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Abstract

Biodegradation is the most viable alternative for numerous health and environ-
mental issues associated with non-biodegradable materials. In recent years, there 
has been considerable interest in biodegradable nanomaterials due to their relative 
abundance, environmental benignity, low cost, easy use, and tunable properties. 
This chapter covers an overview of biodegradation, factors and challenges associ-
ated with biodegradation processes, involvement of nanotechnology and nanoma-
terials in biodegradation, and biodegradable nanomaterials. Furthermore, current 
chapter extensively discusses the most recent applications of biodegradable nano-
materials that have recently been explored in the areas of food packaging, energy, 
environmental remediation, and nanomedicine. Overall, this chapter provides a 
synopsis of how the involvement of nanotechnology would benefit the process of 
biodegradation.

Keywords: Biodegradation, nanoparticles, food packaging, energy storage, 
environmental remediation, nanomedicine

1. Introduction to biodegradation

Sustainable development is a principle that is implemented to preserve the 
environment for the future generation while meeting the needs of the present 
generation. Environmental pollution is considered one of the significant barriers 
to sustainable development. Therefore, the drive for sustainable development must 
address environmental pollution by removing pollutants, restoring polluted areas, or 
using without affecting the unpolluted areas [1]. Biodegradation is identified as a key 
eco-friendly and economical way of sustainable development, which entails enzy-
matic degradation or a breakdown of complex organic matter into small molecules 
in the presence of microorganisms [2]. The microorganisms could also allow the 
biodegradation of organic matter in the presence of a growth substrate used as the 
primary source of energy and carbon source, a process called cometabolism [2]. 
The biodegradation process is an effective alternative for commonly applied waste 
disposal methods such as incineration and landfilling [3].
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2. Key challenges associated with biodegradation process

Biodegradation may sometimes lead to incomplete mineralization of the total 
organic content, such as recalcitrant materials leaving unprocessed contaminants 
behind [4]. This could be due to the complex structure of the materials, higher 
molecular weight, crosslinking, shape, texture, surface area, and degradation rate 
[5]. For example, depending on the degree of crystallinity, orientation and packing 
of polymers, the degradation rate is severely affected. It has been observed that even 
under the same conditions, the degradation of amorphous regions of polycaprolac-
tone (PCL) by filamentous fungi is much faster than the degradation of crystalline 
regions of PCL, where the amorphous regions may permit easy access to microbes 
during the degradation process [4]. Therefore, ensuring the complete or partial 
degradation of these complex substances to produce harmless products without 
secondary pollution is extremely important [5].

Additionally, the microbial biodegradation process also depends on various 
factors such as nutrient availability, microbe type, substrate properties, and envi-
ronmental conditions such as pH, moisture content, and redox potential [6–8]. 
Generally, the redox potential relies on the presence of the electron acceptors at 
the active site, such as oxygen, nitrates, manganese oxides, iron oxides, sulfate, 
and triggering the aerobic or anaerobic biodegradation. Even though many of 
the microbes prefer physiological pH of 7.4 and a temperature of 37°C for their 
growth, certain microbes such as fungal species prefer an acidic environment. 
In contrast, some bacteria prefer relatively high temperatures for their optimal 
growth. Therefore, not exactly knowing the required growth conditions could be 
a significant factor contributing to the incomplete degradation of the substrate in 
some cases [7].

Furthermore, microbial metabolism in biodegradation is an energy transforma-
tion process that is solely governed by the functions of enzymes and the intermedi-
ates produced during the reactions [5]. Therefore, proper screening is required to 
identify the microbes with an inherent set of genes that are capable of degrading 
the contaminants, the factors and the conditions under which the population of 
these microbes could increase, and the synergic performance of these microbes 
with other technologies to establish an environmentally profitable biodegradation 
platform [9]. It has also been identified that more optimization procedures and scal-
ing up are required for the biodegradation of large contaminated areas [10].

3. Role of nanotechnology in biodegradation

Biodegradable materials can be considered a preeminent group of materials that 
could also be called next-generation materials leading to zero global environmental 
pollution. Owing to this concern, the consumption of biodegradable materials, such 
as polymers, has increased two to three-fold in a broad spectrum of fields, includ-
ing agriculture, automotive, packaging, energy and environment, and biomedical. 
But still, the contribution coming from the biodegradable polymers in said areas 
only accounts for 3–5% of total polymer consumption [11]. This lower contribu-
tion could be mainly due to the poorly addressed issues such as low durability, low 
performance, and high production cost [12].

