
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

Chapter

Delivering Precision Medicine
to Patients with Spinal Cord
Disorders; Insights into
Applications of Bioinformatics and
Machine Learning from Studies of
Degenerative Cervical Myelopathy
Kalum J. Ost, David W. Anderson and David W. Cadotte

Abstract

With the common adoption of electronic health records and new technologies
capable of producing an unprecedented scale of data, a shift must occur in how we
practice medicine in order to utilize these resources. We are entering an era in which
the capacity of even the most clever human doctor simply is insufficient. As such,
realizing “personalized” or “precision” medicine requires new methods that can
leverage the massive amounts of data now available. Machine learning techniques
provide one important toolkit in this venture, as they are fundamentally designed to
deal with (and, in fact, benefit from) massive datasets. The clinical applications for
such machine learning systems are still in their infancy, however, and the field of
medicine presents a unique set of design considerations. In this chapter, we will walk
through how we selected and adjusted the “Progressive Learning framework” to
account for these considerations in the case of Degenerative Cervical Myeolopathy.
We additionally compare a model designed with these techniques to similar static
models run in “perfect world” scenarios (free of the clinical issues address), and we
use simulated clinical data acquisition scenarios to demonstrate the advantages of our
machine learning approach in providing personalized diagnoses.

Keywords: Precision Medicine, Personalized Medicine, Neural Networks,
Degenerative Cervical Myelopathy, Spinal Cord Injury, Continual Learning,
Bioinformatics

1. Introduction

The classical practice of medical is undergoing a transition as new scales of data
production become increasingly common. This transition presents the field with
major analytical challenges that necessitate new and creative ways of engaging. The

1

use of machine learning is one of the most important developments supporting this
transition, as its methods are ideally suited (and in fact benefit from) the massive scale
of data collection that is increasingly becoming the norm. With the rapid growth in
high-throughput technologies for genetics, proteomics, and other biological metrics,
alongside the recent wide-spread adaptation of electronic health records [1, 2], more
data than ever has become available to feed into a machine learning system. The
classical practice of medicine is typified by giants such as Dr. William Osler [3] whose
diagnostic acumen improved the lives of many. In the very near future (and, in many
cases, the present), physicians and diagnosticians will work with more data than they
could possibly interpret. Machine learning is one of many tools which will help
alleviate this, helping to guide many diagnostic and therapeutic decisions made by the
clinical team, and if implemented well, should support patients’ overall health. This
potential realization of “precision medicine” is based on the belief that each patient
has unique characteristics which should be accounted for when treating them [4].

While precision medicine has already demonstrated major benefits in fields like
pharmacology [5] and oncology [6–8], a number of potential applications remain in
other medical fields. In this chapter, we will demonstrate this using spinal cord
disease, specifically by examining its application to Degenerative Cervical Myelopathy
(DCM). DCM is a condition when the bones and joints of the human neck (cervical
spine) degenerate with age, causing a slow progressive ‘squeeze’ of the spinal cord.
This progressive condition has a significant effect on patient quality of life. Symptoms
include pain, numbness, dexterity loss, gait imbalance, and sphincter dysfunction
[9, 10], with symptoms often not appearing until permanent damage has already
occurred [11]. MRI scans are typically used as part of the diagnostic process, and
demographic factors have also been shown to be effective in predicting DCM severity
[12]. An additional challenge is that patients can exhibit the hallmarks of DCM with-
out developing symptoms [13], suggesting that a wide range of factors may be con-
tributing to the illness’s severity. Despite all of this, research into precision medical
approaches and diagnostics have been sorely lacking; to the best of our knowledge,
only 4 published studies involving DCM (also referred to as Cervical Spondylotic
Myelopathy) exist which utilize machine learning [7, 14–16], coming from only three
different groups (including our own), and with only one utilizing MRI data [16].

