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Abstract

The main objective of the present work is to elaborate on a new eco-friendly and
efficient adsorbent designated for aquatic micropollutants removal. However, the
synthesis of the Ethylenediamine Crosslinked 2D-Cellulose green adsorbent was
carried out successfully, by partial grafting of benzyl entities onto hydroxyl groups
of HEC, and crosslinking with ethylenediamine ED. Further, the new
ethylenediamine crosslinked 2D-Cellulose was used as a biosorbent for nanoencap-
sulation removal of copper and lead heavy metal ions from aqueous solutions. The
proposal chemical structures of unmodified and modified materials were confirmed
using FTIR, XRD, TGA, and SEM–EDX analysis. Furthermore, many parameters of
the optimization for Pb (II) and Cu (II) in terms of removal efficiency including
pH, adsorbent amount, and contact time were optimized by response surface
methodology with a Box–Behnken design. Based on the desirability optimization
with three factors, the maximal removal was 99.52% and 97.5% for Pb(II) and Cu
(II), respectively and was obtained at pH = 5.94, 22.2 mg as the optimal adsorbent
amount, and 21.53 min as contact time.

Keywords: Cellulose, Ethylenediamine, Adsorption, Lead, Copper,
Nanoencapsulation

1. Introduction

In the last few decades, the fast development of industrialization and urbaniza-
tion caused a tremendous and exponential increase in the human population, where
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the avoidance of the quality deterioration of water, air, and soil becomes the prior-
ity [1]. However, the pollution of aquatic environments by industrial effluents, in
particular, water pollution by heavy metals, is the most serious problem due to their
non-biodegradable properties, their persistence in the environmental media [2–6],
toxicity to human health and ecosystems [7, 8]. Currently, the elimination of metal
ions remains a major issue for environmental sustainability, where the greatest
source of heavy metals contamination of wastewater is directly linked to anthropic
activities, in particular industrial (textiles, rubber, leather, paper, plastic, coal, food,
petrochemicals, etc.), agricultural (pesticides, forestry, etc.), pharmaceutical and
hydrometallurgical activities [9–11]. Lead (Pb) is considered one of the main pol-
lutants present in different components of the biosphere, where it accumulates
through trophic chains or water intake [12]. In addition, Pb (II) ions are able, even
at low concentrations, to causing severe central nervous system damage, kidney and
immune system dysfunction in human beings, especially for children [8, 13–16].
Given its exceptional electrochemical aspect, copper occupies a prominent place in
the international economy, where paving a large industrial area (energy, informa-
tion, telecommunication, electronics, etc.), which is considered the second strategic
raw material, in China, after oil [17, 18].

At the light of this, to decontaminate the industrial effluents from heavy metal
ions, the efforts integrate the different separation techniques such as chemical
precipitation [19, 20], membrane filtration [21, 22], flocculation and chemical
coagulation [23, 24], biological treatment [25], ion exchange [26, 27], photocatalytic
degradation [28], advanced oxidation [29], nanofiltration [30–32], and adsorption
[33–38]. However, the adsorption process remains the most interesting and attrac-
tive technique due to its simplicity, ease of handling, high efficiency, ability to
remove a large amount of organic and inorganic pollutants, and availability [39–42].
Faced with environmental constraints, the modern industrial policy requires well-
defined qualities for basic adsorbent materials such as stability, retention capacity,
low cost, biodegradability, etc. [43]. In this regard, cellulose, the most abundant,
renewable, non-toxic, biodegradable, biocompatible, inexpensive, and environ-
mentally friendly biopolymer in the world [44–48] has attracted increasing atten-
tion meeting ecological criteria [35, 49–51]. However, native cellulose showed a low
adsorption capacity that indicating a low surface charge density. Thus, to improve
its reactivity, it is necessary to reduce structurally related recalcitrance, where the
exceptional chemical structure of cellulose, in particular the hydrogen bond type
interactions at the supramolecular level, prevents its dissolution in almost all con-
ventional solvents [52]. Another way to introduce new functionalities is to use
cellulosic derivatives with more reactive accessibility. A good example of these
derivatives is hydroxyethylcellulose (HEC), which makes it possible to obtain good
solubility in an alkaline medium and water [53]. In addition, the reactivity of HEC is
greater than that of cellulose because the density of the primary alcohol entities has
increased [33], which gives the possibility of good control of the degree of substi-
tution (DS), in particular for Williamson etherification of HEC grafted benzyl
entities, where solubility has been successfully achieved and controlled in common
solvents [54].