In this context, combining the concept of biodegradation with nanotechnol-
ogy could be identified as a more systemic and innovative approach to address 
the current issues with the biodegradation process [13]. Nanotechnology is an 
evolving branch of science that has diversified its application in many disciplines 
such as agriculture [14], healthcare [15], transportation [16], electronics [17], 
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food [18], water purification [19–25], and security [26]. Nanotechnology involves 
manipulating matter in 1–100 nm nanoscale to create materials where at least one 
of the dimensions of the particles in the nano range [27]. The combined approach 
of nanotechnology-mediated biodegradation could address a wide range of poten-
tial applications in agriculture, food packaging, environmental remediation, and 
healthcare while accounting for reduced costs and no impact on environmental 
pollution [12]. Nanomaterials have proven effective as excellent adsorbents, sen-
sors, and catalysts for biodegradation purposes due to their specific surface area and 
high reactivity [28].

Furthermore, the presence of nanoparticles and microbes that are actively 
engaged in the biodegradation process has paved the way in improving growth 
profiles of microbes by acting as biodegradation enhancers [29–32]. It has also been 
observed that the integration of nanotechnology with the enzymatic pathways in 
the biodegradation process could lead to profound activity and improved reus-
ability of the enzymes [13]. Nanoparticles have also performed as effective sensor 
systems to detect the utilization of the raw materials and the production of specific 
products, which provided an inference on the progression of the biodegradation 
process [33]. Hence, this process of nano-biodegradation would ultimately involve 
the reduction of accumulating harmful non-biodegradable materials in the environ-
ment [34, 35].

3.1 Factors affecting the performance of nanomaterials during biodegradation

3.1.1 Properties of the nanomaterial

The chemical and physical interaction between the nanoparticles and the micro-
biota during the biodegradation is majorly influenced by the properties of nano-
materials such as size, shape, surface functionalization chemical structure, as they 
could influence the reactivity and stability of the nanomaterial [36, 37]. In addition, 
nanomaterials exhibit a quantum effect where less energy is required for associated 
chemical reactions [38]. Furthermore, the surface plasmon resonance exhibited by 
certain types of nanomaterials such as gold nanoparticles (Au NPs) [39] and silver 
nanoparticles (Ag NPs) [40] can also be used to detect and identify the contami-
nants. The smaller size of the nanomaterials also allows them to penetrate deeper 
into complex organic molecules [41].

3.1.2  Properties of the microorganisms and culture medium affecting the 
biodegradation

The performance of the nanomaterials during biodegradation also depends on 
the type of the organism, such as bacteria, fungi, protozoa and the type of enzymes 
used for the degradation of the contaminants [38]. Growth conditions such as pH, 
redox potential, temperature, ionic strength, solubility, presence or absence of 
electron acceptors in the culture medium also influence the activity and stability of 
the nanoparticles [13]. Therefore, proper control of the culture medium conditions 
to obtain a prolonged uninterrupted biodegradation procedure is necessary.

3.2 Types of nanomaterials used in biodegradation

Different types of nanomaterials have been utilized in the biodegradation pro-
cess. Table 1 summarizes the specific types of nanomaterials and their applications. 
Commonly used biodegradable nanomaterials include zero-valent metals, metal 
oxides, metal sulfides, nano clay, nanocomposites, carbon-based nanomaterials, 
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Type of the Nanomaterial Type of degradation Biodegradation process Reference

Zero valent metals, oxides, sulfides

I. Zero valent iron (nZVI) Microorganism mediated- Organohalide-respiring 
bacteria (OHRB), sulfate reducing bacteria (SRB) and iron 
reducing bacteria (IRB)

nZVI provides suitable living conditions for the growth and 
activity of anaerobic bacteria to degrade organohalides, heavy 
metals

[42]

II. Zirconia (ZrO2) Microorganism mediated- Pseudomonas aeruginosa Synthesis of ZrO2 via P. aeruginosa for adsorption driven 
bioremediation of tetracycline

[43]

III. Silicon dioxide (SiO2) Microorganism mediated-Indigenous actinomycetes 
species isolated from the effluent contaminated site

Actinomycetes mediated synthesis of silica and use for adsorption 
and decolourisation of textile effluent

