , cos( )ij i jc θ θ= + . The prescribed Cartesian 

motion of the end point P, x can be written as 

 o

o

PP

PP

x s tx t

y s ty t

γ
γ

+⎡ ⎤⎡ ⎤
= = ⎢ ⎥⎢ ⎥ +⎣ ⎦ ⎣ ⎦

( ) sin( )

( ) cos( )
x   (29) 

Then the task equations at velocity level are P =Γ η x$ $ , where 

 
1 1 3 13 3 13

1 1 3 13 3 13

0 0

0 0
P r s r s r s

r c r c r c

− − −⎡ ⎤
= ⎢ ⎥+⎣ ⎦

Γ   (30) 

The mass matrix M and the vector of the Coriolis, centrifugal and gravitational forces R are  

 

11 13

22 24

13 33

24 44

0 0

0 0

0 0

0 0

M M

M M

M M

M M

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

M   (31) 

where    
 

                    
2 2

21 3
11 1 3 1 1 3 3( )

3 3

r r
M m m r r r c= + + + ,  

2
3 1 3 3

13 3( )
3 2

r r r c
M m= + , 

2
3

33 3
3

r
M m=  

 
2 2

22 4
22 2 4 2 2 4 4( )

3 3

r r
M m m r r r c= + + + ,  

2
4 2 4 4

24 4( )
3 2

r r r c
M m= + , 

2
4

44 4
3

r
M m=   (32) 

and 

 

1 1 1
3 1 3 3 3 1 3 1 1 1 3 1 1 3 132 2 21

21 1
3 1 3 3 1 3 3 132 2 2

1 1 1
3 4 2 4 4 4 2 4 2 2 2 4 2 2 4 242 2 2

21 14
4 2 4 4 2 4 4 242 2

( ) ( )

( ) ( )

m r r s m g r c m g r c r cR

m r r s m g r cR

R m r r s m g r c m g r c r c

R m r r s m g r c

θ θ θ

θ

θ θ θ

θ

⎡ ⎤− − + + +⎡ ⎤ ⎢ ⎥⎢ ⎥ +⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥ − − + + +⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ +⎢ ⎥⎣ ⎦

R

$ $ $

$

$ $ $

$

  (33) 

Since the variables of the actuated joints are 1θ  and 2θ , the matrix Z composed of the 

actuator direction vectors is 

 
1 0 0 0

0 1 0 0

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

Z   (34) 

Then the coefficient matrix of the constraint and actuator forces, TA  is 
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1 1 3 13 1 1 3 13

2 2 4 24 2 2 4 24T

3 13 3 13

4 24 4 24

1 0

0 1

0 0

0 0

r s r s r c r c

r s r s r c r c

r s r c

r s r c

− − +⎡ ⎤
⎢ ⎥+ − −⎢ ⎥=
⎢ ⎥−
⎢ ⎥

−⎢ ⎥⎣ ⎦

A   (35) 

The drive singularities are found from 0=A  as 1 3 2 4sin( ) 0θ θ θ θ+ − − = , i.e. as the 

positions when points A, B and D become collinear. Hence, drive singularities occur inside 
the workspace and avoiding them limits the motion in the workspace. Defining a path for 
the operational point P which does not involve a singular position would restrict the motion 
to a portion of the workspace where point D remains on one side of the line joining A and D. 
In fact, in order to reach the rest of the workspace (corresponding to the other closure of the 
closed chain system) the manipulator has to pass through a singular position. 

When the end point comes to 0.80mds L= = , 1 3θ θ+  becomes equal to 2 4π θ θ+ + , hence a 

drive singularity occurs. At this position the third row of TA  becomes 3 4/r r  times the 

fourth row. Then, for consistency of equation (8), the third row of the right hand side of 

equation (8) should also be 3 4/r r  times the fourth row. The resulting consistency condition 

that the generalized accelerations must satisfy is obtained from equation (15) as 

 3 3 3
31 1 24 2 33 3 44 4 3 4

4 4 4

r r r
M M M M R R

r r r
θ θ θ θ− + − = −$$ $$ $$ $$   (36) 

Hence the time trajectory s(t) of the deployment motion should be selected such that at the 
drive singularity the generalized accelerations satisfy equation (36).  
An arbitrary trajectory that does not satisfy the consistency condition is not realizable. This 

is illustrated by considering an arbitrary third order polynomial for ( )s t  having zero initial 

and final velocities, i.e. 
2 3

2 3

3 2
( )

