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Chapter

Obscure Qubits and Membership
Amplitudes
Steven Duplij and Raimund Vogl

Abstract

We propose a concept of quantum computing which incorporates an additional
kind of uncertainty, i.e. vagueness (fuzziness), in a natural way by introducing new
entities, obscure qudits (e.g. obscure qubits), which are characterized simulta-
neously by a quantum probability and by a membership function. To achieve this, a
membership amplitude for quantum states is introduced alongside the quantum
amplitude. The Born rule is used for the quantum probability only, while the
membership function can be computed from the membership amplitudes according
to a chosen model. Two different versions of this approach are given here: the
“product” obscure qubit, where the resulting amplitude is a product of the quantum
amplitude and the membership amplitude, and the “Kronecker” obscure qubit,
where quantum and vagueness computations are to be performed independently
(i.e. quantum computation alongside truth evaluation). The latter is called a double
obscure-quantum computation. In this case, the measurement becomes mixed in
the quantum and obscure amplitudes, while the density matrix is not idempotent.
The obscure-quantum gates act not in the tensor product of spaces, but in the direct
product of quantum Hilbert space and so called membership space which are of
different natures and properties. The concept of double (obscure-quantum) entan-
glement is introduced, and vector and scalar concurrences are proposed, with some
examples being given.

Keywords: qubit, fuzzy, membership function, amplitude, Hilbert space

1. Introduction

Nowadays, the development of quantum computing technique is governed by
theoretical extensions of its ground concepts [1–3]. One of them is to allow two
kinds of uncertainty, sometimes called randomness and vagueness/fuzziness (for a
review, see, [4]), which leads to the formulation of combined probability and
possibility theories [5] (see, also, [6–9]). Various interconnections between vague-
ness and quantum probability calculus were considered in [10–13], including the
treatment of inaccuracy in measurements [14, 15], non-sharp amplitude densities
[16] and the related concept of partial Hilbert spaces [17].

Relations between truth values and probabilities were also given in [18]. The
hardware realization of computations with vagueness was considered in [19, 20].
On the fundamental physics side, it was shown that the discretization of space–time
at small distances can lead to a discrete (or fuzzy) character for the quantum states
themselves [21–24].
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With a view to applications of the above ideas in quantum computing, we
introduce a definition of quantum state which is described by both a quantum
probability and a membership function, and thereby incorporate vagueness/fuzzi-
ness directly into the formalism. In addition to the probability amplitude we will
define a membership amplitude, and such a state will be called an obscure/fuzzy
qubit (or qudit).

In general, the Born rule will apply to the quantum probability alone, while the
membership function can be taken to be an arbitrary function of all the amplitudes
fixed by the chosen model of vagueness. Two different models of “obscure-
quantum computations with truth” are proposed below: (1) A “Product” obscure
qubit, in which the resulting amplitude is the product (in ) of the quantum
amplitude and the membership amplitude; (2) A “Kronecker” obscure qubit for
which computations are performed “in parallel”, so that quantum amplitudes and
the membership amplitudes form “vectors”, which we will call obscure-quantum
amplitudes. In the latter case, which we call a double obscure-quantum computa-
tion, the protocol of measurement depends on both the quantum and obscure
amplitudes, and in this case the density matrix need not be idempotent. We define a
new kind of “gate”, namely, the obscure-quantum gates, which are linear trans-
formations in the direct product (not in the tensor product) of spaces: a quantum
Hilbert space and a so-called membership space having special fuzzy properties. We
introduce a new concept of double (obscure-quantum) entanglement, in which
vector and scalar concurrences are defined and computed for some examples.

2. Preliminaries

To establish notation standard in the literature (see, e.g. [1, 2, 25–27]) we present
the following definitions. In an underlying d-dimensional Hilbert space, the stan-

dard qudit (using the computational basis and Dirac notation) H dð Þ
q is given by

ψ dð Þ�

�

E

¼
X

d�1

i¼0

ai ij i, ai ∈, ij i∈H dð Þ
q , (1)

where ai is a probability amplitude of the state ij i. (For a review, see, e.g. [28, 29])
The probability pi to measure the ith state is pi ¼ Fpi

a1, … , anð Þ, 0≤ pi ≤ 1,

0≤ i≤ d� 1. The shape of the functions Fpi
is governed by the Born rule

Fpi
a1, … , adð Þ ¼ aij j2, and

Pd
i¼0pi ¼ 1. A one-qudit (L ¼ 1) quantum gate is a unitary

transformation U dð Þ
: H dð Þ

q ! H dð Þ
q described by unitary d� d complex matrices act-

ing on the vector (1), and for a register containing L qudits quantum gates are unitary

dL � dL matrices. The quantum circuit model [30, 31] forms the basis for the standard
concept of quantum computing. Here the quantum algorithms are compiled as a
sequence of elementary gates acting on a register containing L qubits (or qudits),
followed by a measurement to yield the result [25, 32].

For further details on qudits and their transformations, see for example the
reviews [28, 29] and the references therein.