In this work, HEC was used as a water-soluble derivative of cellulose, where it
was partially hydrophobized by introducing benzyl functionalities to decrease the
average functionality of the reaction system, to avoid the 3D crosslinking in the
following stage of the reaction, which ensures good accessibility of the pollutant
load during the adsorption process, this ecological synthesis showed, in our previ-
ous article, that the degree of substitution does not exceed unity [33, 53–55]. Then,
the benzoxyethylcellulose (BEC) polymer chains were crosslinked using
ethylenediamine (ED) as a crosslinking agent and as a bidentate metal ion chelator,
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especially for the removal of Pb (II) or Cd (II) [56–64]. Structural analyzes showed
good agreement with the proposed structure of the new green adsorbent (BEC-ED).
X-ray diffraction patterns and SEM confirmed the emergence of a new structural
order of BEC-ED at the crystalline and morphological levels. However, the elemental
surface profile of BEC-ED has been proven based on the EDS spectra. The effect of
crosslinking on the ability to remove heavy metals from aquatic environments was
studied as a function of physicochemical parameters (pH, nature of ions, contact
time, initial concentration, etc.), which are optimized using the response surface
methodology with the Box–Behnken design. To our knowledge, based on a review of
the literature, the new green BEC-ED has never been described previously.

2. Materials and methods

2.1 Materials

HEC (DS � 1.5) of 95% purity was purchased from HIMEDIA and it was
purified by the dissolution-precipitation method in water-acetone solvents. Tetra-
hydrofuran (THF), ethylenediamine ED, thionyl chloride (SOCl2), DMSO,
hydrochloric acid (HCl) 37%, and triethylamine (Et)3N were used as received from
Sigma-Aldrich. Sodium hydroxide (NaOH) and Benzyl bromide were purchased
from Merck. All other chemicals are analytical grade and were used as received
without any further purification.

2.2 Methods

Fourier Transform Infrared spectroscopy (FTIR) spectra of the HEC, BEC, and
BEC-ED samples were recorded on Shimadzu FTIR-8400S spectrometer using
finely ground KBr pellets with 2% of the sample at a resolution of 2 cm�1. The
measurements were performed over from 4000 to 400 cm�1, and averages of 40
scans were taken for each sample. The morphological SEM images of HEC, BEC,
and BEC-ED were investigated using scanning electron microscopy (TESCAN
VEGA 3 LM), with an accelerating voltage of 10 kV. Energy-dispersive X-ray
spectra (EDS) were recorded to divulge the elemental profile presenting on
unmodified and modified polymer surfaces. The sample crystal orders were evalu-
ated using the X-ray diffraction technique and were obtained from EQUINOX
2000an X-ray Diffractometer, using copper radiation CuKα (λ = 1.5418 Å), at an
accelerating voltage of 40 kV and an operating current of 30 mA. All patterns are
recorded in the range of 2θ (5°–35°). 0.25 g of each sample was pressed under
50 MPa to form pellets having an average of 25 mm in diameter. The thermal
behavior of each sample was carried out on simultaneous DTA-TG Shimadzu
DTG-60 apparatus. The amounts of the samples were between 8 and 12 mg and
the interval of the temperature measurement was between room temperature and
600°C with a heating rate of 10°C min�1 under nitrogen flow. For all experiments,
lead and copper ions concentrations were obtained by inductively coupled plasma-
atomic emission spectroscopy on an ICP-AES (Iris Intrepid IIXDL ICP-AES).

2.2.1 Preparation of BEC-ED

BEC was prepared according to the method described in our previous paper
[54]. First, the crosslinking of BEC is carried out by passing through the chlorina-
tion of the free OH groups, as an intermediate step. Where, to 1 g (2.6 mmol) of the
BEC dissolved in the minimum of DMSO, 0.38 ml (2.7 mmol) of (Et)3N and
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0.40 ml (5.5 mmol) of Thionyl chloride SOCl2 were added dropwise. The reaction
mixture was heated at 70° C for 2 h under stirring. The product is precipitated in
water, filtered under vacuum, and then treated with 2% ammonia solution to
neutral pH. Finally, the sample was washed frequently with water, filtered, and
dried at 70°C. Ethylenediamine crosslinked BEC (BEC-ED) was carried out in THF
at reflux for 4 h, where 1 g of BEC-Cl was reacted with ED in large excess (6 ml)
using TEA as a capturing agent of HCl released. At the end of the reaction, the
resulting product (white powder) was isolated by filtration under vacuum and
frequently laved by distilled water to remove the ammonium salt and ED execs.