[44]

IV. Iron oxide (Fe3O4) Microorganism mediated- Microbacterium

sp., Pseudomonas putida and Bacterium Te68R

Enhance the consortium growth that involve in Low-Density 
Polyethylene (LDPE) degradation

[45]

V. Cadmium Zinc sulfide quantum 
dots (CdZnS QDs)

Microorganism mediated- Escherichia coli Immobilization of nanoscale CdZnS QDs in to the extracellular 
matrix of bacterial biofilms which are later on used as catalysts for 
the degradation of nitro aromatic compounds

[46]

Nanoclay Microorganism mediated- Pseudomonas spp., 

Sphingomonas spp., Flavobacterium spp., Burkholderia spp., 

Rhodococcus spp., Mycobacterium spp., and Bacillus spp.

Clay/modified clay minerals as effective adsorbents of PAHs/
volatile oxygen compounds (VOCs) to trigger the microbial 
mediated biodegradation

[47]

Nanocomposites

I. Nanocellulose composites Microorganism mediated- Arthrobacter globiformis D47 Bacteria decorated nanocellulose being used as a scaffold to grow 
the bacteria as well as to remove Diuron via biodegradation

[48]

II. Fe3O4/biochar composites Microorganism mediated- R. capsulatus Improve the adsorption capacity of photosynthetic bacteria as well 
as to improve the efficiency of bioremediation of wastewater

[49]

Carbon based nanomaterials

I. Fullerene 60 Microorganism mediated- Pseudomonas putida strain MK4 

(DQ318885),

Bacterium Te68R strain PN12 (DQ423487). P. aeruginosa 

strain

PS1 (EU741797), P. putida strain PW1 (EU741798), and P. 

aeruginosa strain C1 (EU753182)

Influence the growth cycle of LDPE, HDPE epoxy and 
epoxy silicon degrading bacteria and accelerate the polymer 
biodegradation process of bacterial consortia

[50]
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Type of the Nanomaterial Type of degradation Biodegradation process Reference

II. Carbon nanotubes (CNTs) Microorganism mediated- S. cerevisiae, Actinomycetes Immobilization of microbes for bioremediation of heavy metals [51]

Biopolymer based nanomaterials

I. Alginate beads Microorganism mediated- Acinetobacter sp., Bacillus 

circulans, Bacillus licheniformis, Brevibacillus brevis, 

Burkholderia cepacia, Leifsonia aquatica and Sphingomonas 

paucimobilis

Improved the bacterial attachment required for oil bioremediation [52]

II. Chitosan beads Microorganism mediated- Serratia sp. AC-11 Remove polycyclic hydrocarbons by immobilizing the bacteria by 
improving the degradation rate

[53]

Nanofibrous materials

I. Polyvinyl alcohol (PVA) and 
Polyethylene oxide (PEO) 
nanofibers

Microorganism mediated- Pseudomonas aeruginosa ATCC 

47085

Provide suitable platforms for preservation of living bacterial cells 
and direct use for bioremediation of methylene blue

[54]

II. Cyclodextrin nanofibers Microorganism mediated- Lysinibacillus sp. NOSK Provide a matrix for the encapsulation of bacteria to perform 
bioremediation of heavy metals and reactive dyes

[55]

Biodegrading nanoparticles

I. Polylactic acid (PLA) micelles Physiological Enzymes mediated Tumor targeting and efficient drug delivery [56]

II. Polylactic glycolic acid (PLGA) 
micelles

Physiological Enzymes mediated Use of thermosensitive and biodegradable triblock copolymer for 
temperature sensitive drug delivery for liver cancer

[57]

III. Polycarprolactone (PCL) 
nanoparticles

Physiological Enzymes mediated Biodegradable nanocarriers for therapeutic compounds [58]

IV. Chitosan nanoparticles Physiological Enzymes mediated Biodegradable nanocarriers for drug delivery diagnosis and other 
biological applications

[59]

V. Dendrimers Physiological Enzymes mediated Biocompatible, biodegradable delivery system against infections 
and cancer

[60]

VI. Liposomes Physiological Enzymes mediated Less toxic, biodegradable delivery systems for various diseases [61]

Table 1. 
Different types of nanomaterials used in biodegradation processes.
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biopolymer-based nanomaterials, and nanofibrous materials (see Figure 1). These 
nanomaterials can be synthesized using two different ways; one is the laboratory-
mediated synthesis of nanoparticles (ex-situ) [29], and the other one is the in-situ 
synthesis of nanomaterials inside the microbes [62]. Besides, there could be another 
lineage of ex-situ synthesized nanomaterials, which are biodegradable in origin and 
mainly applied in the biomedical field as theragnostic agents [27]. After performing 
its’ definite action including controlled drug delivery, imaging, implantation, tissue 
engineering) these nanomaterials undergo natural degradation upon the enzymatic 
attack inside the living cells [27].

