
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

Chapter

System Level Design and
Conception of a System-on-a-Chip
(SoC) for Cognitive Robotics
Diego Stéfano Fonseca Ferreira, Augusto Loureiro da Costa,

Wagner Luiz Alves De Oliveira

and Alejandro Rafael Garcia Ramirez

Abstract

In this work, a system level design and conception of a System-on-a-Chip (SoC)
for the execution of cognitive agents in robotics will be presented. The cognitive
model of the Concurrent Autonomous Agent (CAA), which was already success-
fully applied in several robotics applications, is used as a reference for the develop-
ment of the hardware architecture. This cognitive model comprises three levels that
run concurrently, namely the reactive level (perception-action cycle that executes
predefined behaviours), the instinctive level (receives goals from cognitive level
and uses a knowledge based system for selecting behaviours in the reactive level)
and the cognitive level (planning). For the development of such system level hard-
ware model, the C++ library SystemC with Transaction Level Modelling (TLM) 2.0
will be used. A system model of a module that executes a knowledge based system is
presented, followed by a system level description of a processor dedicated to the
execution of the Graphplan planning algorithm. The buses interconnecting these
modules are modelled by the TLM generic payload. Results from simulated experi-
ments with complex knowledge bases for solving planning problems in different
robotics contexts demonstrate the correctness of the proposed architecture. Finally,
a discussion on performance gains takes place in the end.

Keywords: Autonomous Agents, Robotics, Hardware Design, Knowledge Based
Systems, Transaction Level Modelling

1. Introduction

Behaviour-based robotics is a branch of robotics that studies techniques for the
interaction of robotic agents with the environment using the perception-action
cycle in a coordinated fashion. With the addition of cognition, these agents may use
knowledge about the environment to perform more complex tasks [1–3]. In the
context of artificial intelligence, the internal structure of those agents, i. e., their
cognitive architectures, dictate how the problem-solving will take place [4].

An example of a cognitive architecture with successful applications in robotics is
the Concurrent Autonomous Agent (CAA), an autonomous agent architecture for

1

mobile robots that has already proven to be very powerful [5–7]. This agent pos-
sesses a three layer architecture, in which each layer is responsible for a different
task: the reactive layer runs behaviours with a perception-action cycle; the instinc-
tive layer coordinates reactive behaviour selection; and the cognitive layer does the
high-level planning.

In this work, a system level hardware model of a System-on-a-Chip (SoC) for
cognitive agents will be presented. This model was inspired by the cognitive archi-
tecture of the CAA. Therefore, the CAA will be described in Section 2. In Sections 3
and 4 the Rete and Graphplan algorithms are described, respectively, since they are
at the core of the CAA. The SystemC and TLM 2.0 standards, the tools used to
construct the models are presented in Section 5, followed by the presentation of the
proposed architecture in Section 6. Results of experiments are shown in Section 7
and some final thoughts and conclusions are presented in Section 8.

2. The concurrent autonomous agent (CAA)

The Concurrent Autonomous Agent (CAA) is a cognitive architecture whose
taxonomy is based on the generic model for cognitive agents, which is composed by
the reactive, the instinctive and the cognitive levels [8]. The CAA levels are
presented in Figure 1 [5, 6], where the message passing between the levels is shown.
The cognitive level generates plans that are executed by the instinctive level
through the selection of reactive behaviours in the reactive level. [6].

Both the cognitive and instinctive levels apply a Knowledge Based System (KBS)
for knowledge representation and inference. The KBS is composed by a facts base, a
rules base and an inference engine, as shown in Figure 2 [6].

The facts base contains atomic logical elements that represents knowledge that is
known about the current state of the environment. The rules base contains a set of
rules in the format if PREMISE then CONSEQUENT. The premise consists of a con-
junction of ungrounded fact patterns that uses variables to increase expressiveness.

Figure 1.
Cocurrent autonomous agent architecture.

2

Robotics Software Design and Engineering

The consequent, in turn, has instructions on how to modify the facts base and
which message should be sent to other levels, if any. The KBS then goes through the
following cycle [9].