3. Membership amplitudes

We define an obscure qudit with d states via the following superposition (in
place of that given in (1))

2
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ψ
dð Þ
ob

�

�

�

E

¼
X

d�1

i¼1

αiai ij i, (2)

where ai is a (complex) probability amplitude ai ∈, and we have introduced a
(real) membership amplitude αi, with αi ∈ 0, 1½ �, 0≤ i≤ d� 1. The probability pi to
find the ith state upon measurement, and the membership function μi (“of truth”)
for the ith state are both functions of the corresponding amplitudes as follows

pi ¼ Fpi
a0, … , ad�1ð Þ, 0≤ pi ≤ 1, (3)

μi ¼ Fμi
α0, … , αd�1ð Þ, 0≤ μi ≤ 1: (4)

The dependence of the probabilities of the ith states upon the amplitudes, i.e. the
form of the function Fpi

is fixed by the Born rule

Fpi
a1, … , anð Þ ¼ aij j2, (5)

while the form of Fμi
will vary according to different obscurity assumptions. In

this paper we consider only real membership amplitudes and membership functions
(complex obscure sets and numbers were considered in [33–35]). In this context the
real functions Fpi

and Fμi
, 0≤ i≤ d� 1 will contain complete information about the

obscure qudit (2).
We impose the normalization conditions

X

d�1

i¼0

pi ¼ 1, (6)

X

d�1

i¼0

μi ¼ 1, (7)

where the first condition is standard in quantum mechanics, while the second
condition is taken to hold by analogy. Although (7) may not be satisfied, we will not
consider that case.

For d ¼ 2, we obtain for the obscure qubit the general form (instead of that in (2))

ψ
2ð Þ
ob

�

�

�

E

¼ α0a0 0j i þ α1a1 1j i, (8)

Fp0
a0, a1ð Þ þ Fp1

a0, a1ð Þ ¼ 1, (9)

Fμ0
α0, α1ð Þ þ Fμ1

α0, α1ð Þ ¼ 1: (10)

The Born probabilities to observe the states 0j i and 1j i are

p0 ¼ FBorn
p0

a0, a1ð Þ ¼ a0j j2, p1 ¼ FBorn
p1

a0, a1ð Þ ¼ a1j j2, (11)

and the membership functions are

μ0 ¼ Fμ0
α0, α1ð Þ, μ1 ¼ Fμ1

α0, α1ð Þ: (12)

If we assume the Born rule (11) for the membership functions as well

Fμ0
α0, α1ð Þ ¼ α20, Fμ1

α0, α1ð Þ ¼ α21, (13)
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(which is one of various possibilities depending on the chosen model), then

a0j j2 þ a1j j2 ¼ 1, (14)

α20 þ α21 ¼ 1: (15)

Using (14)–(15) we can parametrize (8) as

ψ
2ð Þ
ob

�

�

�

E

¼ cos
θ

2
cos

θμ

2
0j i þ eiφ sin

θ

2
sin

θμ

2
1j i, (16)

0≤ θ≤ π, 0≤φ≤ 2π, 0≤ θμ ≤ π: (17)

Therefore, obscure qubits (with Born-like rule for the membership functions)
are geometrically described by a pair of vectors, each inside a Bloch ball (and not as
vectors on the boundary spheres, because “ sinj j, cosj j≤ 1”), where one is for the
probability amplitude (an ellipsoid inside the Bloch ball with θμ ¼ const1), and the
other for the membership amplitude (which is reduced to an ellipse, being a slice
inside the Bloch ball with θ ¼ const2, φ ¼ const3). The norm of the obscure qubits is
not constant however, because

ψ
2ð Þ
ob jψ

2ð Þ
ob

D E

¼ 1

2
þ 1

4
cos θ þ θμ
� �

þ 1

4
cos θ � θμ
� �

: (18)

In the case where θ ¼ θμ, the norm (18) becomes 1� 1
2 sin

2θ, reaching its

minimum 1
2 when θ ¼ θμ ¼ π

2.
Note that for complicated functions Fμ0,1

α0, α1ð Þ the condition (15) may be not

satisfied, but the condition (7) should nevertheless always be valid. The concrete
form of the functions Fμ0,1

α0, α1ð Þ depends upon the chosen model. In the simplest

case, we can identify two arcs on the Bloch ellipse for α0, α1 with the membership
functions and obtain

Fμ0
α0, α1ð Þ ¼ 2

π
arctan

α1

α0
, (19)

Fμ1
α0, α1ð Þ ¼ 2

π
arctan

α0

α1
, (20)

such that μ0 þ μ1 ¼ 1, as in (7).
In [36, 37] a two stage special construction of quantum obscure/fuzzy sets was

considered. The so-called classical-quantum obscure/fuzzy registers were intro-
duced in the first step (for n ¼ 2, the minimal case) as

sj i f ¼
ffiffiffiffiffiffiffiffiffiffiffi

1� f
q

0j i þ
ffiffiffi

f
q

1j i, (21)

sj ig ¼
ffiffiffiffiffiffiffiffiffiffiffi

1� g
p

0j i þ ffiffiffi

g
p

1j i, (22)

where f , g∈ 0, 1½ � are the relevant classical-quantum membership functions. In
the second step their quantum superposition is defined by

sj i ¼ c f sj i f þ cg sj ig, (23)

where c f and cg are the probability amplitudes of the fuzzy states sj i f and sj ig,
respectively. It can be seen that the state (23) is a particular case of (8) with

4

Topics on Quantum Information Science



α0a0 ¼ c f

ffiffiffiffiffiffiffiffiffiffiffi

1� f
q

þ cg
ffiffiffiffiffiffiffiffiffiffiffi

1� g
p

, (24)

α1a1 ¼ c f

ffiffiffi

f
q

þ cg
ffiffiffi

g
p

: (25)

This gives explicit connection of our double amplitude description of obscure
qubits with the approach [36, 37] which uses probability amplitudes and the mem-
bership functions. It is important to note that the use of the membership amplitudes
introduced here αi and (2) allows us to exploit the standard quantum gates, but not
to define new special ones, as in [36, 37].

