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Abstract

Soil salinity has emerged as a global threat to sustainability of farming systems 
by deteriorating the quality and productivity of crops particularly in the coastal 
regions of the world. Although, as a C4 plant, maize (Zea mays L.) has ability to 
tolerate a medium level of salinity; but initial growth stages of maize are sensitive 
to salinity stress. Therefore, it is crucial to expand our understanding pertaining to 
maize response to salt stress and tolerance mechanisms for devising approaches to 
enhance maize adaptability in saline environments. Moreover, maize crop under-
goes several physiological changes and adapts some mechanism to overcome the 
salinity stress. Different mitigation strategies like application of chemicals, plant 
growth-promoting hormones, and use of genetic and molecular techniques are 
used to manage salinity and may ensure crop productivity under changing climate. 
This chapter aimed to assess the recent advancement pertaining to salinity stress 
influence on the physio-biochemical processes in maize and to draw the relationship 
between yield components and salinity stress. In addition, current study also high-
lights research gaps by focusing the seed enhancement techniques, phytohormones 
exogenous application and genetic improvement of maize under soil salinity.

Keywords: Salt stress, adverse effects, maize, productivity, seed enhancement

1. Introduction

Among various abiotic stresses, salt stress has posed one of the most severe threat to 
modern commercial oriented and profit-driven crop production at a global scale [1–4]. 
Besides soil salinity, utilization of saline water for irrigation purposes, particularly in the 
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low-lying coastal regions of many countries, has also been identified as a major yield-
limiting factor for boosting agriculture production [5, 6]. The detrimental impacts of 
salt stress manifest through a reduction in the relative water potential of plants which 
causes decline in plants growth [7], coupled to a negative effect in soil and water quality 
both in the short and long term [8, 9]. Salt stress is associated with the moisture stress 
that decreases plant growth and ultimately reduces plant yield even at soil moisture 
contents that are not limiting for crop productivity (Figure 1) [10, 11].

Similar to other C4 plants, maize is able to grow in both saline and non-saline 
conditions due to its stress adaptive potential and relatively tolerance against salin-
ity [12–14]. Although salinity adversely affects maize growth and yield attributes 
throughout most of the plant cycle, the final impact on plant productivity depends 
upon the length and severity of the stress and the growth phase when the stress 
occurs [15, 16]. In general, and similar to the case for other row crops, the initial 
growth stage of maize is highly sensitive to salt stress. In a hydroponically grown 
study, Farooq et al. [12] observed the growth of roots and shoots of salt-treated (1.0 
and 100 mM NaCl, applied one week after transplanting) maize variety cv. ‘Pioneer 
3906’. Authors reported a significant reduction in the plant height and dry matter 
biomass of plants treated with the highest salt concentration just 21 days after the 
beginning of the salt soaking study [12]. However, lower salt concentrations can 
severely impact normal crop growth and several studies have demonstrated that 
very low salt concentrations can reduce the growth cycle of maize plant due to 
oxidative stress before the occurrence of sodium toxicity in the plant [17–19]. The 
objectives of this chapter are to discuss a) the current and most recent knowledge 
regarding the influence of salinity stress on physio-biochemical processes and yield 
components in maize, and b) the seed enhancement technologies, phytohormones 
exogenous application and genetic improvement of maize against soil salinity stress.

2. Adverse effects of salinity on growth and development of maize

2.1 Effect on germination

Seedling establishment is an important phase in the plant life cycle. Salt stress 
adversely affects seed germination [20], due to the decrease in the osmotic potential 

Figure 1. 
Effect of salt stress on the initial growth of maize (adapted from Farooq et al. [12].
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created in the soil solution that prevents the entry of water into the seed [21]. During 
seedling establishment, intake of sodium and chloride ions causes toxicity in the plant 
cells, thus reducing seed germination rates and the growth of seedlings that have 
already germinated [22]. Besides its negative impact in the germination rates, salinity 
stress also delays the overall germination process, thus reducing the survival chances 
of those seeds that were able to germinate [23, 24]. Because of its potential to drasti-
cally reduce crop productivity, it is of paramount importance to recognize these early 
deleterious impacts of soil and water salinity in plant growth and development [25].

Salinity reduces seedling establishment by increasing the oxidative stress 
through the absorption of Na+ and Cl− ions in the seeds that cause toxicity in the 
embryogenesis and protein synthesis. Maximum oxidative stress caused by Na+ 
and Cl− ions toxicity during germination lowers or stunts the germination of plants 
[26]. In case of maize production, just Na+ toxicity was found more detrimental in 
reducing the germination under salt-stressed environments.