L t L t

T T
s t = − . The singularity position is reached when 

0.48st = . The actuator torques are shown in Figure 2. The torques grow without bounds as 

the singularity is approached and become infinitely large at the singular position. (In Figure 
2 the torques are out of range around the singular position.)  
For the time function s(t), a polynomial is chosen which satisfies the consistency condition at 

the drive singularity in addition to having zero initial and final velocities. The time dT  when 

the singular position is reached and the velocity of the end point P at dT , ( )P dv T  can be 

arbitrarily chosen. The loop closure relations, the specified angle of the acceleration of P and 
the consistency condition constitute four independent equations for a unique solution of 

, 1,..., 4i iθ =$$  at the singular position. Hence, using iθ  and iθ$  at dT , the acceleration of P at 

dT , ( )P da T  is uniquely determined. Consequently a sixth order polynomial is selected 

where (0) 0,s =  (0) 0,s =$  ( ) ,s T L=  ( ) 0,s T =$  ( ) ,d ds T L=  ( ) ( )d P ds T v T=$  and ( ) ( )d P ds T a T=$$ . 

dT  and ( )P dv T  are chosen by trial and error to prevent any overshoot in s or s$ . The values 

used are 0.55 sdT =  and ( ) 3.0 m/sP dv T = , yielding 2( ) 18.2 m/sP da T = . s(t) so obtained is 

given by equation (37) and shown in Figure 3. 
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 2 3 4 5 6( ) 30.496 154.909 311.148 265.753 81.318s t t t t t t= − + − +   (37) 

 

Figure 2. Motor torques for the trajectory not satisfying the consistency condition: 1. T1 , 2. T2  

Furthermore, even when the consistency condition is satisfied, TA  is ill-conditioned in the 
vicinity of the singular position, hence τ  cannot be found correctly from equation (8). 

Deletion of a linearly dependent equation in that neighborhood would cause task violations 
due to the removal of a task. For this reason the modified equation (17) is used to replace the 
dependent equation in the neighborhood of the singular position. The modified equation, 
which relates the actuator forces to the system jerks, takes the following form. 

 
r r r r

A A A A M M M M
r r r r

τ τ θ θ θ θ− + − = − + −$ $ $ $ $$$ $$$ $$$ $$$T T T T3 3 3 3
31 41 1 32 42 2 31 1 24 2 33 3 44 4

4 4 4 4

( ) ( )  

 3 3 3
31 1 24 2 33 3 44 4 3 4

4 4 4

r r r
M M M M R R

r r r
θ θ θ θ+ − + − − +$ $$ $ $$ $ $$ $ $$ $ $   (38) 

The coefficients of the constraint forces in eqn (38) are 

 T T3
31 41 3 1 3 13 3 2 4 24

4

( ) ( )
r

A A r c r c
r

θ θ θ θ− = − + − +$ $ $ $ $ $  (39a) 

 T T3
32 42 3 1 3 13 3 2 4 24

4

( ) ( )
r

A A r s r s
r

θ θ θ θ− = − + − +$ $ $ $ $ $   (39b) 

which in general do not vanish at the singular position if the system is in motion. 
Once the trajectory is chosen as above such that it renders the dynamic equations to be 

consistent at the singular position, the corresponding iθ , iθ$  and iθ$$  are obtained from 

inverse kinematics, and when there is no actuation singularity, the actuator torques 1T  and 
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2T  (along with the constraint forces 1λ and 2λ ) are obtained from equation (8). However in 

the neighborhood of the singular position, equation (22) is used in which the third row of 

equation (8) is replaced by the modified equation (38). The neighborhood of the singularity 

where equation (22) is utilized is taken as 1 3 2 4 180 1o oθ θ θ θ ε+ − − − < = . The motor torques 

necessary to realize the task are shown in Figure 4. At the singular position the motor 

torques are found as 1 138.07 NmT = −  and 2 30.66NmT = − . To test the validity of the 

modified equations, when the simulations are repeated with 0.5oε =  and 1.5oε = , no 

significant changes occur and the task violations remain less than 410− m. 
 

 

Figure 3. Time function satisfying the consistency condition. 

4.2 Three degree of freedom 2-RPR planar parallel manipulator 

The 2-RPR manipulator shown in Figure 5 has 3 degrees of freedom (n=3). Choosing the 

revolute joint at D for disconnection (among the passive joints) the joint variable vector of 

the open chain system is [ ]T1 1 2 2 3θ ζ θ ζ θ=η , where 1 ABζ =  and 2 CDζ = . The link 

dimensions of the manipulator are labelled as a AC= , b BD= , c BP=  and PBDα = ∠ . The 

position and orientation of the moving platform is [ ]T3P Px y θ=x  where Px , Py  are the 

coordinates of the operational point of interest P in the moving platform. 