In this chapter, we will discuss how we went about designing a machine learning
process, focusing on considerations required for clinical data specifically. We first
explore how data should be managed and stored, before moving into data preparation
procedures. Finally, we move onto the design considerations for the machine learning
model. We will focus on models made for diagnostic prediction, rather than outcome
prediction; however, we intend this only as a first step in using machine learning to
support patient care, with future workmoving towardmodels that provide personalized
therapeutic recommendations as well. Throughout this chapter we will apply the tech-
niques being discussed to DCM to help contextualize them. Some preliminary results for
the final resulting system will also be shown, as a ‘proof-of-concept’, using the CIFAR-
10 dataset modified to replicate clinical circumstances. We hope that this will provide a
road-map for future machine learning driven precision medicine projects to follow.

2. Precision medicine machine learning system design

We have previously published work using spinal cord metrics generated by the
Spinal Cord Toolbox [17] alongside simple linear and logistic regression models [16].

2

Machine Learning - Algorithms, Models and Applications

While it found moderate success, our results suggested that complex aspects of the
spinal cord morphology are likely the key to an accurate model, with simple regression
analyses alone appearing to be insufficient. Said study also only used MRI-derived
metrics, resulting in our model being unable to use non-imaging attributes to support
its diagnostic conclusions, something which has been shown to aid model accuracy in
other studies [18]. Finally, our prior models were static in nature, and thus had to be
rebuilt each time new data became available. While this may be tractable for simple
models (which can be rebuilt very quickly), more complex models require more
computational investment, and as such would become far too difficult to manage as
the dataset grows. As an additional concern, there is reason to believe that the trends
in our collected metrics are likely to change over time as societal, behavioral, and
environmental changes occur, influencing DCM epidemiology [19], resulting in prior
trends becoming obsolete or less significant. As such, an ideal model would be able to
adapt to these changes as they arise, without the need of manual correction.

2.1 Data management

As previously mentioned, a key consideration in the clinical use of machine learn-
ing is that clinical data does not remain fixed. As new patients arrive and have their
data collected and current patients see their disease state change, the relevant data
that can be leveraged will change and expand over time. One possible approach is to
retrain our machine learning model from scratch each time we update our dataset; this
would become incredibly time and resource consuming as the dataset grows, however.
Thankfully, advancements in continual learning in the last 5 years provide an elegant
solution [20] (which we discuss in Section 3). To use these techniques effectively, we
will need to consider the best way of optimizing how data is collected, stored,
accessed, processed, and reported. Ideally, these data management systems should be
malleable, extendable, and easy to use, so they may remain useful long-term in a ever-
changing clinical environment. This section will focus on detailing methodologies for
achieving this, accounting for the challenges presented by ongoing clinical data col-
lection in the process.

2.1.1 Acquisition and storage

Ideally, our clinical dataset would include any and all relevant features that can be
reliably and cost-effectively obtained. In reality, the specific data elements (or “fea-
tures”) will vary both across patients and over time (as new diagnostic tests come
available or as ethical rules/constraints are updated). As such, an ideal data manage-
ment approach should be capable of adapting to variable data feature collection over
time, while still allowing new patients to be included. For ethical reasons, the storage
system also needs to be set up so that data can be easily removed, should patients
request their data be purged or if privacy rules require it.

In our facility, we addressed these considerations by creating a non-relational
document database system using MongoDB. This allows for new features to be added
and removed on-the-fly via a modular framework of ‘forms’, which specify sets of
related features that should exist inside a single document ‘type’. These documents
can then be stored within a larger super-document (which we will refer to as a
‘record’) for each specific patient. This results in a large dataset containing all relevant
features organized in an individual-specific manner. Each form acts as a ‘schema’,
specifying what features can be expected to exist within each patient’s record. With

3

Delivering Precision Medicine to Patients with Spinal Cord Disorders; Insights into…
DOI: http://dx.doi.org/10.5772/intechopen.98713

MongoDB, this allows features to be added and removed as needed without
restructuring the entire database [21], which would risk data loss. If new features are
desired, one can simply write a new form containing said features and add it to the
system; previous entries without these new features can then be treated as containing
“null” values in their place, thereby enabling them to still be included in any analyses
performed on the data. Should features need to be removed, the form containing them
can either be revised or deleted entirely. This results in the features effectively being
masked from analysis access without deleting them from the database itself, allowing
for their recovery in the future.