Another possible form of Fμ0,1
α0, α1ð Þ (12), with the corresponding membership

functions satisfying the standard fuzziness rules, can be found using a standard
homeomorphism between the circle and the square. In [38, 39] this transformation
was applied to the probability amplitudes a0,1, but here we exploit it for the
membership amplitudes α0,1

Fμ0
α0, α1ð Þ ¼ 2

π
arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α20 ∗ signα0 � α21 ∗ signα1 þ 1

2

r

, (26)

Fμ1
α0, α1ð Þ ¼ 2

π
arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α20 ∗ signα0 þ α21 ∗ signα1 þ 1

2

r

: (27)

So for positive α0,1 we obtain (cf. [38])

Fμ0
α0, α1ð Þ ¼ 2

π
arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α20 � α21 þ 1

2

r

, (28)

Fμ1
α0, α1ð Þ ¼ 1: (29)

The equivalent membership functions for the outcome are

max min Fμ0
α0, α1ð Þ, 1� Fμ1

α0, α1ð Þ
� �

, min 1� Fμ0
α0, α1ð Þ

� �

,Fμ1
α0, α1ð Þ

� �

,

(30)

min max Fμ0
α0, α1ð Þ, 1� Fμ1

α0, α1ð Þ
� �

, max 1� Fμ0
α0, α1ð Þ

� �

, Fμ1
α0, α1ð Þ

� �

: (31)

There are many different models for Fμ0,1
α0, α1ð Þ which can be introduced in

such a way that they satisfy the obscure set axioms [7, 9].

4. Transformations of obscure qubits

Let us consider the obscure qubits in the vector representation, such that

0j i ¼
1

0

� �

, 1j i ¼
0

1

� �

(32)

are basis vectors of H 2ð Þ
q . Then a standard quantum computational process in the

quantum register with L obscure qubits (qudits (1)) is performed by sequences of

unitary matrices Û of size 2L � 2L (nL � nL), Û
†
Û ¼ Î, which are called quantum

gates (̂I is the unit matrix). Thus, for one obscure qubit the quantum gates are 2� 2
unitary complex matrices.
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In the vector representation, an obscure qubit differs from the standard qubit
(8) by a 2� 2 invertible diagonal (not necessarily unitary) matrix

ψ
2ð Þ
ob

�

�

�

E

¼ M̂ α0, α1ð Þ ψ 2ð Þ�

�

E

, (33)

M̂ α0, α1ð Þ ¼ α0 0

0 α1

� �

: (34)

We call M̂ α0, α1ð Þ a membership matrix which can optionally have the property

trM̂
2 ¼ 1, (35)

if (15) holds.
Let us introduce the orthogonal commuting projection operators

P̂0 ¼
1 0

0 0

� �

, P̂1 ¼
0 0

0 1

� �

, (36)

P̂
2

0 ¼ P̂0, P̂
2

1 ¼ P̂1, P̂0P̂1 ¼ P̂1P̂0 ¼ 0̂, (37)

where 0̂ is the 2� 2 zero matrix. Well-known properties of the projections are
that

P̂0 ψ 2ð Þ�

�

E

¼ a0 0j i, P̂1 ψ
2ð Þ�

�

E

¼ a1 0j i, (38)

ψ 2ð Þ
D

�

�P̂0 ψ 2ð Þ�

�

E

¼ a0j j2, ψ 2ð Þ
D

�

�P̂1 ψ
2ð Þ�

�

E

¼ a1j j2: (39)

Therefore, the membership matrix (34) can be defined as a linear combination
of the projection operators with the membership amplitudes as coefficients

M̂ α0, α1ð Þ ¼ α0P̂0 þ α1P̂1: (40)

We compute

M̂ α0, α1ð Þ ψ 2ð Þ
ob

�

�

�

E

¼ α20a0 0j i þ α21a1 1j i: (41)

We can therefore treat the application of the membership matrix (33) as pro-
viding the origin of a reversible but non-unitary “obscure measurement” on the
standard qubit to obtain an obscure qubit (cf. the “mirror measurement” [40, 41]
and also the origin of ordinary qubit states on the fuzzy sphere [42]).

An obscure analog of the density operator (for a pure state) is the following form
for the density matrix in the vector representation

ρ
2ð Þ
ob ¼ ψ

2ð Þ
ob

�

�

�

E

ψ
2ð Þ
ob

D �

�

� ¼
α20 a0j j2 α0a

∗
0 α1a1

α0a0α1a
∗
1 α21 a1j j2

 !

(42)

with the obvious standard singularity property det ρ 2ð Þ
ob ¼ 0. But trρ 2ð Þ

ob ¼
α20 a0j j2 þ α21 a1j j2 6¼ 1, and here there is no idempotence ρ

2ð Þ
ob

� 	2
6¼ ρ

2ð Þ
ob , which

distincts ρ
2ð Þ
ob from the standard density operator.

6
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5. Kronecker obscure qubits

We next introduce an analog of quantum superposition for membership
amplitudes, called “obscure superposition” (cf. [43], and also [44]).