The velocity level loop closure constraint equations are G =Γ η 0$ , where 

 
1 1 1 2 2 2 3

1 1 1 2 2 2 3

sin cos sin cos sin

cos sin cos sin cos
G b

b

ζ θ θ ζ θ θ θ
ζ θ θ ζ θ θ θ
− − −⎡ ⎤

= ⎢ ⎥− −⎣ ⎦
Γ   (40) 

The prescribed position and orientation of the moving platform, ( )tx  represent the tasks of 

the manipulator. The task equations at velocity level are P =Γ η x$ $  where 
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1 1 1 3

1 1 1 3

sin cos 0 0 sin( )

cos sin 0 0 cos( )

0 0 0 0 1

P

c

c

ζ θ θ θ α
ζ θ θ θ α
− − +⎡ ⎤
⎢ ⎥= +⎢ ⎥
⎢ ⎥⎣ ⎦

Γ   (41) 

 

Figure 4. Motor torques for the trajectory satisfying the consistency condition: 1. T1 , 2. T2 . 

 
 

Figure 5. 2-RPR  planar parallel manipulator. 

Let the joints whose variables are 1 1 2, andθ ζ ζ  be the actuated joints. The actuator force 

vector can be written as [ ]T1 1 2T F F=T  where 1T  is the motor torque corresponding to 

s 

5

4G

 

2G

5G

1G 1

3

x 

y

oP

γ
 

1θ 2θ
A C 
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1θ , and 1F  and 2F  are the translational actuator forces corresponding to 1ζ  and 2ζ , 

respectively. Consider a deployment motion where the platform moves with a constant 

orientation given as o
3 320θ =  and with point P having a trajectory s(t) along a straight line 

whose angle with x-axis is o200γ = , starting from initial position m0.800
oPx = , 

m0.916
oPy =  (Figure 5). The time of the deployment motion is s1T =  and its length is 

m1.5L = . Hence the prescribed Cartesian motion of the platform can be written as 

 
o

3

( ) ( ) sin

( ) ( ) cos

( ) 320

o

o

P P

P P

x t x s t

y t y s t

t

γ
γ

θ

⎡ ⎤+⎡ ⎤
⎢ ⎥⎢ ⎥= = +⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

x   (42) 

The link dimensions and mass properties are arbitrarily chosen as follows. The link lengths 

are m1.0AC a= = , m0.4BD b= = , m0.2BP c= = , 0PBD α∠ = = . The masses and the 

centroidal moments of inertia are kg1 2m = , kg2 1.5m = , kg3 2m = , kg4 1.5m = , kg5 1.0m = , 

kg m2
1 0.05I = , kg m2

2 0.03I = , kg m2
3 0.05I = , kg m2

4 0.03I =  and kg m2
5 0.02I = .  The mass 

center locations are given by m1 1 0.15AG g= = , m2 2 0.15BG g= = , m3 3 0.15CG g= = , 

m4 4 0.15DG g= = , m5 5 0.2BG g= =  and 5 0G BD β∠ = = . 

The generalized mass matrix M and the generalized inertia forces involving the second 

order velocity terms R are 

 

11 15

22 25

33

44

51 52 55

0 0 0

0 0 0

0 0 0 0

0 0 0 0

0 0

M M

M M

M

M

M M M

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

M  ,    

1

2

3

4

5

R

R

R

R

R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

R   (43) 

where ijM  and iR  are given in the Appendix. 

For the set of actuators considered, the actuator direction matrix Z is 

 

1 0 0 0 0

0 1 0 0 0

0 0 0 1 0

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Z   (44) 

Hence, TA  becomes 

 

1 1 1 1

1 1
T

2 2 2 2

2 2

3 3

sin cos 1 0 0

cos sin 0 1 0

sin cos 0 0 0

cos sin 0 0 1

sin cos 0 0 0b b

ζ θ ζ θ
θ θ

ζ θ ζ θ
θ θ
θ θ

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−=
⎢ ⎥
− −⎢ ⎥

⎢ ⎥−⎣ ⎦

A   (45) 
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Since 2 2 3sin( )b ζ θ θ= −A , drive singularities occur when 2 0ζ =  or 2 3sin( ) 0θ θ− = . Noting 

that 2ζ  does not become zero in practice, the singular positions are those positions where 

points B, D and C become collinear. 
Hence, drive singularities occur inside the workspace and avoiding them limits the motion 

in the workspace. Avoiding singular positions where 2 3 nθ θ π− = ±  ( 0,1,2,...)n =  would 

restrict the motion to a portion of the workspace where point D is always on the same side 
of the line BC. This means that in order to reach the rest of the workspace (corresponding to 
the other closure of the closed chain system) the manipulator has to pass through a singular 
position.  