Our system also has the added benefit of allowing for the creation of ‘output’
forms, which capture and store metrics generated from data analyses. This enables the
same system that collects the data to also report these analytical results back to the
original submitter via the same interface. These output forms can also be stored
alongside forms containing the original values that were provided to the analysis,
making both easily accessible when calculating error/loss.

In our DCM dataset, all features (including MRI sequences) were collected at the
time of diagnosis and consent to participate in our longitudinal registry associated
with the Canadian Spine Outcomes and Research Network [22]. This registry collects
hundreds of metrics on each patient, including a number of common diagnostic tests,
with each being stored in the database as a single form. Most notably, this includes the
modified Japanese Orthopedic Association (mJOA) scale form [23]. This is important
for our study as we used this diagnostic assessment of DCM severity as the target
metric for model training purposes. The MRI sequence form (which contains our MRI
sequences alongside metadata associated with how they were obtained) and demo-
graphic information about the patient (including metrics such as name, age, and sex,
among others) are also represented by one form each within our system. A simplified
visualization of this structure can be seen in Figure 1.

This system can also allow pre-built structures to be re-created within it. For
example, our MRI data is currently stored using the Brain Imaging Data Structure
(BIDS) format [24]. This standardized data structure has directory hierarchies
according to the contents of the file, with metadata describing the contents of the
directory “falling through” to sub-directories and documents nested within it. These
nested directories can then contain new metadata which overrides some or all of the
previously set values, allowing for more granular metadata specification. Such a
structure is conducive to our system, with said “nested” directories acting as features
within forms, or forms within records; features could even consist of sets of sub-
features (such as our MRI feature, which contains the MRI image and its associated
metadata bundled together). Such nested structure can then specify “override” values,
as they become needed.

2.2 Cleaning and preparation

The raw data collected in a clinical setting is almost never “analysis ready”, as
factors like human error and/or missing data fields must be contended with. Strategies
for “cleaning” data can vary from dataset to dataset, but for precision medicine
models there are some common standards. First, such protocols should work on a per-
record basis, not a full-data basis. This is to avoid the circumstance where adding
entries with extreme values would skew the dataset’s distribution, compromising the
model’s prior training (as the input metrics are, in effect, re-scaled), resulting in an
unrealistic drop in model accuracy. Per-record internal normalization, however,

4

Machine Learning - Algorithms, Models and Applications

typically works well, so long as it remains consistent over the period of the model’s
use. Some exceptions to this exist; for example, exclusion methods may need to be
aware of the entire dataset to identify erroneous records. Likewise, imputation
methods will need to “tap into” other available data to fill in missing or incorrect data
points within each record.

It is often the case that data is obtained from multiple different sources (e.g.
different clinics, practitioners, hospitals, labs, databases, etc.), which may have vary-
ing protocols and/or environmental differences that can structurally influence the
resulting measurements. If the model could be retrained from scratch every time new
data was obtained, these batch effects could be easily removed [25]. In iteratively
trained systems, however, this would result in the same issue as full-data normaliza-
tion; new entries causing fall-through changes in the entire dataset. However, under
the assumption that batch effects have less influence on the data than ‘true’ contrib-
uting effects, it has been shown that systems which learn iteratively can integrate
batch effect compensation directly into their training for both numeric [26] and
imaging [27] metrics, thereby resolving the issue.

Coming back to our DCM example, our data consists of demographic information
(which included a mix of numerical and categorical data), diagnostic data (also numer-
ical and categorical), and 3-dimensional MRI sequences data (which also contains meta-
data describing its acquisition method). For numerical and categorical data, our
processing procedures are minimal, consisting of a quick manual review to confirm that
all required features were present. As our dataset was relatively large, we opted to simply

Figure 1.
A simplified example of how data is stored and managed in our theoretical system. Each feature tracked is first
bundled into a ‘model’, which groups related features together alongside a descriptive label. These models act as a
schema for any data analysis procedures to hook into, and can be modified, removed, and created as needed. Model
instances are then stored in ‘records’, which represent one entry for any analysis system which requires it (in our
case, that of one patient enrolled in our DCM study). A data structure like this can be easily achieved with any
non-relational database system; in our case, we opted to use MongoDB.