Under arid and semi-arid conditions salt stress is commonly considered as the 
more threatening factor reducing the seed emergence rates and the overall crop 
stands [9, 27, 28]. Therefore, salinity constitutes one of the most significant abiotic 
factors limiting crop productivity, while changing climate scenario has even further 
worsened the situation [29]. The ability of seeds to germinate at high salt concen-
trations in the soil is of crucial importance for the survival of many plant species. 
However, the effects of salinity are modified by its interactions with other environ-
mental factors such as temperature and light [30]. In saline habitats, satisfactory 
seed germination typically takes place after high precipitation events, when soil 
salinity is reduced [31]. Seed priming stimulates numerous metabolic processes 
involved in the early phases of germination, and it was observed that seedlings from 
primed seeds can grow more vigorously and perform better under adverse environ-
mental conditions compared to non-primed seeds [32].

2.2 Effect on maize growth

El Sayed, [33] observed dramatic decreases in maize plant root elongation, 
plant height, leaf area, photosynthesis, mitotic division and root and shoot biomass 
in a sandy soil under salt stress conditions. Salinity promotes suberization of the 
hypodermis and endodermis, and the Casparian strip develops closer to the root 
tip compared to roots growing in non-saline soils [34]. Although roots are the first 
organ exposed to salt stress, shoots are more sensitive to salt stress [35]. Salinity 
reduces shoot growth by suppressing leaf initiation and expansion, as well as inter-
node growth, and by accelerating leaf abscission [36]. Salt stress rapidly reduces 
leaf growth rate due to a reduction in the number of elongating cells and the rate of 
cell elongation [37, 38]. As a salt-sensitive crop, shoot growth in maize is strongly 
inhibited in the first phase of salt stress [38]. Schubert et al. [39] observed stunted 
maize growth with dark green leaves without any toxicity symptoms during the first 
phase of salt stress, owing to impaired extension growth as osmotic adjustment and 
turgor maintenance were not limiting. Likewise, growth of salt-resistant hybrids 
has shown that it was not turgor but cell wall extensibility which restricted cell 
extension growth during the first phase of salt stress [39].

Salt stress may also displace Ca+2 ions from plasma membrane-binding sites, 
thus causing membrane leakiness as a primary cellular response to salt stress [40]. 
When the integrity of the plasma membrane is affected by high salt concentrations 
in soil, a cell wall acidification process occurs due to the reduction in the cell wall 
ability to pump protons out across the intact plasma membrane [41]. Conversely, 
pH in the apoplastic space tends to increase in salt-sensitive maize genotypes 
subjected to salt stress and this reduces the extension growth of the cell due to 
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less acidification of the apoplast [41, 42]. Comparing salt tolerant and susceptible 
genotypes of maize, Pitann et al. [43] found that salt-tolerant genotypes better 
regulated hydrogen ions concentration and decreased the pH in the apoplastic 
space, while also loosen the cell wall turgidity according to the acid growth theory 
[44]. According to this theory, the increased in the cell wall expansion triggers a 
protein synthesis process that ultimately results in cell growth. The enzymes that 
are responsible for the loosening process in the cell wall and the regulation of cell 
elongation are present in the apoplastic space of cells located in the leaves [42]. 
The extent to which these enzymes will loosen the cell wall for further extension 
depends upon the acid concentration in the apoplastic space and the existence of 
a cell wall pH under 5 [45, 46]. Research shows that, when grown under salt stress 
conditions, the amount and activity of β-expansion proteins decreased in salt 
susceptible genotypes of maize, while it was only slightly affected in salt-tolerant 
genotypes [47, 48]. In general, β-expansions proteins have been more heavily stud-
ied than α-expansion proteins in salt-stress related research [49]. These β-expansion 
proteins are responsible for important cell functions and have a specific set of 
matrix polysaccharides and structural proteins in maize [49].