3. Results and discussions

3.1 Synthesis and characterization

BEC-ED synthesis was performed after HEC hydrophobization (partial
benzylation) to decrease the rate of crosslinking in bio-adsorbent. In addition,
crosslinking was performed with ED to study the effect of graft grouping on the
ability to remove heavy metals from aquatic environments. The originality of this
work is summed up in the fact that this type of product has never been described
previously in the literature. The reaction scheme for the synthesis of BEC-ED, as a
novel heavy metal adsorbent in aquatic media, is shown in Figure 1. The

Figure 1.
Reaction scheme of the preparation of BEC-ED.
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crosslinking of BEC is carried out through the chlorination of the free OH groups, as
an intermediate step, and then crosslinked by the ED in the THF using
Triethylamine as the capturing agent of the released HCl to avoid the degradation of
the cellulose chain under the effect of acid. However, the apparition of the white
powder during the reaction indicating that the reaction of the crosslinking has been
carried out successfully.

3.1.1 Structural analysis (FTIR)

FTIR spectra of HEC, BEC, BEC-Cl, and BEC-ED are given in Figure 2. The
FTIR of unmodified HEC spectrum showed infrared absorption bands spotted at
1062, 1408, 1458, 2873, 2927, and 3412 cm�1. The absorption band at 3412 cm�1 is
attributed to O–H stretching vibration [65], and a medium absorption band located
in the range of 2927 and 2873 cm�1 corresponds to the C–H stretching vibration
[66]. Moreover, the characteristic bands situated around 1408 and 1458 cm�1 are
attributed to C–H symmetric bending vibration in –CHOH and O–H plane defor-
mation of a primary alcohol, respectively [55]. The absorption band of b-(1,4)

Figure 2.
The FTIR spectra of HEC, BEC, BEC-Cl and BEC-ED.
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glycoside linkage was observed at 887 cm�1 [67], and that of C–O–C stretching
vibration in the glucopyranose at 1062 cm�1 [68]. The absorption band at
1120 cm�1 corresponds to the C–O asymmetric vibration [67]. It can be seen, in
Figure 2, that the modification of HEC by the benzyl group is apparent with a
decrease in the intensity of the peak at 3347 cm�1 indicating a benzyl substitution of
OH groups [69]. Indeed, the aromatic characteristic band elongations (=C–H) are
situated between 3090 and 3033 cm�1 [70] and the aromatic C=Csp2 elongation
vibrations are located at 1454 cm�1 [71]. In addition, the appearance of new
absorption bands corresponding to the angular deformation (out of plane) of the
monosubstituted aromatic C-H at around 740 cm�1 [72], and the C=C aromatic
angular deformation, situated at 698 cm�1, is a strong indication of the benzyl
group incorporation on the HEC polymeric structure.

The comparison of FTIR spectra of unmodified BEC and chlorinated BEC (BEC-
Cl) shows that the chlorination of BEC was carried out with success. Indeed, the
new absorption band at 802 cm�1, attributed to the stretching of the carbon-
chlorine bond C-Cl, is a strong indication that confirming the chlorination reaction.
In addition, the decrease in band intensity at 3305 cm�1 is due to the substitution of
the hydroxyl group by chlorine, which confirms the success of the reaction [73, 74].
After BEC crosslinking, the appearance of the characteristic –NH– absorption band
between 3305 cm�1 and 3454 cm�1 designates the incorporation of amino entities
into the BEC structure. The increase in the density of -CH2- groups in the cellulosic
skeleton is noticed through the increase in the intensity of the absorption band
corresponding to the stretching vibrations of the methylene (-CH2) groups at
2963 cm�1. Furthermore, the ED crosslinking BEC is confirmed by the appearance
of the different characteristic bands of the amino groups, which are located at
1095 cm�1 and 1590 cm�1 corresponding to the NH and CN stretching vibrations,
respectively [75]. Thus, the intense peak attributed to the out-of-plane strain of NH
at 802 cm�1 is very remarkable [75]. Also, the reduction in the intensity of the CO
alcohol characteristic band around 1200 cm�1 is a strong indication of the substitu-
tion of OH by NH of ED [76–78].