Quantum amplitudes and membership amplitudes will here be considered
separately in order to define an “obscure qubit” taking the form of a “double
superposition” (cf. (8), and a generalized analog for qudits (1) is straightforward)

Ψobj i ¼
Â0 0̂
�

�




þ Â1 1̂
�

�




ffiffiffi

2
p , (43)

where the two-dimensional “vectors”

Â0,1 ¼
a0,1

α0,1

� �

(44)

are the (double) “obscure-quantum amplitudes” of the generalized states 0̂
�

�




,

1̂
�

�




. For the conjugate of an obscure qubit we put (informally)

Ψobh j ¼ Â
⋆

0 0̂

 �

�þ Â
⋆

1 1̂

 �

�

ffiffiffi

2
p , (45)

wherewedenote Â
⋆

0,1 ¼ a ∗
0,1 α0,1

� �

, such that Â
⋆

0,1Â0,1 ¼ a0,1j j2 þ α20,1. The (double)

obscure qubit is “normalized” in such away that, if the conditions (14)–(15) hold, then

ΨobjΨobh i ¼ a0j j2 þ a1j j2
2

þ α20 þ α21
2

¼ 1: (46)

A measurement should be made separately and independently in the “probabil-
ity space” and the “membership space” which can be represented by using an
analog of the Kronecker product. Indeed, in the vector representation (32) for the
quantum states and for the direct product amplitudes (44) we should have

Ψobj i 0ð Þ ¼
1
ffiffiffi

2
p Â0 ⊗ K

1

0

� �

þ Â1 ⊗ K

0

1

� �

, (47)

where the (left) Kronecker product is defined by (see (32))

a

α

" #

⊗ K

c

d

 !

¼

a
c

d

 !

α
c

d

 !

2

6

6

6

6

6

4

3

7

7

7

7

7

5

¼
a cê0 þ dê1ð Þ
α cê0 þ dê1ð Þ

" #

,

ê0 ¼
1

0

 !

, ê1 ¼
0

1

 !

, ê0,1 ∈H 2ð Þ
q :

(48)

Informally, the wave function of the obscure qubit, in the vector representation,
now “lives” in the four-dimensional space of (48) which has two two-dimensional
spaces as blocks. The upper block, the quantum subspace, is the ordinary Hilbert

spaceH 2ð Þ
q , but the lower block should have special (fuzzy) properties, if it is treated
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as an obscure (membership) subspace V 2ð Þ
memb. Thus, the four-dimensional space,

where “lives” Ψ 2ð Þ
ob

�

�

�

E

, is not an ordinary tensor product of vector spaces, because of

(48), and the “vector” Â on the l.h.s. has entries of different natures, that is the
quantum amplitudes a0,1 and the membership amplitudes α0,1. Despite the unit

vectors inH 2ð Þ
q and V 2ð Þ

memb having the same form (32), they belong to different spaces

(as they are vector spaces over different fields). Therefore, instead of (48) we

introduce a “Kronecker-like product” ~⊗ K by

a

α

� �

~⊗ K

c

d

� �

¼
a cê0 þ dê1ð Þ
α cε0 þ dε1ð Þ

� �

, (49)

ê0 ¼
1

0

� �

, ê1 ¼
0

1

� �

, ê0,1 ∈H 2ð Þ
q , (50)

ε0 ¼
1

0

� � μð Þ
, ε1 ¼

0

1

� � μð Þ
, ε0,1 ∈V 2ð Þ

memb: (51)

In this way, the obscure qubit (43) can be presented in the from

Ψobj i ¼ 1
ffiffiffi

2
p

a0
1

0

 !

α0

1

0

 ! μð Þ

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

þ 1
ffiffiffi

2
p

a1
0

1

 !

α1

0

1

 ! μð Þ

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

¼ 1
ffiffiffi

2
p

a0ê0

α0ε0

" #

þ 1
ffiffiffi

2
p

a1ê1

α1ε1

" #

:

(52)

Therefore, we call the double obscure qubit (52) a “Kronecker obscure qubit” to
distinguish it from the obscure qubit (8). It can be also presented using the
Hadamard product (the element-wise or Schur product)

a

α

� �

⊗ H

c

d

� �

¼
ac

αd

� �

(53)

in the following form

Ψobj i ¼ 1
ffiffiffi

2
p Â0 ⊗ HÊ0 þ

1
ffiffiffi

2
p Â1 ⊗ HÊ1, (54)

where the unit vectors of the total four-dimensional space are

Ê0,1 ¼
ê0,1

ε0,1

� �

∈H 2ð Þ
q � V 2ð Þ

memb: (55)

The probabilities p0,1 and membership functions μ0,1 of the states 0̂
�

�




and 1̂
�

�




are

computed through the corresponding amplitudes by (11) and (12)

pi ¼ aij j2, μi ¼ Fμi
α0, α1ð Þ, i ¼ 0, 1, (56)

and in the particular case by (13) satisfying (15).

8
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By way of example, consider a Kronecker obscure qubit (with a real quantum
part) with probability p and membership function μ (measure of “trust”) of the

state 0̂
�

�




, and of the state 1̂
�

�




given by 1� p and 1� μ respectively. In the model

(19)–(20) for μi (which is not Born-like) we obtain

Ψobj i ¼ 1
ffiffiffi

2
p

ffiffiffi

p
p

0

 !

cos
π

2
μ

0

0

@

1

A

μð Þ

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

þ 1
ffiffiffi

2
p

0

ffiffiffiffiffiffiffiffiffiffiffi

1� p
p

 !