Early in the growth cycle, high salt concentrations reduced the growth of tissues 
in corn which may be partially accountable for a reduction in the overall photosyn-
thetic capacity of the plant [50]. Moreover, salt stress has shown to produce struc-
tural variations in the cell wall that alter its correct functioning [51]. For instance, 
salt stress stimulates the production of ROS (Reactive Oxygen Species) such as 
peroxidase and hydrogen peroxide in the cell apoplastic space, and this increases the 
biosynthesis of diferulates which inhibits maize cell wall growth [52–54]. Moreover, 
increased in the ROS results in peroxidation of lipid and DNA damage [55–57]. In 
other studies, a temporary increase in the concentration of apoplastic peroxidase 
terminated cell wall elongation [58, 59], and increased the oxidation of phenolics 
compounds in maize [60]. A persistent salt stress condition across the plant growth 
cycle can result in a significant decrease in the length of the shoots and the extent 
and duration of the flowering process in the plant, which ultimately affects the 
reproduction and the productivity of crops. In this context, salt stress resulted in 
the deterioration and further abscission of old leaves of plants while the growth of 
young leaves was not affected by salt stress at grain cob initiation stage [1].

2.3 Effect on development and yield

The number and weight of kernels are the two most important yield components 
to calculate grain yield in maize [61–64]. In a recent study, and compared to non-
saline conditions, a salt concentration of 100 mM NaCl applied at the reproductive 
phase of maize reduced the kernel yield and the kernel weight by 25% and 8%, 
respectively (Figure 2) [65]. Katerji et al. [66] studied the effect of three irrigation 
water treatments [i.e., fresh, unsalted water; 15 and 30 mEQ l−1 (NaCl and CaCl2)] 
in maize yield and yield components in a clay and a loamy soil. Compared to non-
saline treatment, authors found that 15 mEQ l−1 reduced maize grain yield by 11.3% 
in the clay soil through a reduction of 7.6% in the kernel set without changes in the 
kernel weight. Conversely, the 15 mEQ l−1 salt treatment did not affect grain yield in 
the loamy soil. Application of 30 mEQ l−1 salt treatment reduced the grain yield by 
24.5% in the clay, and by 21.4% in the loamy soil as a result of decreases in both the 
kernel set and kernel weight in the two soils.

Photosynthesis reduction and sink limitation induced by salinity are among the 
main reasons for poor kernel setting and reduced grain number [67]. Under salt 
stress conditions, a sink limitation disrupts kernel setting more than the resulting 
reduction in the photo-assimilation production in maize. Research showed that the 
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salt stress-induced reduction in the sink activity in maize causes a reduction in the 
acid invertase activity, which further reduces the final grain number in maize [68]. 
At the eco-physiological level, however, a decrease in the translocation of assimi-
lates from leaves to the emerging grains is the main driver for poor kernel set and 
reduced grain weight, and thus final grain yield, in maize plant stands subjected to 
salt stress conditions [69].

In salt-stressed maize plant, growth is affected by lack of nitrogen due to the 
antagonistic action of nitrate ions with chloride ions [34, 70]; hence, maize yield 
significantly improved with the addition of nitrogen under salt stress. Application 
of nitrogen in the amount of 120 kg ha−1 neutralized the harmful effects of salinity; 
in particular, it improved nitrogen absorption, growth and productivity under of 
salt stress conditions [71].

2.4 Effect on grain quality

Different environmental conditions can greatly affect the grain quality in maize 
[72]. Among these, the negative impact of salt stress in grain quality has not been 
extensively studied. Working with five saline irrigation levels [1, 2, 3, 4, and 5 g L−1 
of total dissolved solids (TDS)] in a 2-yr study in China, Li et al. [73] found no 
difference in the oil, crude fiber and ash contents of maize grain. Conversely, grain 
moisture and starch content decreased with increased salinity, with maximum 
values ocurring with 1, 2 and 3 g L−1 of TDS in both cases, while protein content 
increased with increased salinity, reaching maximum values >12% with 4 and 
5 g L−1 of TDS. While the impacts of different salinity treatments were antagonistic 
for starch and protein content, two of the key quality components in maize grain, 
salt levels in the irrigation water should balance the content of each component. 
Low grain moisture content can be beneficial for storing purposes, as these 
conditions are detrimental for proliferation of fungal pathogens, which can cause 
mycotoxin contamination and reduction in the maize grain quality (Table 1) [74].

Cucci et al. [75] found no difference in the kernel composition due to irriga-
tion water quality in the first year of a study conducted in Italy. Contrarily, in the 
third year, brackish water irrigation increased the grain protein content by 6.9% 
and decreased the moisture content by 9.3% compared to grain irrigated with 
freshwater, which is similar to the findings from Li et al. (2019) [73]. Finally, 
there was no effect of irrigation scheduling and the interaction among salinity 
and irrigation scheduling on grain quality either in the first or the third year 
under study.