5

Delivering Precision Medicine to Patients with Spinal Cord Disorders; Insights into…
DOI: http://dx.doi.org/10.5772/intechopen.98713

drop entries which containedmalformed or missing data. New patient entries with errors
were either met with a request to the supplier for corrected data, or had true values
imputed for prediction purposes [28]. Categorical data is then one-hot encoded, while
numerical data is scaled between 0 and 1 for values with know minimums and maxi-
mums. We had access to multiple different MRI sequencing methodologies as well, but
focus on T2w sagittal oriented sequences based on our prior tests with the data [16]. MRI
sequences are then resampled to a voxel size of 1mm3 and the signal values normalized to
a 0 to 1 range. Unlike our numerical results, this was done based on per-image signal
minimum and maximum, in an attempt to account for variations in signal intensity
variation, aiding in batch effect removal in the process.

3. Machine learning model design

Like the data management system,machine learningmodels designed for precision
medicine need to be able to accept new data on an ongoing basis. The data contents may
change over time as new discoveries about the illness are made, though it can be safely
assumed that newdatawill be related to old data in someway.Contents of newdata cannot
be expected to bewell distributed across target all targetmetrics. All of these requirements
make precisionmedicinal systems a perfect use-case for continual learning systems.

Continual learning systems are characterized by their iterative training, as well as
the ability to ‘recall’ what they learn from prior tasks to help solve new ones. Each of
these tasks are assumed to be related, but contain non-trivial variation. This means the
model must be flexible to change, while avoiding completely reconstructing itself
after each new task, which could result in it ‘forgetting’ useful prior learning. These
capabilities are referred to, respectively, as forward transfer (the ability to leverage
prior learning to improve future analyses) and backward transfer (the ability leverage
new knowledge to help with prior tasks).

Promising progress has been made in designing continual learning systems [20], to
the point of a preliminary frameworks being devised to develop them. For this chapter,
we will be using Fayek et. al’s Progressive Learning framework [29] as a baseline refer-
ence, though some changes were made to account for precision medicine applications.

3.1 Initial network structure

All networks need to start somewhere, which for all intents and purposes acts like a
classical static machine learning system. Neural networks are the system of choice for
these processes, as they allow for multiple data types to be analyzed simultaneously,
being able to be constructed in a modular fashion to match up with our data storage
structure detailed prior. Depending on the data, what this entails will differ. For data
with implicit relations between features (such as MRI images with their spatial rela-
tions), Convolutional Neural Network (CNN) systems have been shown to be
extremely effective [30]. CNNs are also among the most computational efficient
neural networks to train and run [31, 32], making them ideal for low resource systems.
For other data, a Densely Connected Learning Networks (DCLNs) may be more
appropriate. The complexity of these networks can be tuned to fit the problem. These
models tend to be over-parameterized, however, potentially causing them to “stick”
in one place or over-fit to training data; this is mediated somewhat via model pruning,
discussed later in this section. The choice of available models is ever-changing,
however, so one should find the model structure which best fits their specific case.

6

Machine Learning - Algorithms, Models and Applications

For progressively learning models, one further constraint exists; it must be able to
be cleanly divide its layers into ‘blocks’. As discussed in Fayek et. al’s framework [29],
this is necessary to allow for the model to progress over time. How these blocks are
formed can be arbitrary, so long as each block is capable of being generalized to accept
data containing the same features, but of different shape (as the size of the input data
grows resulting from the concatenation operation discussed later in this section). One
should also keep in mind that the block containing the output layer will be reset every
progressive iteration, and should be kept as lightweight as possible.