3.1.2 Scanning electron microscopy, energy-dispersive x-ray (SEM-EDS) spectroscopy

Figure 3 shows SEM images of HEC, BEC, and BEC-ED. The resulted SEM
images obtained for BEC showed homogenous, continuous, and microporous mor-
phology, where pores diameter was estimated about (1–2) μm, which is radically
different from the HEC aggregation aspect and lamellar BEC-ED morphologies. Yet,
the morphological character of BEC allows it to be considered as a good candidate
for microporous adsorbent/membranes applications. However, the EDS spectra of
HEC and BEC showed a very significant increase in the C/O ratio, which indicates
that the benzyl entities are grafted successfully. The evidence of BEC crosslinking
by ED is shown by the EDS spectrum corresponding to BEC-ED, where the peak
corresponding to nitrogen is very noticeable. In addition, BEC-ED SEM images
showed a Nanoscale laminated appearance, including a lamellar structure that
occurs through hydrophobic interactions. Based on BEC-ED morphology results, a
supramolecular structure is proposed and schematically illustrated in Figure 4.

3.1.3 X-ray diffraction (XRD)

Figure 5 shows the X-ray diffractograms of HEC, BEC, and modified BEC
(BEC-ED) in the range of 2θ = 00° to 37°. According to the diffractograms of the
two polymers (HEC and BEC), the benzylation of HEC has practically no effect on
the crystal behavior of HEC, except for a small shift of the maximum diffraction
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peak towards the low values of HEC, 2θ of 21.25° for HEC and 20.80° for BEC, but
the predominance of the amorphous character is always considered. Though, the
small decrease in 2θ, at this region, can be explained by the increase in the supra-
molecular distance, between macromolecular chains, resulting from the insertion of
benzyl entities. On the other hand, the diffractogram of the modified BEC sample
(BEC-ED) showed, comparing to BEC, very remarkable and significant changes.
Indeed, the crosslinking reaction of BEC generated a new crystalline order charac-
terized by the apparition of a new peak towards 2θ = 12.50°, which corresponds to a
lattice distance of 07.07 Å (Figure 5). The presence of a large domain with a

Figure 3.
SEM images and EDS spectra of HEC, BEC and BEC-ED.
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maximum at 2θ = 22.7°, on the BEC-ED diffractogram, reveals its amorphous
character. Therefore, a semi-crystalline appearance of BEC-ED can be suggested.

3.1.4 Thermogravimetric analysis (TGA)

Thermogravimetric makes it possible to follow, as a function of temperature, the
weight loss evolution of each sample, mainly caused by dehydration or/and by the
decomposition of the organic matter it contains. The thermal stability of BEC-ED
comparing to BEC is studied basing on the TGA thermograms shown in Figure 6.
The thermal behavior of BEC shows two stages of thermal decomposition, the first
one is observed between 35 and 250°C attributed to the solvents and adsorbed water
vaporization [79]. The strong weight loss (70%) corresponds to the degradation of
the grafted entities and the cellulose backbone is observed in the temperature range
of 250–600°C. For BEC-ED, no thermal event was observed below 250°C, indicat-
ing the absence of traces of solvents. The thermal decomposition of BEC-ED is
noticed from 250°C up to 450°C with a mass loss of 90%. In addition, a low
degradation of the thermal stability of BEC-ED compared to BEC has been noted,

Figure 4.
Supramolecular lamellar structure of BEC-ED.

Figure 5.
Supramolecular structure of BEC-ED and the XRD diffractograms of HEC, BEC and BEC-ED.
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and this is possibly due to the decrease of hydrogen interaction density and their
replacement by hydrophobic interactions, and the supramolecular separation of the
polymer chains caused by grafted ethylenediamine (ED).