Figure 2. 
Salt stress effects on maize plant growth and yield (from Kaya et al. [65]). A: Effect of salt stress on growth; B: 
cob length; and C: grain filling of maize.
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3. Recent approaches for improvement of maize tolerance under salinity

3.1 Application of hormones and osmoprotectants

Exogenous applications of growth hormones and osmolytes have been found 
to be effective to cope against the negative impacts of soil and water salinity. The 
role of plant growth regulators and osmoprotectants under salt stress is important 
in modulating physiological responses leading to adaptation to such unfavorable 
environments. Accumulation of osmolytes under low water potential conditions, 
such as those occurring soils with elevated salt concentrations, helps to maintain the 
plant water status in a process known as osmoregulation [76]. More than 20 years 
ago, osmoprotectants were chemically grouped as amino acids (proline), ammo-
nium compounds (glycine betaine), polyols and sugars (mannitol, dononitol, treha-
lose, fructans) [77]. In a recent study, osmoprotectants were classified into two 
major groups, namely organic (eg. glycine betaine, proline, sugars, and proteins) 
and inorganic (eg. Ca, K, PO4, NO3, SO4) osmoprotectant solutes preserving water 
without impairing the regular metabolism of the plant [78]. Among them, proline, 
glycine betaine, and mannitol are commonly found in cytosol and chloroplast in 
plants. Under stressed environments, exogenous application of osmoprotectants 
act to maintain the regular plant cellular functions [79–81], by playing key roles 
in regulating the enzyme activity, ROS homeostasis, maintaining the membrane 
integrity, and balancing the ionic transport across the cell membrane [82].

The exogenous application of gibberellic acid (GA) and cytokinin (CK) at 
the maize vegetative stage was effective to remediate the damage in the cellular 
membranes of maize plants subjected to water deficit stress [83], by decreasing the 
electrolyte leakage and lipid peroxidation [84].

Similarly, exogenously applied GA, CK and auxin improved the tolerance to 
water deficit resistance in maize plants growing in saline soils by mitigating the 
membrane oxidative damage and improving the overall plant water status [85]. 
Moreover, application of GA, Indole-acetic acid and proline combined with organic 
amendment enhanced heavy metal tolerance and increased protection against oxi-
dative stress in maize compared to non-applied control, thus providing a promising 
approach as an osmoprotectant that could be used in saline soils [86].

Salicylic acid (SA) plays dual roles as both a plant growth regulator and an 
antioxidant, improving crop performance under abiotic and biotic stresses [87, 88]. 
Salicylic acid-induced antioxidant system was reported in maize in water deficit 
environments [89]. Foliar application of SA in maize has a potential to increase the 
relative water content and membrane stability index in maize grown under water 
deficit environments [90]. Moreover, in salt stressed maize plants, exogenous appli-
cation of SA improved plant growth, antioxidant enzyme contents and stabilized the 
overall photosynthetic process [91]. In this regard, foliar application of SA in maize 

Years Water Quality Protein % Starch % Fats % Grain Moisture %

1st Brackish water 9.1a 72.1a 4.2a 15.2a

Fresh water 8.9a 71.8a 4.1a 15.5a

3rd Brackish water 9.2a 71.6a 4.1a 14.6b

Fresh water 8.6b 71.7a 4.3a 16.1a

Different letters indicate significant difference according to Duncan test (p = 0.05).

Table 1. 
Grain quality of maize as affected by the different quality of irrigation water in the first and third year of crop 
rotation [75].
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seedlings reversed the negative impacts of soil salinity in the plant gas exchange, 
rubisco activity and photosynthetic efficiency [92, 93], while also increasing the 
production of soluble sugars, proline and nutrient uptake particularly K+ [94]. 
When SA was applied to roots, increases in the photosynthetic rates, gas exchange 
levels, and internal CO2 exchange and grain yield of maize were observed in saline 
soils [95, 96]. Pre-treatment of maize seeds by exogenous application of SA (2 mM) 
exhibited improved seedling emergence and stand establishment maize [97].

The exogenously applied methyl jasmonate (MeJA) can ameliorate the plant 
tolerance to abiotic stresses such as drought and salinity by enhancing the defense-
oriented metabolism of plants [98, 99]. Pre-treatment of maize seeds with MeJA 
can suppress the harmful effects of water stress by maintaining the total protein, 
proline, carbohydrate contents and antioxidant activities under saline conditions 
[100]. Additionally, seed and foliar pre-treatments with exogenous MeJa showed 
positive effects on drought-induced oxidative stress responses of maize seedlings 
by modulating the levels of osmolytes, endogenous abscisic acid (ABA), and the 
activities of antioxidant enzymes [101].