For DCM, this would be accomplished via multiple layers running in parallel. For
MRI inputs, being 3D spatial sequences, something like a 3D DenseNet similar to that
employed by Ke et al. [33] could be used. The DenseNet could be run alongside DCLN
blocks in parallel to read and interpret our linear data (demographics, for example),
grouped with the DenseNet blocks to form the initial progressive learning model. A
diagram of this structure, using the same structure mentioned prior (Figure 1), with a
simplified “MRI” model present, is shown in Figure 2.

For the purposes of comparison with the original Progressive Learning framework,
however, our testing system will instead use their initial model structure [29].

Figure 2.
An example of the initial neural network structure for use in precision medicinal systems. Note that each form
receives its own “branch” block (presented within the model block column) which is used to interpret the form’s
contents. As a result, each branch’s structure can be tailored to suit the form’s contents, allowing for modular
addition or removal of model’s feeding into the network’s design as needed. The results of each of these branches’
interpretations are then submitted to a set of “merging” blocks, which attempts to combine these results together in a
sensible manner, before a final “output” layer reports the model’s predictions for the input. The output layer is also
modular, allowing for extension and/or revision as desired.

7

Delivering Precision Medicine to Patients with Spinal Cord Disorders; Insights into…
DOI: http://dx.doi.org/10.5772/intechopen.98713

3.2 Iterative training data considerations

Once this initial framework is in place, it then needs to prove capable of accepting
new patient data, updating itself as it does so. Given that the measurements of patients
enrolling in clinical illness studies can be sporadic in terms of when and how often they
are made, data for this system will need to be collected over time until a sufficiently
large ‘batch’ of new records is acquired. Ideally large batches would be collected which
are sizable enough to be split into multiple smaller batches, allowing for curriculum
formation as detailed in the subsequent section. In many cases this is simply not feasible
due to the time required to obtain such large batches. In this circumstance, each batch
acts as a single ‘curriculum’ provided to our network in effectively random order.
Thankfully, the curriculum stage appears to be the least significant stage of the Pro-
gressive Learning framework [29]. The size of these batches will depend heavily on how
much data one expects to be able to collect in a given period of time and how regularly
one wishes to update the model. For categorical data, each batch should include at least
two of every category (one for testing, one for validation), which may influence how
many samples one needs to acquire. We recommend a slightly larger batch sizes when
linear data is brought into the fold, to account for the increased variety. With our DCM
dataset, with a categorical output metric (the mJOA-derived DCM severity class,
consisting of 4 classes), a batch of 20 patient records was selected. Data augmentation of
this new data can also be utilized to increase the number of effective records being
submitted. However, one should avoid using data from records in previous training
cycles, as it can lead to a the model failing to adopt novel data trends in newer results.

3.3 Continual learning

Here, we will focus on detailing a framework based on Fayek et. al’s Progressive
Learning Framework [29], which consistes of three stages; curriculum, progression and
pruning.

3.3.1 Curriculum

Given sufficiently large batches of new data can be collected in a timely manner,
one can utilize the curriculum stage; at least three times the number of records per
batch being collected in a 6 month period seems to be a good cutoff for this, though
this can differ depending how rapidly one expects disease trends to change. This stage,
as described in Fayek et. al’s framework [29], is composed of two steps; curricula
creation and task ordering. In the creation step, the batch is split into sub-batches,
with each being known as a ‘curriculum’. How this is done depends on the data at
hand (i.e. categorical data requires that each curriculum contains data from each
category), but can otherwise be performed arbitrarily. Once these curricula are
formed they are sorted based on an estimate of how “difficult” they are, from least to
most. Difficulty estimation can be as simple as running a regression on the data and
using the resulting loss metric. The sorted set of curricula are then submitted to the
network for the progression and pruning stages, one at a time. This allows for the
network to learn incrementally, picking up the “easier” trends from earlier curricula
before being tasked with learning more “difficult” trends in later ones.