3.2 Response surface methodology (RSM) modeling procedure

In the current work, is focused on 3-level Box–Behnken design (BBD) in response
surface methodology for seeking the optimal conditions for the removal efficiency
of Cu(II) and Pb(II) onto BEC-ED. The three variables affecting the current process
are pH at 4.5, 6.0, and 7.5, contact time at 5, 17.5, and 30 min, and adsorbent
amount at 10, 20 and 30 mg. The complete design consisted of three different levels
(�1, 0, and + 1) and 3-variable (pH—X1, Adsorbent amount—X2, and contact time
—X3). The layout of the factorial design is shown in Table 1. A total of 17 experi-
ments were used in this study to evaluate the effects of the three input variables on
Pb(II) and Cu(II) removal efficiency. The full picture of experiments with their
responses (Pb(II) and Cu(II) removals) are tabulated in Tables 2 and 3,
respectively.

The analysis of variance (ANOVA) was applied to the experimental runs, and
then the results of the Box–Behnken design table are calculated and fitted by a
suitable polynomial equation. According to the model’s evaluation in
Tables 4 and 5, which focuses on maximum R2, predicted R2, and adjusted R2, the
quadratic polynomial (Eq. (1)) model was chosen and well-fitted for all three
independent parameters and responses (Cu(II) and Pb(II) removal efficiency).

Figure 6.
TGA thermogram profiles of BEC and BEC-ED.

Variables Factors Unit Level 1

(�1)

Level 2

(0)

Level 3

(1)

X1 Ph — 4.5 6 7.5

X2 Adsorbent amount mg 10 20 30

X3 Contact time min 5 17.5 30

Table 1.
Coded and actual variables and their levels.
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Factor 1 Factor 2 Factor 3 Response 1 Response 2

Run X1:pH X2:Adsorbent amount X3:Contact time Pb removal Cu removal

Mg min % %

1 0 0 0 95.64 91.21

2 1 -1 0 40.27 43.24

3 -1 1 0 61.85 57.57

4 0 0 0 96.41 93.32

5 -1 0 -1 43.53 45.92

6 -1 -1 0 42.85 39.84

7 0 0 0 96.23 94.78

8 0 1 -1 69.08 73.12

9 1 0 -1 42.82 51.48

10 0 1 1 92.42 91.37

11 1 1 0 62.32 61.76

12 0 -1 1 68.34 62.28

13 -1 0 1 67.24 68.84

14 0 0 0 94.86 94.81

15 0 -1 -1 47.17 49.53

16 0 0 0 93.81 91.76

17 1 0 1 64.87 65.67

Table 2.
The BBD matrix design with three independent factors and the corresponding experimental results.

Source Sum of Squares df Mean Square F-value p-value

Model 7460.88 9 828.99 730.00 < 0.0001 Significant

A-pH 3.37 1 3.37 2.96 0.1288

B-Amount 947.00 1 947.00 833.92 < 0.0001

C-Time 1018.58 1 1018.58 896.96 < 0.0001

AB 2.33 1 2.33 2.05 0.1955

AC 0.6889 1 0.6889 0.6066 0.4616

BC 1.18 1 1.18 1.04 0.3425

A2 3566.13 1 3566.13 3140.31 < 0.0001

B2 880.99 1 880.99 775.80 < 0.0001

C2 573.67 1 573.67 505.17 < 0.0001

Residual 7.95 7 1.14

Lack of Fit 3.36 3 1.12 0.9779 0.4866 Not significant

Pure Error 4.59 4 1.15

Cor Total 7468.83 16

Table 3.
ANOVA analyses of the quadratic model and determination coefficients for Pb(II) adsorption efficiency.
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Therefore, the predictive polynomial quadratic response model can be described as
the following equation (Eq. (1)) [80]:

Y ¼ β0 þ
X

n

i¼1

βiXi þ
X

n

i¼1

βiiX
2
i þ

X

n

i¼1

X

n

i> 1

βjXiXj (1)

Where Y is the predicted response, β0 and βi are the intercept coefficient, and
the linear coefficient respectively, βii and βij are the quadratic and the interaction
coefficients, respectively, while Xi and Xj represent the coded values of the
independent variables.