3.2 Seed priming

The occurrence of an even and fast germination process has long been considered 
as a critical stage for final yield determination in most crops [102]. The seedling 
stage of maize plant is more sensitive to salinity [103] than mature stages [104]. Seed 
priming entails pre-sowing seed treatment with different priming agents including 
water, growth regulators [105], which facilitates the germination process by increas-
ing the energy metabolism of the plant, promoting a more efficient mobilization of 
food reserves, enhancing expansion of the seed embryo [106], inducing formation 
of stress-responsive systems such as heat shock proteins, catalase and other anti-
oxidant scavenging enzymes and upregulating the genes encoding peroxiredoxin 
[2, 107]. Increased germination rate and vigorous seedling establishment have been 
documented for primed seeds especially hydro-priming, and priming with growth 
regulators [108, 109]. The use of seed priming in the form of inorganic chemicals, 
plant extracts or microorganisms is one of the most efficient technologies to improve 
the germination rates and the synchronization of seedling emergence in plants [110]. 
Seed priming technique tend to boost water status of the seed which leads to activa-
tion of the pre-germination metabolism of the seed. In the second stage, the seed is 
dried to prevent radicle emergence before seed sowing [111].

Seed priming techniques utilize different osmotic solutions as seed priming 
agents including inorganic salts, sugars, growth regulators and polyethylene glycol 
[111]. Broadly, there are two seed priming techniques, known as uncontrolled 
hydration or hydro-priming [112], and controlled hydration, which includes meth-
ods such as osmotic priming, solid matrix priming, and hormonal priming [113]. 
Among others, polyethylene glycol (PEG), chlorides, sulphates, nitrates, glycerol, 
sorbitol have also been commonly used as osmotic priming agents having germina-
tion enhancing effect for different cereals including maize [23].

Nutrient priming with various inorganic compounds has been effectively applied 
to enhance germination and growth of maize under saline environment. For exam-
ple, KNO3 has shown better establishment of seedlings at low temperatures in maize 
[114]. Micronutrients have been reported as nano-seed priming agents for boosting 
germination percentage and seedling development and vigor [115]. Also, priming 
maize seeds with NaCl before sowing induced physiological and biochemical changes 
thereby enhancing salinity tolerance and better performances under varying degree 
of saline environments [116]. Priming of maize seeds with CaCl2 increased the 
germination rate, and both the fresh and dry biomasses of plumules and radicles in 
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maize compared to untreated control and hydro primed seeds under salinity stress 
[117]. Further, authors measured significantly higher concentrations of Na+, K+ and 
Ca2+ in growing seedling tissues when seeds were primed with inorganic salts such as 
NaC1, KCI, or CaC12 [117]. Maize seeds priming with 1% ZnSO4 exhibited improved 
plant growth, increased final grain yield and enriched Zn2+ contents in seed on soils 
with limited Zn2+ availability, and a more efficient translocation of Zn2+ to growing 
shoots during germination and early seedling development [118], in saline environ-
ments. Moreover, use of Zn as a seed primer increased the accumulation of Zn2+ in 
the aleurone layer of maize seeds, and resulted in a higher plant biomass production 
and mineral nutrient uptake in plants subjected to salt stress [119].

Maize seeds primed by SA (2 mM) exhibited improved seedling emergence and 
establishment maize under salt stress [97]. Kinetin and indole acetic acid applica-
tion on foliage negate the harmful effects of salt stress, while it does not affect 
maize plant salinity resistance. In addition, the salt content increases the sodium 
concentration in corn leaves at the disbursement of potassium and calcium, while 
kinetin and indole acetic acid foliar applications correct these effects and raise the 
potassium and calcium content in the leaves. Thus, 2 mM concentration of kinetin 
and indole acetic acid foliar application counteracted the adverse effects of salt on 
maize growth and yield by increasing membrane permeability and absorption of 
essential nutrients [40]. Yang et al. [120] reported that exogenous application of 
glycine betaine on maize plant under salt stress enhanced growth, net photosynthe-
sis, leaf water content, and quantum yield of photosynthesis.