In precision medicine, however, collecting sufficient data in a useful time span is
often not possible. In this case, this stage can be safely skipped; the smaller batches will
simply act as randomly sampled, unordered curricula. How “large” this is depends on the

8

Machine Learning - Algorithms, Models and Applications

batch size selected earlier; one should collect at least three batches worth to warrant the
additional complexity of the curriculum stage. For our DCM setup, we fell below this
level, as we intend on updating as often as possible, and as such intended on utilizing new
batches as soon as they were collected. We believe that in most precision medicine
examples this is likely to be the case, though in some situations (such as the ongoing
COVID-19 pandemic), the scale of patient data collectionmaymake the curriculum stage
worth considering. Employing few-shot learning techniques may also allow for smaller
subsets of data to form multiple batches as well, though the efficacy of such procedures
has yet to be tested in this context.

3.3.2 Progression

In this stage, new blocks of layers are generated and concatenated to previously
generated blocks in the model. The new input-accepting block is simply stacked
adjacent to the prior input blocks in the model, ready to receive input from records in
our dataset. Each subsequent new block, however, receives the concatenated outputs
of all blocks from the prior layer, allowing it to include features learned in previous
training cycles. The final block, which contains the output layer, is then regenerated
entirely, resulting in some lost training progress that is, thankfully, usually quickly
resolved as the model begins re-training.

The contents of these added blocks depends on the desired task and computational
resources available. Large, more complex blocks require more computational resources
and are more likely to result in over-fitting, but can enable rapid adaption of the
network and better forward transfer. In the original framework [29], these blocks were
simply copies of the original block’s architecture, but reduced to approximately half the
parameters. However, one could instead cycle through a set of varying block-types,
based on how well the model performed and whether new data trends are expected to
have appeared. They could also be changed as the model evolves and new effective
model designs are discovered, though how effective this is in practice has yet to be seen.

Once these blocks are added, the network is then retrained on the new batch of
data, generally with the same training setup used for the original set of blocks. During
this retraining, prior block’s parameters can be frozen, locking in what they had
learned prior while still allowing them to contribute to the model’s overall prediction.
This prevents catastrophic forgetting of previously learned tasks, should they need to
be recalled, though this usually comes at the cost of reduced overall training effec-
tiveness. However, if one does not expect to need to re-evaluate records which have
already been tested before, one can deviate from Fayek’s original design and instead
allow prior blocks to change along with the rest of the model. An example of progres-
sion (with two simple DCLN blocks being added) is shown in Figure 3.

For our DCM data, this is a pretty straightforward decision. New blocks would
simply consist of new 3D DenseNet blocks run in parallel to simple DCLN layers, both
containing approximately half the parameters as the original block set. The output
block is then simply a linear layer which is fed into a SoftMax function for final
categorical prediction. As we do not expect prior records to need to be re-tested, we
also allow prior blocks to be updated during each training cycle.

3.3.3 Pruning

In this stage, a portion of parameters in the new blocks are dropped from the
network. What parts of the model are allowed to be pruned depends on how the prior

9

Delivering Precision Medicine to Patients with Spinal Cord Disorders; Insights into…
DOI: http://dx.doi.org/10.5772/intechopen.98713

progression stage was accomplished; if previously trained blocks have been frozen,
then only newly added elements should be allowed to be pruned to avoid catastrophic
loss of prior training. Otherwise, the entire model can be pruned, just as it has been
allowed to be trained and updated. The pruning system can also vary in how it
determines which parameters are to be pruned, though dropping parameters with the
lowest absolute value weights is the most straightforward. These can also be grouped
as well, with Fayek et al. choosing to prune greedily layer-by-layer. However, we have
found that considering all parameters at once is also effective. The proportion q
dropped per cycle will depend on the computational resources and time available.
Smaller increments will take longer to run, whereas larger values will tend to land
further away from the “optimal” state of the network. An example of the pruning
stage is shown in Figure 4.