An ANOVA analysis for Cu (II) and Pb (II) removals was performed, and the
results are presented in Tables 3 and 6, respectively. According to ANOVA
analysis, the results obtained showed that the F and P-values less than 1000 and
0.0500, respectively. This confirmed that the model terms are significant. While
Lack of Fit F-value in the ANOVA tables introduces an insignificant error with
regard to the pure error. The response for Cu(II) and Pb(II) removal efficiency was
determined with real factors by the following expressions (Eqs. (2) and (3)):

Pb IIð Þ Removal ¼ �480:655þ 154:152 ∗ pH þ 6:49305 ∗Amountþ 3:56334 ∗Time

þ0:0508333 ∗ pH ∗Amountþ�0:0221333 ∗ pH ∗Timeþ 0:00434 ∗Amount ∗Time

þ� 12:9344 ∗ pH2 þ�0:14465 ∗Adsorbent amount2 þ�0:074704 ∗Time2

(2)

Cu IIð Þ Removal ¼ �462:971þ 146:053 ∗ pH þ 7:18408 ∗Amountþ 3:02441 ∗Time

þ0:00816667 ∗ pH ∗Amountþ�0:1164 ∗ pH ∗Timeþ 0:011 ∗Amount ∗Timeþ

�11:9436 ∗ pH2 þ�0:157755 ∗Amount2 þ�0:0532832 ∗Time2

(3)

Statistical diagnostics test is an excellent and effective tool for confirming the
model presented. These diagnostic plots are given in Figure 7. By classifying the

Source Std. Dev. R2 Adjusted R2 Predicted R2 PRESS

Linear 20.57 0.2636 0.0937 �0.1046 8249.92

2FI 23.44 0.2642 �0.1773 �0.9645 14672.20

Quadratic 1.07 0.9989 0.9976 0.9918 60.98 Suggested

Cubic 1.07 0.9994 0.9975 * Aliased

*Case(s) with leverage of 1.0000: PRESS statistic not defined.

Table 4.
Model summary statistics Pb(II).

Source Std. Dev. R2 Adjusted R2 Predicted R2 PRESS

Linear 19.32 0.2466 0.0728 �0.1445 7370.22

2FI 21.97 0.2508 �0.1987 �1.0514 13210.51

Quadratic 2.73 0.9919 0.9815 0.8955 672.91 Suggested

Cubic 1.67 0.9983 0.9931 * Aliased

*Case(s) with leverage of 1.0000: PRESS statistic not defined.

Table 5.
Model summary statistics Cu(II).
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proportion of normal probability in terms of residuals, it can be observed that the
datum-points are approximately straight-line (Figure 7a and d). Into the other
diagnostic plots, the actual responses were compared to their residuals based on

Source Sum of Squares df Mean Square F-value p-value

Model 6387.74 9 709.75 95.35 < 0.0001 Significant

A-pH 13.21 1 13.21 1.77 0.2245

B-Amount 995.25 1 995.25 133.71 < 0.0001

C-Time 579.87 1 579.87 77.90 < 0.0001

AB 0.0600 1 0.0600 0.0081 0.9310

AC 19.05 1 19.05 2.56 0.1536

BC 7.56 1 7.56 1.02 0.3470

A2 3040.67 1 3040.67 408.51 < 0.0001

B2 1047.86 1 1047.86 140.78 < 0.0001

C2 291.85 1 291.85 39.21 0.0004

Residual 52.10 7 7.44

Lack of Fit 40.97 3 13.66 4.91 0.0792 Not significant

Pure Error 11.13 4 2.78

Cor Total 6439.84 16

Table 6.
ANOVA analyses of the quadratic model and determination coefficients for Cu(II) adsorption efficiency.

Figure 7.
Diagnostic plots for adsorption of PbII): Probability plot for the studentized residuals (a), comparison between
actual and predicted values (b), plot of the externally studentized residuals vs. experimental run number (c),
diagnostic plots for adsorption of Cu(II): Probability plot for the studentized residuals (d), comparison between
actual and predicted values (e), plot of the externally studentized residuals vs. experimental run number (f).

12

Cellulose Science and Derivatives



predicted responses, suggesting that the quadratic model was required to predict
removal efficiency in the experimental parameters (Figure 7b and d). In addition,
as shown in the plot (Figure 7c and f) the data showed a good homogeneity. In
Figure 7, the dispersion of the residuals is dispersed randomly about�5, confirming
that the results are coherent with the model. In the other diagnostic plots, actual
responses were compared to their residues based on predicted responses, implying
that the quadratic model was necessary to predict removal efficiency in
experimental parameters.