0

sin
π

2
μ

0

@

1

A

μð Þ

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

¼ 1
ffiffiffi

2
p

ê0
ffiffiffi

p
p

ε0 cos
π

2
μ

2

6

4

3

7

5
þ 1

ffiffiffi

2
p

ê1
ffiffiffiffiffiffiffiffiffiffiffi

1� p
p

ε1 sin
π

2
μ

2

6

4

3

7

5
,

(57)

where êi and εi are unit vectors defined in (50) and (51).
This can be compared e.g. with the “classical-quantum” approach (23) and

[36, 37], in which the elements of columns are multiplied, while we consider them
independently and separately.

6. Obscure-quantum measurement

Let us consider the case of one Kronecker obscure qubit register L ¼ 1 (see
(47)), or using (48) in the vector representation (52). The standard (double)
orthogonal commuting projection operators, “Kronecker projections” are (cf. (36))

P0 ¼
P̂0 0̂

0̂ P̂
μð Þ
0

" #

, P1 ¼
P̂1 0̂

0̂ P̂
μð Þ
1

" #

, (58)

where 0̂ is the 2� 2 zero matrix, and P̂
μð Þ
0,1 are the projections in the membership

subspace V 2ð Þ
memb (of the same form as the ordinary quantum projections P̂0,1 (36))

P̂
μð Þ
0 ¼

1 0

0 0

� � μð Þ
, P̂

μð Þ
1 ¼

0 0

0 1

� � μð Þ
, P̂

μð Þ
0 , P̂

μð Þ
1 ∈EndV 2ð Þ

memb, (59)

P̂
μð Þ2
0 ¼ P̂

μð Þ
0 , P̂

μð Þ2
1 ¼ P̂

μð Þ
1 , P̂

μð Þ
0 P̂

μð Þ
1 ¼ P̂

μð Þ
1 P̂

μð Þ
0 ¼ 0̂: (60)

For the double projections we have (cf. (37))

P2
0 ¼ P0, P2

1 ¼ P1, P0P1 ¼ P1P0 ¼ 0, (61)

where 0 is the 4� 4 zero matrix, and P0,1 act on the Kronecker qubit (58) in the
standard way (cf. (38))

P0 Ψobj i ¼ 1
ffiffiffi

2
p

a0
1

0

 !

α0
1

0

 ! μð Þ

2

6

6

6

6

6

4

3

7

7

7

7

7

5

¼ 1
ffiffiffi

2
p a0ê0

α0ε0

� �

¼ 1
ffiffiffi

2
p Â0 ⊗ HÊ0, (62)
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P1 Ψobj i ¼ 1
ffiffiffi

2
p

a1
0

1

 !

α1
0

1

 ! μð Þ

2

6

6

6

6

6

4

3

7

7

7

7

7

5

¼ 1
ffiffiffi

2
p a1ê1

α1ε1

� �

¼ 1
ffiffiffi

2
p Â1 ⊗ HÊ1: (63)

Observe that for Kronecker qubits there exist in addition to (58) the following
orthogonal commuting projection operators

P01 ¼
P̂0 0̂

0̂ P̂
μð Þ
1

" #

, P10 ¼
P̂1 0̂

0̂ P̂
μð Þ
0

" #

, (64)

and we call these the “crossed” double projections. They satisfy the same
relations as (61)

P2
01 ¼ P01, P2

10 ¼ P10, P01P10 ¼ P10P01 ¼ 0, (65)

but act on the obscure qubit in a different (“mixing”) way than (62) i.e.

P01 Ψobj i ¼ 1
ffiffiffi

2
p

a0
1

0

 !

α1
0

1

 !

2

6

6

6

6

6

4

3

7

7

7

7

7

5

¼ 1
ffiffiffi

2
p a0ê0

α1ε1

� �

, (66)

P10 Ψobj i ¼ 1
ffiffiffi

2
p

a1
0

1

 !

α0
1

0

 !

2

6

6

6

6

6

4

3

7

7

7

7

7

5

¼ 1
ffiffiffi

2
p a1ê1

α0ε0

� �

: (67)

The multiplication of the crossed double projections (64) and the double pro-
jections (58) is given by

P01P0 ¼ P0P01 ¼
P̂0 0̂

0̂ 0̂

" #

� Q0, P01P1 ¼ P1P01 ¼
0̂ 0̂

0̂ P̂
μð Þ
1

" #

� Q
μð Þ
1 ,

(68)

P10P0 ¼ P0P10 ¼ 0̂ 0̂

0̂ P̂
μð Þ
0

" #

� Q
μð Þ
0 , P10P1 ¼ P1P10 ¼ P̂1 0̂

0̂ 0̂

" #

� Q 1,

(69)

where the operators Q0,Q 1 and Q
μð Þ
0 ,Q μð Þ

1 satisfy

Q 2
0 ¼ Q0, Q 2

1 ¼ Q 1, Q 1Q0 ¼ Q0Q 1 ¼ 0, (70)

Q
μð Þ2
0 ¼ Q

μð Þ
0 , Q

μð Þ2
1 ¼ Q

μð Þ
1 , Q

μð Þ
1 Q

μð Þ
0 ¼ Q

μð Þ
0 Q

μð Þ
1 ¼ 0, (71)

Q
μð Þ
1 Q 0 ¼ Q

μð Þ
0 Q 1 ¼ Q 1Q

μð Þ
0 ¼ Q 0Q

μð Þ
1 ¼ 0, (72)

and we call these “half Kronecker (double) projections”.