However, the selection of the type of nanomaterial relies on the nature of the 
contaminants and the microorganism that mediates the biodegradation process [12].

4. Applications of biodegradable nanomaterials

Biodegradable nanomaterials or nanoparticles include two major types: nanoma-
terials directly synthesized from various biopolymers such as polypeptides, poly-
saccharides and polynucleotides; and metallic nanoparticles, which are colloidal 
particles encapsulated inside a polymer matrix. The selection of this biopolymer 
matrix is based on many factors, including the size of the nanoparticles, degree of 
biocompatibility and biodegradability, surface properties and functionality and 
the type of application [63]. These biodegradable nanoparticles are typically in 
the 10–500 nm size range. Widely used methods for the fabrication of biodegrad-
able nanoparticles include emulsification, solvent evaporation, coprecipitation, 
desolvation, coacervation, electrospray and electrospinning [63]. Over the past 
few years, many studies have been conducted in various fields on the preparation 
and applications of biodegradable nanomaterial. However, the applications in food 
packaging, energy, environmental remediation, and nanomedicine are discussed in 
this section.

Figure 1. 
Different types of nanomaterials widely used for biodegradation process.
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4.1 Food packaging

Packaging plays an imperative role in the food industry. The major function 
of packaging is protecting food from physical damage while handling, transport-
ing and storage. Packaging materials also maintain the food quality by protecting 
against air, moisture, insects, light, and dust and prevent contamination from 
chemical and biological sources. Commonly used packaging materials include 
plastics, metals, paper and paper boards, glass, and other traditional materials. 
However, food packaging accounts for 50% of petroleum-based plastics [64]. Upon 
disposal, plastics remain in the environment taking many years to degrade. The 
fragments of plastics, also known as microplastics, enters the ecosystems via food 
chains causing growing environmental and health concerns. Therefore, there is a 
significant interest in the development of environmentally friendly food packing 
alternatives. Biodegradable nanoparticles have recently been employed for food 
packaging applications due to their simple synthesis route, non-toxicity, relative 
abundance, low cost, and eco-friendly nature. Following are recent food packing 
applications of biodegradable nanoparticles reported.

Pandey et al. prepared the biodegradable meat packaging material using fibrous 
composite nano-layers (PVA-CH-AgNPs-FCNLs) as an alternative for plastic pack-
aging [65]. PVA-CH-AgNPs-FCNLs were synthesized by electrospinning of a blend 
of silver nanoparticles (AgNPs) incorporated chitosan (CH) and polyvinyl alcohol 
(PVA). PVA-CH-AgNPs-FCNLs showed bioactivity against Escherichia coli (gram-
negative bacteria) and Listeria monocytogens (gram-positive bacteria) and extended 
the meat shelf-life by one week [65]. Ediyilyam and coworkers investigated biode-
gradable films prepared from silver nanoparticles (AgNPs) incorporated chitosan 
(CH) and gelatin (GE) polymer blend for food packaging applications [66]. They 
reported the improved physicochemical and biological functioning of the films 
upon incorporating the AgNPs. CH–GE–AgNPs films also displayed antimicrobial 
activity against bacteria and fungi and enhanced the shelf life of carrot pieces 
wrapped in them over ten days [66].