By employing the RSM method, the evaluated models (Eqs. (2) and (3)) are
used to design the 3-D graphs and find the optimal conditions for Pb (II) and Cu(II)
removal efficiency. It can be seen from Figures 8 and 9 that the retention of Pb(II)
and Cu(II) ions onto BEC-ED increases with increases of the pH solution. The
removal efficiency reached a maximum of around 6. When the pH is higher than 6
or lower than 5 the adsorption decreased rapidly. This could be explained by that in
the acidic environment, the active groups responsible for the adsorption process
exist mainly in the NH3+ form, and they prevent the retention of Pb (II) and Cu(I)
ions on the amino groups of BEC. When the pH increases from 2 to 5, the active
sites of the chelator become in the form of free NH2 amines, which facilitate
chelation on Pb(II) [60]. In addition, at high pH, the formation of lead and copper
hydroxides (Figure 10) limits their adsorption on the BEC-ED surface, and as
shown in Figures 8 and 9, at high pHs, the removal efficiency of Pb(II) and Cu(II)
ions is significantly diminished. Contact time was also examined and as given in
Figures 8 and 9. The results of the retention of Pb(II) and Cu(II) onto BEC-ED
revealed that the maximum adsorption equilibrium can be achieved rapidly around
16 min.

In conclusion, based on the desirability optimization with three factors, the best
removal efficiency was 99.52% and 97.5% for Pb(II) and Cu(II), respectively and
was obtained at pH: 5.94, adsorbent amount: 22.2 mg, and contact time: 21.53 min
(Figure 11).

Figure 8.
(a, b and c) 3D response surface plot and, (d, e and f) contour plot for the effect of factors on the Pb(II)
removal efficiency.
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3.3 Equilibrium isotherms

Adsorption isotherms for lead and copper were made by carrying out batch
adsorption studies. Lead and copper adsorption was studied onto BEC-ED in a large
concentration range (from 15 to 250 mg/L), to better model the retention mecha-
nisms. The adsorption experiments were performed at room temperature by using a
mass of adsorbent 22.2 mg with 50 mL of the aqueous solution, at pH 5.94 and
contact time 21.53 min. The quantity of the lead and copper ions adsorbed onto the
BEC-ED at equilibrium, qe (mg/g), and the adsorption percentage was calculated by
the following Equations [82]:

qe ¼
C0 � Ceð Þ

m
� V (4)

Figure 10.
Speciation diagram of lead (a) and copper (b) as a function of pH in ultrapure water, determined by the
hydra/medusa program [81].

Figure 9.
(a, b, and c) 3D response surface plot and, (d, e and f) contour plot for the effect of factors on the Cu(II)
removal efficiency.
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%Adsorption ¼ 1�
Ce

C0

� �

� 100 (5)

Where, C0 and Ce are the metal ion initial concentration and concentration at
equilibrium (mg/L), respectively. V is the volume of solution (L) and m is the
adsorbent amount (g).

The adsorption isotherms of Cu(II) and Pb(II) on BEC-ED were modeled using
the Freundlich (Eq. (6)) [83] and Langmuir (Eq. (7)) [84] models equations:

qe ¼ KFC
1=n
e (6)

Where, n and KF are Freundlich constants represent the heterogeneity index,
and the adsorption coefficient, respectively.

qe ¼
qmKLCe

1þ KLqm
(7)

Where, KL (L/mg) and qm (mg/g) are the Langmuir constant and the maximum
adsorption capacity, respectively.

The equilibrium isotherm obtained for lead and copper adsorption on BEC-ED is
shown in Figure 12. Lead adsorption was greater than that of copper 43.85 mg/g.
This could be explained by the higher reactivity of lead than copper, which can have

Figure 11.
Desirability approach function optimization for Pb(II) and Cu(II) in terms of removal efficiency (%) and
desirability.
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stronger interactions with the lone pairs of electrons of the nitrogen atoms of amino
groups than that of the Cu, as previously demonstrated elsewhere [63, 85]. There-
fore, the Pb(II) ions can rapidly form a stable complex with -NH2 groups on the
surface of the BEC- ED.

The adsorption isotherm was modeled both by Freundlich (Eq. (6)) and Lang-
muir (Eq. (7)) models. The results revealed that the equilibrium isotherms data
(Figure 12 and Table 7) correlated better with the Langmuir model with a maxi-
mum adsorption capacity estimated at 50.76 mg/g and 39.68 mg/g for Pb(II) and Cu
(II), respectively. This implies that the BEC-ED surface is homogeneous, which
indicates that lead and copper ions adsorption follows monolayer adsorption.