• Recognition: identify which rules can be activated by checking if the premises
matches the facts in the facts base;

• Conflict Resolution: among the activated rules (conflict resolution set), decide
which should be executed; and

• Execution: the chosen rule in the conflict resolution phase has its consequent
executed.

The Rete matching algorithm is applied in the recognition phase to generate the
conflict resolution set. The instinctive level uses its KBS to select the appropriate
reactive behaviour to be selected given the current world state. The cognitive level,
in turn, uses its KBS inside the Graphplan algorithm (that will be described later in
this chapter), in the state space expansion stage [10].

3. The Rete algorithm

As mentioned earlier in this chapter, the Retematching algorithm is employed in
the recognition stage the KBSs used by the CAA. It is proposed in [11], and is named
after the latin word for “network”.

The algorithm builds a graph out of the rules base of the KBS where each node
has a special purpose. In the end, it avoids running through the entire facts base for
each rule premise, every time a new fact arrives, by saving information about
partial matches in some of its nodes [11].

The constructed graph has two portions: the alpha network, responsible for
comparing the constants in the premises with the corresponding fields in the
incoming fact; and the beta network, which checks for variable assignment consis-
tency and maintenance of partial matches [10].

The nodes the compose the alpha network are the following [10]:

• Root Node: entry point for new facts;

Figure 2.
KBS used by AAC.

3

System Level Design and Conception of a System-on-a-Chip (SoC) for Cognitive Robotics
DOI: http://dx.doi.org/10.5772/intechopen.98643

• Constant Test Nodes (CTN): compares constant fields of premises with
corresponding ones in the current fact; and

• Alpha Memories (AM): stores facts that successfully passed the tests in CTNs.

The beta network is composed by the following nodes [10]:

• Join Nodes (JN): perform tests that ensure variable assignment consistency
inside a premise instance (partial match);

• Beta Memories (BM): stores partial matches produced in JNs; and

• Production Nodes: terminal nodes for full rule matches.

4. The Graphplan algorithm

The cognitive level uses the Graphplan algorithm to generate the plans that the
other levels should execute. Originally, the algorithm used a propositional knowl-
edge representation, so this will be adopted here for the algorithm description. The
rest of this section uses [12, 13] as references.

Mathematically, a planning problem may be stated as P ¼ Σ, s j, g
� �

, where Σ ¼
S,A, γð Þ is the problem domain (that comprises the set of states S, the set of actions
A and a state transformation function γ ¼ S� A! S), s j is the initial state and g is
the goal state.

Each action a∈A has a set prencond að Þ of precondition propositions and a set

effects að Þ ¼ effectsþ að Þ ∪ effects� að Þ of effects. The effects, in turn, may be broken

down into two subsets: effectsþ að Þ, the set of positive propositions (propositions to
be added), and effects� að Þ, the set of negative propositions (propositions to be
deleted). The applicability condition for an action a, in a given state s, may be
written as precond að Þ⊆ s. The new state produced by the application of a would be

γ s, að Þ ¼ s� effects� að Þð Þ ∪ effectsþ að Þ.
Consider an action layer A j and the propositional layer P j�1 preceding it. A j

contains all actions a such that precond að Þ⊆P j�1, and P j�1 all propositions p such
that p∈P j�1. The so called planning graph is the built by connecting elements in
P j�1 to elements in A j by edges:

• edges connecting a proposition p∈P j�1 to an action a∈A j;

• edges connecting an action a∈A j to a proposition p∈P j�1, such that

p∈ effectsþ að Þ (positive arc); and

• edges connecting an action a∈A j to a proposition p∈P j�1, such that
p∈ effects� að Þ (negative arc).

If two actions a1, a2 ∈A j obey effects� a1ð Þ ∩ precond a2ð Þ ∪ effectsþ a2ð Þ
� �

¼ ∅ and

effects� a2ð Þ ∩ precond a1ð Þ ∪ effectsþ a1ð Þ
� �

¼ ∅, they a said to be independent; if not,
they are dependent, or mutually exclusive (mutex).

Propositions can also bemutex: p and q aremutex if every action in A j that adds p
is mutex with every action in A j that produces q, and there are no actions in A j that
adds both p and q. Also, if a precondition of an action is mutex with a precondition
of another action, the actions are mutex.