Kumar et al. developed low-cost biodegradable nanocomposite hybrid films 
containing chitosan, gelatin, and zinc oxide nanoparticles (ZnO NPs) [67]. ZnO 
NPs reinforced hybrid nanocomposites exhibited enhanced thermal stability, 
elongation-at-break (EAB), and compactness properties with antimicrobial activity 
against Escherichia coli (gram-negative) bacteria. The authors claimed that these 
hybrid nanocomposite films have the potential to be developed as biodegrad-
able postharvest packaging of fresh fruits and vegetables [67]. Saral Sarojini and 
coworkers fabricated the biodegradable food packaging films from Mahua oil-based 
polyurethane (PU) and chitosan (CS), incorporated with zinc oxide nanoparticles 
[68]. They reported enhanced hydrophobicity of the film by about 63%, high 
UV-screening ability, high transparency, high degree of biodegradation of 86%, and 
antimicrobial resistance for the ZnO incorporated PU/CS films. ZnO-reinforced 
PU/CS films also extended their shelf life up to nine days upon wrapped with carrot 
pieces [68].

Starch-based (St) nanocomposite films prepared by incorporating silver (Ag), 
copper oxide (CuO) and zinc oxide (ZnO) nanoparticles (NPs) were tested for 
physicomechanical and antimicrobial properties by Peighambardoust et al. [69]. Ag/
ZnO/CuO NPs incorporated starch-based films showed better antimicrobial and 
mechanical properties due to the synergistic effect. The authors reported the potential 
use of these starch-based nanocomposites as food packaging materials [69]. Colored 
biodegradable dye (methylene blue)-clay (montmorillonite)-nanopigment (DCNP)-
polylactic acid (PLA) nanocomposite films were prepared and tested for various 
functional properties by Mahmoodi et al. [70]. The PLA-DCNP films exhibited high 
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mechanical strength, barrier properties, blocking effect against destructive radiation, 
biodegradability properties, and potential food packaging applications [70].

4.2 Energy

Recent advancement in biodegradable nanomaterials has led to the development 
of energy-efficient devices including ignition engines, solar cells, supercapacitors, 
and rechargeable batteries. Current applications of biodegradable polymers in 
energy-efficient devices are discussed below.

Ettefaghi et al. investigated the biodegradable carbon-based quantum dots as 
alternatives for metal and metal oxide fuel additives [71]. The use of a combination 
of diesel-biodiesel-water-biodegradable carbon nanoparticles showed an increase 
in engine torque and power and a decrease in brake-specific fuel consumption. 
The bio-nano emulsion fuels also reduced the emission of nitrogen oxide and 
unburned hydrocarbons [71]. Abdalkarim and coworkers prepared biodegradable 
dipole responsive magnetic/solar-driven PCF composites reinforced with magnetic 
cellulose nanocrystals hybrids (MCNC) [72]. The PCF/MCNC composites showed 
enhanced latent heat phase change enthalpies, thermal stability, and increased mag-
netic/solar-driven thermal energy storage efficiencies. The authors also reported 
the potential of PCF/MCNC composites for drying and preservation of agriculture 
products, including fruits [72].

Shaheen et al. synthesized nanocomposites of molybdenum and zinc oxide 
[MoO3@ZnO] via chemosynthetic and biomimetic routes and showed a direct 
bandgap of 4.5 and 3.5 eV, respectively [73]. They demonstrated the semi-conduct-
ing and capacitive properties of the biogenic nanocomposite using electrochemi-
cal studies included cyclic voltammetry (CV) and electrochemical impedance 
spectroscopy (EIS) suitable for applications in solar cells [73]. Aziz and coworkers 
fabricated a methylcellulose: dextran (MC: Dex) polymer blend-based electrolyte 
system with ammonium iodide (NH4I) salt for electrical double-layer capacitor 
(EDLC) application [74]. The electrolyte system was ionic in nature and showed the 
maximum ionic conductivity as 1.12 × 10−3 S/cm with an electrochemical stability 
window of 1.27 V. The EDLC device offered an initial specific capacitance of 79 F/g, 
an energy density of 8.81 Wh/kg and power density of 1111.0 W/kg at a current 
density of 0.2 mA/cm2 [74]. Youssef et al. prepared the conducting bionanocom-
posite hydrogels using chitosan (CS)/hydroxyl ethylcellulose (HEC)/polyaniline 
(PAni) loaded with graphene oxide (GO) doped by silver (Ag) nanoparticles as a 
semiconductor material for electrical storage devices [75]. CS/HEC/PAni/GO@Ag 
bionanocomposite hydrogels exhibited improved swelling percentage, capacitance, 
permittivity, antibacterial activities, and biodegradation properties. The bionano-
composite displayed the highest dc-conductivity of 8.53 x 10−2 S/cm [75].