To better understand the retention mechanisms of copper and lead adsorption
on BEC-ED, the effect of lead and copper ions adsorption on the morphology of
BEC-ED was monitored by SEM analysis. Figure 13 shows the possible interactions
between BEC-ED and the Pb(II) and Cu (II) ions, as well as the proposed mecha-
nism. SEM pictures showed distortion in the morphology of BEC-ED under the
adsorption forces of Pb(II) and Cu(II) ions. However, this effect is probably caused
by the interactions between the metal ions and the donor sites of the grafted groups
(ED), where the internal compression of the laminated structure has caused a very
remarkable separation of the polymeric layers. Indeed, the approximate calculation

Figure 12.
Equilibrium isotherms for Pb and Cu adsorption on BEC-ED (solid lines and dash-dotted represent Langmuir
and Freundlich fitting, respectively).

Langmuir Freundlich

qexp (mg/g) qm (mg/g) KL (L/mg) R2 1/n KF (L/mg) R2

Pb 43.85 50.76 0.137 0.996 0.443 6.1 0.951

Cu 36.64 39.68 0.112 0.990 0.5636 6.7 0.944

Table 7.
Freundlich and Langmuir constants for lead and copper adsorption on BEC-ED.
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carried out to compare the inter-chain distances showed a decrease in the latter. The
results obtained showed the capability of BEC-ED for adsorbing Cu(II) via metal
interactions with NH2 groups of ethylenediamine [56, 60], resulting in the decrease
in the inter-layer distance from 11.50 Å to 07.34 Å for copper and 08.27 Å for lead.

For the purpose to assess the potential retention of lead and copper ions reten-
tion provided by BEC-ED compared to other adsorbents, the results achieved
through this study were compared with the adsorption abilities of some conven-
tional natural and synthetic cellulose in the literature (Table 8). It has been found
that the lead and copper retention capacity of BEC-ED is among the higher results.
Therefore, considering the retention capabilities of other adsorbents, accessibility,
environment friendly biomaterial, and low cost, it may be concluded that the BEC-
ED adsorbent demonstrated its ability to efficiently eliminate lead and copper ions
in simple media.

Figure 13.
Impact of the adsorption of lead and copper ions on the morphology of BEC-ED.
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4. Conclusion

A new green adsorbent, Benzyloxyethyl cellulose crosslinked ED (BEC-ED) was
successfully synthesized. The proposal structures were confirmed using vibrational
spectroscopy, X-ray diffraction patterns, SEM images, x-ray EDS spectra, and TGA
thermograms. The results showed that the ED crosslinking reaction of BEC engen-
dered new structural significant modification at the crystalline and morphological
levels. Ethylenediamine crosslinked BEC has been used for the removal of lead (Pb)
and copper (Cu) from an aqueous system. The results revealed that the equilibrium
isotherms data correlated better with the Langmuir model with a maximum
adsorption capacity estimated at 50.76 mg/g and 39.68 mg/g for Pb (II) and Cu (II),
respectively. In addition, the results demonstrated that the capability of BEC-ED for
adsorbing Cu (II) and Pb (II) was governed by metal–ligand interactions with NH2

chelator sites of ethylenediamine, resulting in the decrease in the civility diameter
from 11.50 Å to 07.34 Å for copper and 08.27 Å for lead. However, these distortions
proved the lamellar structure, and the separation of the sheets was observed on the
SEM images of BEC-ED after adsorption.
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Grafted cellulose

adsorbent

Chelating group Metal

ions

Adsorption capacity

(mg/g)

Ref.

Cellulose Epichlorohydrin Pb2+

Cu2+
38.02
72.99

[86]

Microcrystalline
cellulose

Tetrafluoroterephthalonitrile Pb2+

Cu2+
20.46
17.94

[87]

Cellulosic biopolymer (alkali treatment) Pb2+,
Cd2+

Zn2+

67.24
44.42
16.85

[88]

CMC@ hydrogel — Cu2+ 2.30 [89]

BEC-ED Ethylenediamine Pb2+

Cu2+
50.76
39.68

this work
this work

Table 8.
Comparison of lead and copper adsorption capacity of BEC-ED with conventional natural and synthetic
cellulose adsorbents.
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