4

Robotics Software Design and Engineering

The algorithm begins by expanding the graph. The pseudo-code for the expan-
sion step is given in Algorithm 1.

Algorithm 1 Planning graph expansion

1: procedure EXPAND (si) ▷si: i-th state layer
2: Aiþ1 KBS:InferenceCycle si,Að Þ ▷A: action profiles

3: siþ1 ∪Aiþ1:effects
þ

4: μAiþ1 a, bð Þ∈A2
iþ1, a 6¼ b j

�

Dependent a, bð Þ∨∃ p, qð Þ∈ μsi : p∈ preconds

að Þ, q∈ preconds bð Þg

5: μsiþ1 p, qð Þ∈ s2iþ1, p 6¼ q j∀ a, bð Þ∈A2
iþ1 : p∈ effectsþ

�

að Þ∧q∈ effectsþ bð Þ ! a, bð Þ∈ μAiþ1g

6: end procedure

The expansion stops when the goal state g is detected in the state layer si. It then
triggers a recursive search for non-mutex actions in all the preceding action layers
that could have produced the goal state found in si. This procedure is composed by
the functions Search (Algorithm 2) and Extract (Algorithm 3).

Algorithm 2 Search for non-mutex actions.

1: procedure SEARCh(g, πi, i)
2: if g ¼ ∅ then
3: Π Extract ∪ preconds að Þ j∀a∈ πif g, i� 1ð Þ
4: if Π ¼ Failure then
5: return Failure
6: end if
7: return Π:πi

8: else
9: select any p∈ g

10: resolvers a∈Ai jp∈ effectsþ að Þ∧∀b∈ πi : a, bð Þ �∈ μAi

� �

11: if resolvers ¼ ∅ then
12: return Failure
13: end if
14: nondeterministically choose a∈ resolvers

15: return Search(g � effectsþ að Þ, πi∪ af g, i)
16: end if

17: end procedure

Algorithm 3 Extract a plan.

1: procedure EXTRACT(g, i)
2: if i ¼ 0 then
3: return ∅

4: end if
5: πi Search g,∅, ið Þ
6: if πi 6¼ Failure then
7: return πi

8: end if
9: return Failure
10: end procedure

5

System Level Design and Conception of a System-on-a-Chip (SoC) for Cognitive Robotics
DOI: http://dx.doi.org/10.5772/intechopen.98643

5. SystemC and transaction level modelling

This work uses SystemC and the TLM 2.0 as modelling and simulation tools, so
in this section they will be described.

5.1 SystemC

In the design of complex digital systems, obtaining a high-level executable
specification of the project in early stages of the design process is useful for
detecting errors or validate functionality prior to implementation. This is one of the
main advantages of SystemC, a C++ class library for hardware design at various
abstraction levels - from system level to Register Transfer Level (RTL). Figure 3
shows the typical design flow for SystemC projects [14].

The SystemC library contains elements that facilitates representation of hard-
ware systems parallelism. Hardware models in SystemC are represented by modules
that may run in parallel interconnected by ports and channels (Figure 4). In this
way, the initial model may contain a few modules representing system level

Figure 3.
SystemC hardware design flow [14].

6

Robotics Software Design and Engineering

functionality and, as the model gets refined, those initial high-level modules are
further divided into more specific interconnected modules, until the RTL is
reached [14].

5.2 Transaction level modelling

In hardware models of higher levels of abstraction, executing all modules at each
time step may produce an unnecessary overhead. Thinking of a digital systems as
components connected by a bus, reading from and writing to it, it would be more
efficient to execute modules only when they have something massages to send/
receive. This is the rationale behind Transaction Level Modelling (TLM), the mes-
sage exchange being called a transaction [15].

With SystemC, an implementation of the TLM called TLM 2.0 is provided. It
inherits all the SystemC capabilities, mainly the module concept, extending it with
sockets, transactions and payloads (Figure 5).

Figure 4.
Typical SystemC RTL module [14].

Figure 5.
TLM basic elements [15].