10

Topics on Quantum Information Science



The relations above imply that the process of measurement when using
Kronecker obscure qubits (i.e. for quantum computation with truth or member-
ship) is more complicated than in the standard case.

To show this, let us calculate the “obscure” analogs of expected values for the
projections above. Using the notation

A � Ψobh jA Ψobj i: (73)

Then, using (43)–(45) for the projection operators Pi, Pij,Q i,Q
μð Þ
i , i, j ¼ 0, 1, i 6¼ j,

we obtain (cf. (39))

Pi ¼
aij j2 þ α2i

2
, Pij ¼

aij j2 þ α2j

2
, (74)

Q i ¼
aij j2
2

, Q
μð Þ
i ¼ α2i

2
: (75)

So follows the relation between the “obscure” analogs of expected values of the
projections

Pi ¼ Q i þQ
μð Þ
i , Pij ¼ Q i þQ

μð Þ
j : (76)

Taking the “ket” corresponding to the “bra” Kronecker qubit (52) in the form

Ψobh j ¼ 1
ffiffiffi

2
p a ∗

0 1 0ð Þ, α0 1 0ð Þ½ � þ 1
ffiffiffi

2
p a ∗

1 0 1ð Þ, α1 0 1ð Þ½ �, (77)

a Kronecker (4� 4) obscure analog of the density matrix for a pure state is given
by (cf. (42))

ρ
2ð Þ
ob ¼ Ψobj i Ψobh j ¼ 1

2

a0j j2 a0a
∗
1 a0α0 a0α1

a1a
∗
0 a1j j2 a1α0 a1α1

α0a
∗
0 α0a

∗
1 α20 α0α1

α1a
∗
0 α1a

∗
1 α0α1 α21

0

B

B

B

B

B

@

1

C

C

C

C

C

A

: (78)

If the Born rule for the membership functions (13) and the conditions (14)–(15)

are satisfied, the density matrix (78) is non-invertible, because det ρ
2ð Þ
ob ¼ 0 and has

unit trace trρ 2ð Þ
ob ¼ 1, but is not idempotent ρ

2ð Þ
ob

� 	2
6¼ ρ

2ð Þ
ob (as it holds for the

ordinary quantum density matrix [1]).

7. Kronecker obscure-quantum gates

In general, (double) “obscure-quantum computation” with L Kronecker obscure
qubits (or qudits) can be performed by a product of unitary (block) matrices U of

the (double size to the standard one) size 2� 2L � 2L
� �

(or 2� nL � nL
� �

), U†U ¼ I

(here I is the unit matrix of the same size asU). We can also call such computation a
“quantum computation with truth” (or with membership).

Let us consider obscure-quantum computation with one Kronecker obscure
qubit. Informally, we can present the Kronecker obscure qubit (52) in the form
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Ψobj i ¼

1
ffiffiffi

2
p

a0

a1

 !

1
ffiffiffi

2
p

α0

α1

 ! μð Þ

2

6

6

6

6

6

4

3

7

7

7

7

7

5

: (79)

Thus, the state Ψobj i can be interpreted as a “vector” in the direct product (not

tensor product) space H 2ð Þ
q � V 2ð Þ

memb, where H 2ð Þ
q is the standard two-dimenional

Hilbert space of the qubit, and V 2ð Þ
memb can be treated as the “membership space”

which has a different nature from the qubit space and can have a more complex
structure. For discussion of such spaces, see, e.g. [5, 6, 8, 9]. In general, one can
consider obscure-quantum computation as a set of abstract computational rules,
independently of the introduction of the corresponding spaces.

An obscure-quantum gate will be defined as an elementary transformation on an
obscure qubit (79) and is performed by unitary (block) matrices of size 4� 4 (over

) acting in the total space H 2ð Þ
q � V 2ð Þ

memb

U ¼ Û 0̂

0̂ Û
μð Þ

 !

, UU† ¼ U†U ¼ I, (80)

ÛU† ¼ Û
†
Û ¼ Î, Û

μð Þ
Û

μð Þ† ¼ Û
μð Þ†

Û
μð Þ ¼ Î, Û ∈EndH 2ð Þ

q , Û
μð Þ
∈EndV 2ð Þ

memb,

(81)

where I is the unit 4� 4 matrix, Î is the unit 2� 2 matrix, Û and Û
μð Þ
are unitary

2� 2 matrices acting on the probability and membership “subspaces” respectively.

The matrix Û (over ) will be called a quantum gate, and we call the matrix Û
μð Þ

(over ℝ) an “obscure gate”. We assume that the obscure gates Û
μð Þ
are of the same

shape as the standard quantum gates, but they act in the other (membership) space
and have only real elements (see, e.g. [1]). In this case, an obscure-quantum gate is

characterized by the pair Û, Û
μð Þn o

, where the components are known gates (in

various combinations), e.g., for one qubit gates: Hadamard, Pauli-X (NOT),Y,Z (or
two qubit gates e.g. CNOT, SWAP, etc.). The transformed qubit then becomes
(informally)

U Ψobj i ¼

1
ffiffiffi

2
p Û

a0

a1

 !

1
ffiffiffi

2
p Û

μð Þ α0

α1

 ! μð Þ

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

: (82)

Thus the quantum and the membership parts are transformed independently for
the block diagonal form (80). Some examples of this can be found, e.g., in [36, 37, 45].
Differences between the parts were mentioned in [46]. In this case, an obscure-
quantum network is “physically” realised by a device performing elementary
operations in sequence on obscure qubits (by a product of matrices), such that the
quantum and membership parts are synchronized in time (for a discussion of the
obscure part of such physical devices, see [19, 20, 47, 48]). Then, the result of
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the obscure-quantum computation consists of the quantum probabilities of the states
together with the calculated “level of truth” for each of them (see, e.g. [18]).