4.3 Environmental remediation

The rapid industrialization and urbanization across the globe have significantly 
impacted the terrestrial and aquatic environments by releasing harmful indus-
trial effluents, including colored organic dyes, heavy metals, polycyclic aromatic 
hydrocarbons (PHAs), chlorinated organics and perfluorosurfactants [76]. The 
release of these toxic substances imposes serious health concerns on all living 
beings. Biodegradable nanomaterials have recently been considered highly efficient 
agents for environmental remediation due to their high chemical reactivity, surface 
properties, catalytic activity, easy synthesis and fabrication, and environmental 
benignity. This section covers the applications of biodegradable nanoparticles in 
environmental remediation.



9

Novel Acumens into Biodegradation: Impact of Nanomaterials and Their Contribution
DOI: http://dx.doi.org/10.5772/intechopen.98771

Rajeswari et al. reported the synthesis of biodegradable mixed matrix mem-
branes (MMMs) using aluminum oxide (Al2O3) and nano zerovalent iron (nZVI) 
nanoparticles blended cellulose acetate-polysulfone (CA-PSF) for the removal of 
methylene blue (MB) dye and Cu (II) metal ions [77]. The authors reported the 
rejection values 91 and 94% for MB dye and for Cu (II) the rejection values of 84 
and 88% using CA-PSF/Al2O3 and CA-PSF/nZVI membranes [77]. Pandey and 
coworkers fabricated slow-release microencapsulated zerovalent iron nanoparticles 
(ZVINPs) in polylactic acid (PLA)-based microparticles for in-situ groundwater 
remediation of hydrophilic (methyl orange dye) and hydrophobic (trichloroethyl-
ene) water contaminants by electrospraying technique [78]. The authors reported 
that approximately 8 wt% ZVINPs were slowly released from the biodegradable 
microparticles after 60 h and 32 h incubation to fully remediate methyl orange 
(25 mg/L) and trichloroethylene (0.2 vol%) from water, respectively [78]. The pho-
tocatalytic properties of Mg-doped ZnO nano-semiconductors for the decontamina-
tion of non-treated laundry wastewater were investigated by Oliveira et al. [79]. The 
authors showed the degrading of approximately 53% of pollutants after 240 min 
of UV–vis irradiation, reducing 31% in total organic carbon (TOC). The treated 
laundry wastewater promoted the growth of cucumber seeds and tomato roots [79].

Electrospun and thermally cross-linked poly(vinyl alcohol) (PVA) and konjac 
glucomannan (KGM)-based biodegradable nanofiber membranes loaded with zinc 
oxide (ZnO) nanoparticles were prepared by Lv et al. [80]. ZnO@PVA/KGM mem-
branes exhibited photocatalytic decolorization of methyl orange dye (20 mg L − 1) 
with a removal efficiency of over 98% under 120 min of solar irradiation. They also 
investigated efficient air-filtration and antibacterial performances for the ZnO@
PVA/KGM membranes [80]. Figure 2(A)–(D) shows the schematic presentation 
of the preparation of the ZnO@PVA/KGM membranes by electrospinning, air 
filtration process, Photocatalytic degradation, and (D) antibacterial activity of the 
membranes [80]. Barbosa and coworkers prepared the biodegradable poly(butylene 
adipate-co-terephthalate) membranes functionalized with cellulose nanoparticles 

Figure 2. 
Schematic representation of the (A) preparation, (B) air filtration process, (C) photocatalytic degradation, 
and (D) antibacterial activity of the biodegradable ZnO@PVA/KGM nanofiber membranes [80].
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(CNS) via phase inversion technique for the removal of chromium (Cr) ions from 
contaminated drinking water [81]. The CNS functionalized membranes that were 
subjected to phosphorylation (CNS-P) displayed the removal of 93% and 88% of 
Cr(VI) and Cr(III), respectively, showing their application in domestic houses and 
water treatment stations [81].

4.4 Nanomedicine

Biodegradable nanomaterials have been recently investigated in nanomedicine 
due to their controlled drug release and targeted drug delivery, giving enhanced 
therapeutic effects and reduced side effects. Biodegradable nanomaterials impose 
less cytotoxicity on cells. Due to modifying and functionalizing ability, the bio-
degradable nanoparticles can also improve drug stability and solubility. The vital 
applications of biodegradable nanoparticles in nanomedicine include drug delivery, 
cancer therapy, imaging, and antimicrobial activity.