7

System Level Design and Conception of a System-on-a-Chip (SoC) for Cognitive Robotics
DOI: http://dx.doi.org/10.5772/intechopen.98643

6. Proposed architecture

The hardware architecture proposed in this work takes full advantage of
SystemC and TLM 2.0 capability of developing executable specifications from sys-
tem level to RTL. In this sense, the approach employed was to obtain a high level
model and validate its functionality using experiments in a robotics context.

The TLM model proposed is shown in Figure 6. It consists of modified SystemC
model of the Rete processor presented in the authors previous work [10]. As can be
seen in Figure 6, the instinctive module now implements a detailed Rete processor,
that uses two Content Addressable Memories (CAMs) to implement the knowledge
base and an auxiliary stage for test execution.

The Instruction Set Architecture (ISA) of the Rete processor described in [10] is
still employed in this model, but now some tasks related to join node in the Rete
network are performed separately in the Join Node Module.

7. Results

7.1 Problem domain and simulation environment

The experiments were performed using the Webots R2021a robotics
simulator. In the context of the CAA, the reactive level of the agent was

Figure 6.
TLM model of the SoC.

Figure 7.
Simulation environment for start state.

8

Robotics Software Design and Engineering

implemented inside this simulator, in the form of behaviours and controllers the
interface with the environment. In the simulator, the planning problem domain was
constructed: a simplified version of the blocks domain. The simulation consisted of
three coloured boxes (red, green and blue) disposed in a given order around KUKA
Youbot robot, which is a mobile robot with a robotic arm and a plate. The
simulation environment and the robot in the initial state are shown in the
Figure 7.

The planning problem consisted of reordering the blocks from the initial posi-
tion shown in Figure 7 so that the red block is in the left side or the arm, the blue in
the right and the green in the front.

Figure 8.
Sequence diagram for graph expansion.

9

System Level Design and Conception of a System-on-a-Chip (SoC) for Cognitive Robotics
DOI: http://dx.doi.org/10.5772/intechopen.98643

7.2 Cognitive module results

The operation of this module will be presented through a sequence diagram. The
first part of this diagram, shown in Figure 8, shows how this level expanded the
planning graph until what was labelled as last expansion.

The Rete and Expansion TLM modules together expand the planning graph: the
current state is given as an input for the Rete module, that gives in return the next
action layer. This is done 3 times, until action layer A2 is reached. The Expansion
Module then processes the consequence of the newly added actions, updating the
state layer. But this time, the goal state is present in the state layer, so a transaction
is sent to the search module to backtrack the goal state checking if the actions that
produced are mutex with any other. If no mutex relation is found, those actions
form the plan. And, as shown in Figure 9, this plan is, indeed, found in the first
backtrack attempt.

As can be seen in Figure 9, during the search for a solution, the expansion
continues to take place, but is interrupted when the Search Module reports the
solution. The plan found to the given problem was composed by the actions move
(green, right, front), move(blue, left, right) and move(red, back, left).

7.3 Instinctive module results

The reactive behaviours for the robotic arm were defined as: going to a reset
position; moving to left, right, front or back; grip and release. In order to execute
the actions produced by the cognitive level, a knowledge base was created and

Figure 9.
Sequence diagram for finding a plan (continuation of Figure 8).

10

Robotics Software Design and Engineering

compiled for the Rete processor using its application specific ISA. The rules in this
knowledge based were “grab” and “put”. Both has as precondition that the arm is in
the reset position and variables to specify the side where to grab from and the side
where to put. The sequence of reactive behaviours activate by the instinctive level is
show for the execution of the first action of the plan (move(green, right, front)) in
Figure 10.

8. Conclusions

This chapter presented a SoC for cognitive agents that can perform symbolic
computations at the hardware level. The cognitive model of the CAA was used as a
reference for the hardware system-level model development, mapping its instinc-
tive level to module with an application specific processor that executes the Rete
matching algorithm, and with its cognitive level mapped into a module specifically
designed for running the Graphplan planning algorithm (also with the use of the
Rete processor). The SystemC and the TLM were used to build executable specifi-
cations that could validate its functionality in a robotics context. This version of the
model was presented in a unified fashion, using SystemC/TLMmodules and threads
for the executable specification generation.