For example, the obscure-quantum gate UĤ,NOT ¼ Hadamard, NOTf g acts

on the state Ê0 (55) as follows

UĤ,NOTÊ0 ¼ UĤ,NOT

1

0

 !

1

0

 ! μð Þ

2

6

6

6

6

6

4

3

7

7

7

7

7

5

¼

1
ffiffiffi

2
p

1

1

 !

0

1

 ! μð Þ

2

6

6

6

6

6

4

3

7

7

7

7

7

5

¼
1
ffiffiffi

2
p ê0 þ ê1ð Þ

ε1

2

4

3

5: (83)

It would be interesting to consider the case when U (80) is not block diagonal
and try to find possible “physical” interpretations of the non-diagonal blocks.

8. Double entanglement

Let us introduce a register consisting of two obscure qubits (L ¼ 2) in the

computational basis î j0
�

�




¼ î
�

�




⊗ ĵ
0�
�

�

E

as follows

Ψ
n¼2ð Þ
ob L ¼ 2ð Þ

�

�

�

E

¼ Ψob 2ð Þj i ¼ B̂000 0̂00�

�




þ B̂100 1̂00�

�




þ B̂010 0̂1
0�

�




þ B̂110 1̂1
0�

�




ffiffiffi

2
p , (84)

determined by two-dimensional “vectors” (encoding obscure-quantum ampli-
tudes)

B̂i j0 ¼
bi j0

βi j0

" #

, i, j ¼ 0, 1, j0 ¼ 00, 10, (85)

where bi j0 ∈ are probability amplitudes for a set of pure states and βi j0 ∈ℝ are

the corresponding membership amplitudes. By analogy with (43) and (46) the
normalization factor in (84) is chosen so that

Ψob 2ð ÞjΨob 2ð Þh i ¼ 1, (86)

if (cf. (14)–(15))

b000j j2 þ b100j j2 þ b010j j2 þ b110j j2 ¼ 1, (87)

β2000 þ β2100 þ β2010 þ β2110 ¼ 1: (88)

A state of two qubits is “entangled”, if it cannot be decomposed as a product of
two one-qubit states, and otherwise it is “separable” (see, e.g. [1]). We define a
product of two obscure qubits (43) as

Ψobj i⊗ Ψ
0
ob

�

�




¼ Â0 ⊗ HÂ
0
0 0̂00�

�




þ Â1 ⊗ HÂ
0
0 1̂00�

�




þ Â0 ⊗ HÂ
0
1 0̂1

0�

�




þ Â1 ⊗ HÂ
0
1 1̂1

0�

�




2
,

(89)

where ⊗ H is the Hadamard product (53). Comparing (84) and (89) we obtain
two sets of relations, for probability amplitudes and for membership amplitudes
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bi j0 ¼
1
ffiffiffi

2
p aia j0 , (90)

βi j0 ¼
1
ffiffiffi

2
p αiα j0 , i, j ¼ 0, 1, j0 ¼ 00, 10: (91)

In this case, the relations (14)–(15) give (87)–(88).
Two obscure-quantum qubits are entangled, if their joint state (84) cannot be

presented as a product of one qubit states (89), and in the opposite case the states
are called totally separable. It follows from (90)–(91), that there are two general
conditions for obscure qubits to be entangled

b000b110 6¼ b100b010 , or det b 6¼ 0, b ¼
b000 b010

b100 b110

� �

, (92)

β000β110 6¼ β100β010 , or det β 6¼ 0, β ¼
β000 β010

β100 β110

� �

� (93)

The first Eq. (92) is the entanglement relation for the standard qubit, while the
second condition (93) is for the membership amplitudes of the two obscure qubit joint
state (84). The presence of two different conditions (92)–(93) leads to new additional
possibilities (which do not exist for ordinary qubits) for “partial” entanglement (or
“partial” separability), when only one of them is fulfilled. In this case, the states can be
entangled in one subspace (quantum or membership) but not in the other.

The measure of entanglement is numerically characterized by the concurrence.
Taking into account the two conditions (92)–(93), we propose to generalize the
notion of concurrence for two obscure qubits in two ways. First, we introduce the
“vector obscure concurrence”

Ĉvect ¼
Cq

C μð Þ

" #

¼ 2
detbj j
detβj j

� �

, (94)

where b and β are defined in (92)–(93), and 0≤Cq ≤ 1, 0≤C μð Þ
≤ 1. The

corresponding “scalar obscure concurrence” can be defined as

Cscal ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detbj j2 þ detβj j2
2

s

, (95)

such that 0≤Cscal ≤ 1. Thus, two obscure qubits are totally separable, if Cscal ¼ 0.
For instance, for an obscure analog of the (maximally entangled) Bell state

Ψob 2ð Þj i ¼ 1
ffiffiffi

2
p

1
ffiffiffi

2
p

1
ffiffiffi

2
p

2

6

6

4

3

7

7

5

0̂00�

�




þ

1
ffiffiffi

2
p

1
ffiffiffi

2
p

2

6

6

4

3

7

7

5

1̂10
�

�




0

B

B

@

1

C

C

A

(96)

we obtain

Ĉvect ¼
1

1

� �

, Cscal ¼ 1: (97)