When point P comes to m0.662ds L= = , a drive singularity occurs since 2θ  becomes equal 

to 3θ + π . At this position the third and fifth rows of TA  become linearly dependent as 

2
3 5 0T T

j jA A
b

ζ
− = , 1,...,5j = . The consistency condition is obtained as below 

 2 2
33 2 51 1 52 1 55 3 3 5( )M M M M R R

b b

ζ ζθ θ ζ θ− + + = −$$ $$ $$ $$   (46) 

The desired trajectory should be chosen in such a way that at the singular position the 
generalized accelerations should satisfy the consistency condition. 
If an arbitrary trajectory that does not satisfy the consistency condition is specified, then 
such a trajectory is not realizable. The actuator forces grow without bounds as the singular 
position is approached and become infinitely large at the singular position. This is 

illustrated by using an arbitrary third order polynomial for ( )s t  having zero initial and final 

velocities, i.e. 
2 3

2 3

3 2
( )

L t L t

T T
s t = − . The singularity occurs when s0.46t = . The actuator forces 

are shown in Figures 6 and 7. (In the figures the forces are out of range around the singular 
position.) 
 

 

Figure 6. Motor torque for the trajectory not satisfying the consistency condition. 

www.intechopen.com



 Singularity Robust Inverse Dynamics of Parallel Manipulators 

 

387 

 

Figure 7. Actuator forces for the trajectory not satisfying the consistency cond.: 1. F1 , 2. F2 . 

For the time function s(t) a polynomial is chosen that renders the dynamic equations to be 
consistent at the singular position in addition to having zero initial and final velocities. The 

time dT  when singularity occurs and the velocity of the end point when dt T= , ( )P dv T  can 

be arbitrarily chosen. The acceleration level loop closure relations, the specified angle of the 

acceleration of P ( o200γ = ), the specified angular acceleration of the platform 3( 0)θ =$$  and 

the consistency condition constitute five independent equations for a unique solution of 

, 1,...,5i iη =$$  at the singular position. Hence, using η  and η$  at dT , the acceleration of P at 

dT , ( )P da T  is uniquely determined. Consequently a sixth order polynomial is selected 

where (0) 0,s =  (0) 0,s =$  ( ) ,s T L=  ( ) 0,s T =$  ( ) ,d ds T L=  ( ) ( )d P ds T v T=$  and ( ) ( )d P ds T a T=$$ . 

The values used for dT  and ( )P dv T  are s0.62  and m s1.7 /  respectively, yielding 

m s2( ) 10.6 /P da T = . s(t) so obtained is shown in Figure 8 and given by equation (47). 

 2 3 4 5 6( ) 20.733 87.818 146.596 103.669 25.658s t t t t t t= − + − +   (47) 

Bad choices for dT  and ( )P dv T  would cause local peaks in s(t) implying back and forth 

motion of point P during deployment along its straight line path. 
However, even when the equations are consistent, in the neighborhood of the singular 

positions TA  is ill-conditioned, hence τ  cannot be found correctly from equation (8). This 
problem is eliminated by utilizing the modified equation valid in the neighborhood of the 
singular position. The modified equation (17) takes the following form 

 j jB Qτ =              1,2j =   (48) 

where  

 2 2
1 31 51 51

T T TB A A A
b b

ζ ζ
= − −

$$ $ ,      2 2
2 32 52 52

T T TB A A A
b b

ζ ζ
= − −

$$ $   (49a) 
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 2 2
33 2 51 1 52 1 55 3 33 2 51 1 52 1( ) (Q M M M M M M M

b b

ζ ζθ θ ζ θ θ θ ζ= − + + + − +$$$ $$$ $$$ $$$ $ $$ $ $$ $ $$  

 2
55 3 51 1 52 1 55 3) ( )M M M M

b

ζθ θ ζ θ+ − + +
$$ $$ $$ $$ $$ 2 2

3 5 5R R R
b b

ζ ζ
− + +

$$ $   (49b) 

 

Figure 8. A time function that satisfies the consistency condition.  