Far et al. synthesized biodegradable poly(lactic-co-glycolic acid) (PLGA) 
nanoparticles (NPs) loaded with mometasone furoate (MF) using the nanoprecipi-
tation method [82]. They reported the controlled release of MF using PLGA NPs 
over 7 days in vitro with an initial burst release, demonstrating therapeutic poten-
tial in nasal delivery applications [82]. Gai and coworkers developed a drug delivery 
system (DDS) for rheumatoid arthritis (RA) therapy using benzoylaconitine (BAC) 
encapsulated methoxy-poly (ethylene glycol)-poly(lactide-co-glycolide) (mPEG-
PLGA) nanoparticles (NPs) via hydrophobic interaction [83]. The mPEG-PLGA 
NPs (NP/BAC) system exhibited low cytotoxicity and good biocompatibility for 
lipopolysaccharide (LPS)-activated macrophages and efficient in vivo anti-inflam-
matory effect with the high ear (69.8%) and paw (87.1%) swelling suppressing rate. 
The authors mentioned the possible application of biodegradable NP/BAC system 
in anti-inflammation and RA therapy as an effective DDS [83].

Qin et al. reported the synthesis of tumor-sensitive biodegradable nanoparticles 
using fluorescent zeolitic imidazolate framework-8 nanoparticles loaded with doxoru-
bicin (FZIF-8/DOX) as the core and a molecularly imprinted polymer (MIP) as the shell 
(FZIF-8/DOX-MIPs) [84]. FZIF-8/DOX-MIPs showed an inhibitory effect on the growth 
of MCF-7 tumors and served as a diagnostic agent giving stronger red fluorescence at 
the tumor sites [84]. A pH-sensitive biodegradable garcinol (GAR)-loaded poly (lac-
tic–co–glycolic acid) (PLGA) coated with Eudragit® S100 (ES100) (GAR-PLGA-ES100 
nanoparticles (NPs)) was designed for reducing inflammation caused by pro-inflamma-
tory cytokines in the gastrointestinal tract [85], see Figure 3. The authors reported the 
site-directed release of the drug specifically from NPs at the colonic pH of 7.4, reducing 
the activation of inflammation that leads to inflammatory bowel disease (IBD) [85].

Han et al. developed hypericin encapsulated methoxy poly(ethylene glycol)-
b-poly(ε-caprolactone) (PEG-PCL) biodegradable nanoparticles (Hyp-NP) with 
necrosis affinity and fluorescence imaging in vitro and in vivo [86]. The authors 
showed the cellular internalization with intracellular cytoplasmic localization and 
preserved fluorescence and necrosis affinity for Hyp-NPs, suggesting their potential 
applications in tumor imaging and therapy [86]. Fernández-Gutiérrez and cowork-
ers reported the fabrication of a biocomposite polymeric system for the antibacterial 
coating of polypropylene mesh materials for hernia repair [87]. Figure 4(a)–(d) 
shows the microscopic and scanning electron microscopic (SEM) images of the 
meshes with different coatings. The antibacterial coating was performed by a film 
of chitosan containing poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles loaded 
with antibiotic (rifampicin) or an antiseptic (chlorhexidine). Both biocomposite 
coatings exhibited antibacterial activity and cell compatibility, offering a potential 
strategy to protect meshes from bacterial adhesion following implantation [87].
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5. Conclusions

Biodegradation is the naturally occurring degradation of complex substances 
into simple eco-friendly products by the action of microorganisms and plays an 
imperative role in sustainable development. One of the significant challenges 
of biodegradation includes the incomplete breakdown of materials due to the 
complexity of the materials arising from structure, molecular weight, crosslink-
ing, shape, texture, and surface properties. Other setbacks include the screening 
and identifying of suitable microbes, nutrients, and environmental conditions. 

Figure 3. 
SEM image of the biodegradable GAR-PLGA-ES100 NPs (At scale 3.00 μm) [85].

Figure 4. 
Macroscopic pictures and SEM micrographs of different meshes (a) nude control (chitosan only),  
(b) coated with the unloaded biocomposite (chitosan-PLGA), (c) coated with chlorhexidine (CHX)-loaded 
biocomposite (chitosan-PLGA-CHX), and (d) coated with the rifampicin (RIF)-loaded biocomposite 
(chitosan-PLG-RIF) [87].
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