3.3 Genetic improvement of maize tolerance to salinity stress

In the recent past, molecular marker-assisted selection and other biotechnological 
techniques are being used in the context of the physiological basis of stress tolerance 
along with conventional breeding strategies to increase tolerance to abiotic stresses 
(heat, drought, and salinity) in maize. However, poor success in establishing maize 
cultivars tolerant to stress is mainly due to poor screening and selection techniques, 
poor selection criteria, and poor understanding mechanism of stress tolerance. 
However, some reports, in other species, are available which demonstrated the 
successful use of molecular marker for the development of tolerant cultivars against 
abiotic stresses [121]. As an illustration, the maintenance of potassium homeostasis 
in salt-tolerant plants was regulated by SKC1, which was mapped on chromosome 
1 [122]. This molecular marker can be used for selecting salt-tolerant cultivars. 
Development of transgenic plants with improved resistance against heat, drought 
and salt stresses is also a possible approach as high throughput sequencing techniques 
help in exploring the expression of genes specific for abiotic stress tolerance [123].

The scope of breeding for the salinity, heat and drought is limited due to less selec-
tion efficiency, inadequate screening techniques, and the minimum understanding of 
the interaction between environment and stress. Now the molecular marker technol-
ogy is helpful to develop the new maize cultivars with improved traits. However, the 
reasonable way at this stage is the improvement of transgenic maize with enhanced 
resistance against heat, drought and salt stresses. The high-throughput integrated 
approaches that are provided by the genomic technologies are helpful to examine 
the expression of the genes for all abiotic stresses including drought [2]. Microarray 
profiling under drought stress effects has been studied in different plant species i.e., 
Arabidopsis [124]. These studies recognized the multiple expressed transcripts of the 
genes which are involved in the photosynthesis, biosynthesis of osmoprotectants, 
ABA biosynthesis and signaling, water uptake, detoxification of reactive oxygen, 
and a myriad of transcription factors of various members of the zinc finger, protein 
stability and protection, bZIP and WRKY families (Table 2) [2].
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4. Conclusion

The changing climate scenario has worsened the salinity problem while global 
warming has caused significant increase in salt affected lands and thus has jeop-
ardized the food security of millions of people across the globe. As a C4 plant, 
maize can moderately tolerate salinity; however, the initial growth stage of maize 
is highly sensitive to salinity stress. The adverse effect of salinity can be mitigated 
through understanding the adaptability of maize in saline environments. Several 
seed enhancement and genetic approaches can be adapted to overcome the adverse 
effects of salinity stress. Among them, biological enhancement through seed prim-
ing, application of antioxidants and growth hormones, genetic and molecular tech-
niques for development of tolerant cultivars, and several agronomic management 
practices such as optimizing sowing time and seed rate etc. can be useful to cope 
with the adverse effect of salinity. Ultimately, these approaches have the potential 
to multiply maize production and nutritional quality in saline environments under 
current and future scenario of climate change.

Conflict of interest

The authors declare no conflict of interest.

Gene 

Family

Gene Tolerance Mechanism Reference

WRKY ZmWRKY33 Overexpression of ZmWRKY33 in Arabidopsis activated 
stress-induced genes, for example, RD29A, under normal 
growth condition and improved salt stress tolerance under 
stress condition.

[125]

WRKY25 and 
WRKY33

Upstream intergenic regions from each gene that were 
sufficient to confer stress-inducible expression on a 
reporter gene; W-box in their upstream regions also might 
be responsible to confer salt tolerance

[126]

MYB ZmMYB3R Overexpression of ZmMYB3R confer salt tolerance in 
transgenic plants

[127]

ZmMYB30 Ectopic expression of ZmMYB30 in transgenic Arabidopsis 
plants promoted salt-stress tolerance and also increased 
the expression of a number of abiotic stress-related genes, 
allowing the plants to overcome adverse conditions

[128]

AP2/ERF ZmEREB20 Overexpression of ZmEREB20 confer salt tolerance in 
transgenic plants

[129]

bZIP ZmbZIP72 Overexpression of ZmbZIP72 enhanced the expression of 
ABA-inducible genes such as RD29B, RAB18, and HIS1–3, 
which resulted in enhanced salinity tolerance

[130]

ZmbZIP60 Overexpression of ZmbZIP60 confer salt tolerance in 
transgenic plants

[131]

ZmbZIP4 ZmbZIP4 could positively regulate a number of stress 
response genes, such as ZmLEA2, ZmRD20, ZmRD21, 
ZmRab18, ZmNHX3, ZmGEA6, and ZmERD, and some 
abscisic acid synthesis-related genes, including NCED, 
ABA1, AAO3, and LOS5 to enhance salinity tolerance

[132]

Table 2. 
Transcription factors mediated salinity tolerance in maize.
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