Once the trajectory is specified, the corresponding η , η$  and η$$  are obtained from inverse 

kinematics, and when there is no actuation singularity, the actuator forces 1T , 1F  and 2F  

(and the constraint forces 1λ  and 2λ ) are obtained from equation (8). However in the 

neighborhood of the singularity, A is ill-conditioned. So the unknown forces are obtained 
from equation (22) which is obtained by replacing the third row of equation (8) by the 
modified equation (48). The neighborhood of the singular position where equation (22) is 

utilized is taken as o o
2 3 180 0.5θ θ ε− + < = . The motor torques and the translational actuator 

forces necessary to realize the task are shown in Figures 9 and 10, respectively. At the 

singular position the actuator forces are Nm1 30.31T = , N1 26.3F = and N2 1.61F = . The joint 

displacements under the effects of the actuator forces are given in Figures 11 and 12. To test 
the validity of the modified equations in a larger neighborhood, when the simulations are 

repeated with o1ε = , no significant changes are observed, the task violations remaining less 

than 510− m. 

5. Conclusions 

A general method for the inverse dynamic solution of parallel manipulators in the presence 

of drive singularities is developed. It is shown that at the drive singularities, the actuator 

forces cannot influence the end-effector accelerations instantaneously in certain directions. 

Hence the end-effector trajectory should be chosen to satisfy the consistency of the dynamic 
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equations when the coefficient matrix of the drive and constraint forces, A becomes singular. 

The satisfaction of the consistency conditions makes the trajectory to be realizable by the 

actuators of the manipulator, hence avoids the divergence of the actuator forces. 

 

Figure 9. Motor torque for the trajectory satisfying the consistency condition 

 

Figure 10. Actuator forces for the trajectory satisfying the consistency condition: 1. F1 , 2. F2  

To avoid the problems related to the ill-condition of the force coefficient matrix, A in the 

neighborhood of the drive singularities, a modification of the dynamic equations is made 

using higher order derivative information. Deletion of the linearly dependent equation in 

that neighborhood would cause task violations due to the removal of a task. For this reason 

the modified equation is used to replace the dependent equation yielding a full rank force 

coefficient matrix. 
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Figure 11. Rotational joint displacements: 1.θ1 , 2.θ2 .  

 

Figure 12. Translational joint displacements: 1.ζ 1 , 2.ζ 2 . 
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Appendix 

The elements of M and R of the 2-RPR parallel manipulator shown in equation (41) are 

given below, where im , 1,...,5i =  are the masses of the links, iI , 1,...,5i =  are the centroidal 

moments of inertia of the links and the locations of the mass centers iG , 1,...,5i =  are 

indicated by 1 1g AG= , 2 2g BG= , 3 3g CG= , 4 4g DG= , 5 5g BG=  and 5G BDβ = ∠ . 

 2 2 2
11 1 1 1 2 1 2 2 5 1( )M m g I m g I mζ ζ= + + − + +   (A1) 

 15 5 1 5 1 3cos( )M m gζ θ θ β= − −   (A2) 

 22 2 3M m m= +   (A3) 

 25 5 5 1 3sin( )M m g θ θ β= − −   (A4) 

 2 2
33 3 3 3 4 2 4 4( )M m g I m g Iζ= + + − +   (A5) 

 44 4M m=   (A6) 

 51 5 1 5 1 3cos( )M m gζ θ θ β= − −   (A7) 
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 52 5 5 1 3sin( )M m g θ θ β= − −   (A8) 

 2
55 5 5 5M m g I= +   (A9) 

 2
1 2 1 2 1 1 5 1 5 3 1 32 ( ) sin( )R m g m gζ ζ θ ζ θ θ θ β= − + − −$ $ $ m g m g m gζ ζ θ+ + − +1 1 2 1 2 5 1 1[ ( ) ] cos  (A10) 

 2 2 2
2 5 5 3 1 3 2 1 2 1 5 1 1 2 5 1cos( ) ( ) ( ) sinR m g m g m m m gθ θ θ β ζ θ ζ θ θ= − − − − − − + +$ $ $   (A11) 

 3 4 2 4 2 2 3 3 4 2 4 22 ( ) [ ( )] cosR m g m g m g gζ ζ θ ζ θ= − + + −$ $   (A12) 

 2
4 4 2 4 2 4 2( ) sinR m g m gζ θ θ= − − +$   (A13) 

 2
5 5 5 1 1 1 3 1 1 1 3 3[2 cos( ) sin( ) cos( )]R m g gζ θ θ θ β ζ θ θ θ β θ β= − − − − − + +$ $ $  (A14) 
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