A more interesting example is the “intermediately entangled” two obscure qubit
state, e.g.
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Ψob 2ð Þj i ¼ 1
ffiffiffi

2
p

1

2

1
ffiffiffi

2
p

2

6

6

6

4

3

7

7

7

5

0̂00�

�




þ

1

4
ffiffiffi

5
p

4

2

6

6

6

4

3

7

7

7

5

1̂00�

�




þ

ffiffiffi

3
p

4

1

2
ffiffiffi

2
p

2

6

6

6

4

3

7

7

7

5

0̂10
�

�




þ

1
ffiffiffi

2
p

1

4

2

6

6

6

4

3

7

7

7

5

1̂10
�

�




0

B

B

B

@

1

C

C

C

A

, (98)

where the amplitudes satisfy (87)–(88). If the Born-like rule (as in (13)) holds
for the membership amplitudes, then the probabilities and membership functions
of the states in (98) are

p000 ¼ 1

4
, p100 ¼ 1

16
, p01 ¼

3

16
, p110 ¼

1

2
, (99)

μ000 ¼ 1

2
, μ100 ¼ 5

16
, μ010 ¼

1

8
, μ110 ¼

1

16
: (100)

This means that, e.g., the state 1̂00�

�




will be measured with the quantum proba-

bility 1=16 and the membership function (“truth” value) 5=16. For the entangled
obscure qubit (98) we obtain the concurrences

Ĉvect ¼

1

2

ffiffiffi

2
p

� 1

8

ffiffiffi

3
p

1

8

ffiffiffi

2
p ffiffiffi

5
p

� 1

4

ffiffiffi

2
p

2

6

6

4

3

7

7

5

¼ 0:491

0:042

� �

, Cscal ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

53

128
� 1

16

ffiffiffi

5
p

� 1

16

ffiffiffi

2
p ffiffiffi

3
pr

¼ 0:348:

(101)

In the vector representation (49)–(52) we have

î j0
�

�




¼ î
�

�




⊗ ĵ
0�
�

�

E

¼
êi ⊗ K ê j0

εi ⊗ Kε j0

" #

, i, j ¼ 0, 1, j0 ¼ 00, 10, (102)

where ⊗ K is the Kronecker product (48), and êi, εi are defined in (50)–(51). Using
(85) and the Kronecker-like product (49), we put (informally, with no summation)

B̂i j0 î j
0�

�




¼
bi j0 êi ⊗ K ê j0

βi j0εi ⊗ Kε j0

" #

, i, j ¼ 0, 1, j0 ¼ 00, 10: (103)

To clarify our model, we show here a manifest form of the two obscure qubit
state (98) in the vector representation

Ψob 2ð Þj i ¼ 1
ffiffiffi

2
p

1

2

1

0

1

0

0

B

B

B

B

B

@

1

C

C

C

C

C

A

1
ffiffiffi

2
p

1

0

1

0

0

B

B

B

B

B

@

1

C

C

C

C

C

A

μð Þ

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

þ

1

4

0

1

1

0

0

B

B

B

B

B

@

1

C

C

C

C

C

A

ffiffiffi

5
p

4

0

1

1

0

0

B

B

B

B

B

@

1

C

C

C

C

C

A

μð Þ

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

þ

ffiffiffi

3
p

4

1

0

0

1

0

B

B

B

B

B

@

1

C

C

C

C

C

A

1

2
ffiffiffi

2
p

1

0

0

1

0

B

B

B

B

B

@

1

C

C

C

C

C

A

μð Þ

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

þ

1
ffiffiffi

2
p

0

1

0

1

0

B

B

B

B

B

@

1

C

C

C

C

C

A

1

4

0

1

0

1

0

B

B

B

B

B

@

1

C

C

C

C

C

A

μð Þ

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

:

(104)
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The states above may be called “symmetric two obscure qubit states”. However,
there are more general possibilities, as may be seen from the r.h.s. of (103) and
(104), when the indices of the first and second rows do not coincide. This would
allow more possible states, which we call “non-symmetric two obscure qubit
states”. It would be worthwhile to establish their possible physical interpretation.

The above constructions show that quantum computing using Kronecker
obscure qubits can involve a rich structure of states, giving a more detailed
description with additional variables reflecting vagueness.

9. Conclusions

We have proposed a new scheme for describing quantum computation bringing
vagueness into consideration, in which each state is characterized by a “measure of

truth” _A membership amplitude is introduced in addition to the probability ampli-
tude in order to achieve this, and we are led thereby to the concept of an obscure
qubit. Two kinds of these are considered: the “product” obscure qubit, in which the
total amplitude is the product of the quantum and membership amplitudes, and the
“Kronecker” obscure qubit, where the amplitudes are manipulated separately. In
latter case, the quantum part of the computation is based, as usual, in Hilbert space,
while the “truth” part requires a vague/fuzzy set formalism, and this can be
performed in the framework of a corresponding fuzzy space. Obscure-quantum
computation may be considered as a set of rules (defining obscure-quantum gates)
for managing quantum and membership amplitudes independently in different
spaces. In this framework we obtain not only the probabilities of final states, but
also their membership functions, i.e. how much “trust” we should assign to these
probabilities. Our approach considerably extends the theory of quantum computing
by adding the logic part directly to the computation process. Future challenges
could lie in the direction of development of the corresponding logic hardware in
parallel with the quantum devices.
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