The results shown that the planning problem was solved by the Cognitive Mod-
ule of the proposed architecture and successfully executed by its Instinctive Mod-
ule, that consists of a Rete processor. By using a parallel architecture, the Cognitive
Module broke the planning task into concurrent tasks in such a way that the
backtrack search of the plan could take place while the graph were still expanding,
as shown in Figure 9. In a complex planning problem this is advantageous because
the solution usually does not come from the first backtrack search; thus, by not
stalling the graph expansion, performance is gained.

In future works, tests with more complex knowledge bases and planning
domains will be performed. Also, further refinements should be made in the archi-
tecture aiming synthesis.

Figure 10.
Sequence of arm configurations and the reactive behaviours executed between them.

11

System Level Design and Conception of a System-on-a-Chip (SoC) for Cognitive Robotics
DOI: http://dx.doi.org/10.5772/intechopen.98643

Author details

Diego Stéfano Fonseca Ferreira1†, Augusto Loureiro da Costa1*†,
Wagner Luiz Alves De Oliveira1† and Alejandro Rafael Garcia Ramirez2†

1 Robotics Laboratory, Electrical Engineering Department, Federal University of
Bahia, Salvador, BA, Brazil

2 Computer Engineering Department, University of Vale de Itajaí, Itajaí, SC, Brazil

*Address all correspondence to: augusto.loureiro@ufba.br

†These authors contributed equally.

© 2021 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

12

Robotics Software Design and Engineering

References

[1]Huhns MN, Singh MP. Cognitive
agents. Internet Computing, IEEE. 1998;
2(6):87–89.

[2] Guzel MS, Bicker R. A behaviour-
based architecture for mapless
navigation using vision. International
Journal of Advanced Robotic Systems.
2012;9(1):18.

[3]Nattharith P, Güzel MS. Machine
vision and fuzzy logic-based navigation
control of a goal-oriented mobile robot.
Adaptive Behavior. 2016;24(3):168–180.

[4] Langley P, Laird JE, Rogers S.
Cognitive architectures: Research issues
and challenges. Cognitive Systems
Research. 2009;10(2):141–160.

[5] Costa ALd, Bittencourt G. From a
concurrent architecture to a concurrent
autonomous agents architecture.
Lecture Notes in Artificial Inteligence.
1999;1856:85–90.

[6] Bittencourt G, Costa ALd. Hybrid
Cognitive Model. In: The Third
International Conference on Cognitive
Science ICCS’2001 Workshop on
Cognitive Angents and Agent
Interaction; 2001.

[7]Cerqueira RG, Costa ALd, McGill SG,
Lee D, Pappas G. From reactive to
cognitive agents: Extending
reinforcement learning to generate
symbolic knowledge bases. In: Simpósio
Brasileiro de Automaçăo Inteligente
2013; 2013.

[8] Bittencourt G. In the quest of the
missing link. International Joint
Conference of Artificial Intelligence. 1997.

[9] Brachman R, Levesque H.
Knowledge Representation and
Reasoning. Elsevier; 2004.

[10] Ferreira D, da Costa AL, De
Oliveira WLA. IntelliSoC: A system level

design and conception of a system-on-a-
Chip (SoC) to cognitive agents
architecture. Applications of Mobile
Robots. 2019:199.

[11] Forgy CL. On the Efficient
Implementation of Production Systems.
Carnegie-Mellon University; 1979.

[12]Ghallab M, Nau D, Traverso P.
Automated Planning: Theory and
Practice. Elsevier; 2004.

[13] Blum AL, Furst ML. Fast planning
through planning graph analysis.
Artificial intelligence. 1997;90(1):281–
300.

[14] Synopsys I. SystemC 2.0 User’s
Guide; 2002].

[15] Bennett J. Building a Loosely Timed
SoC Model with OSCI TLM 2.0.
embecosm Application Note 1.
2008;(1).

13

System Level Design and Conception of a System-on-a-Chip (SoC) for Cognitive Robotics
DOI: http://dx.doi.org/10.5772/intechopen.98643