The network, now lacking the pruned parameters, is then retrained for a (much
shorter) duration to account for their loss. In Fayek et al’s example, this process is then

Figure 3.
An example of the progression stage, building off of the initial model shown in Figure 2. New nodes are contained
within the gray boxes, with hashed lines indicating the new connections formed as a result. Note that input
connections are specific to each form, only connecting to one’s inputs (in this case, only the Demographic’s input),
and not to those in the other branches (such as the MRI branch); this allows for shortcomings in particular model’s
contributions to be accounting for independently, without an extreme growth in network complexity. Note as well
that the merging layer (representing all non-input receiving blocks) forms connections with all prior block outputs,
however, regardless of which forms have received a new connected block. The entire output block is also regenerated
at this stage, providing some learning plasticity at the expense of initial learning.

10

Machine Learning - Algorithms, Models and Applications

repeated with progressively larger q proportions until a loss in performance is
observed. Alternatively, one can instead repeatedly drop the same percentile of
parameters each cycle from the previously pruned network. This has the benefit of
reducing the time taken per cycle slightly (the same weights do not need to be pruned
every cycle), while also leading to the total proportion of the pruned model increasing
more gradually per cycle, improving the odds that the model lands closer to the true
optimal size for the system. This pruning system has the potential to be much slower,
however (should the rare circumstance occur where all the new parameters are use-
less, requiring more iterations overall). As such, in time-limited systems, Fayek’s
approach remains more effective.

This stage also allows for, in theory, dynamic feature removal. Should a model (or
feature within said model) cease to be available, one can simply explicitly prune the
parameters associated with that feature, in effect performing a targeted pruning cycle.
One would need to re-enable training of previously trained nodes to account for this,
however, leading to the possibility of reduced backward transfer. Depending on how
significant the to-be-removed features have become in the network, this may need to be
done over multiple pruning cycles; this should allow the network to adapt to changes
over time, reducing the risk of it getting ‘stuck’ in a sub-optimal state.

Figure 4.
An example of the pruning stage, building off of the progression network shown in Figure 3. Note that only newly
formed connections are targeted for pruning by default, with pre-existing connections remaining safe. Parameters
themselves can also be effectively lost entirely (shown as nodes with no fill and a dashed outline) should all connections
leading into them get removed. This results in all connections leading out of them also getting pruned by proxy.

11

Delivering Precision Medicine to Patients with Spinal Cord Disorders; Insights into…
DOI: http://dx.doi.org/10.5772/intechopen.98713

For our DCM data, the complexity of the illness and scope of the data makes it
extremely unlikely for a worst-case pruning issue to occur. As such, a 10% lowest
absolute weight pruning system, applied globally, is selected as our starting point,
iteratively applied until a loss of mean accuracy over 10 post-prune correction epochs
is observed.

4. Protocol assessment

4.1 Progressive learning ConvNet

4.1.1 Methodology

To confirm our protocol functions effectively in practice, we replicated the CIFAR-
100 analysis used in the original Progressive Learning paper [29], with a few major
changes to replicate a precision medicine environment (i.e. the kind of clinical context
in which data is typically collected). First, only the CIFAR-10 dataset was used [34],
rather than it being used as the model initialization dataset. This was done to better
reflect the clinical environment, where we are unlikely to have a pre-established
dataset which is known to be effective at preparing our model for the task. The 10
categories of the CIFAR-10 dataset also represent the average granularity usually used
to assess many illnesses. Second, our datasets were randomly split into 10 subsets of
6000 random images, with 5000 used for training and the remaining 1000 used for
validation. The contents of these subsets was completely random, allowing for imbal-
ance in the number of elements from each of the 10 categories, reflecting how data
collected in a clinical setting could occur. Third, we skipped the curriculum stage,
again to reflect the circumstances of clinical data collection (wherein the scale of
collection is insufficient). Fourth, our framework was implemented in PyTorch [35]
rather than TensorFlow [36] due to its more robust network pruning support. Finally,
data augmentation was performed on each image to both discourage the model from
memorizing data and to simulate human error/variation in clinically acquired data.
This results in a problem which is slightly more difficult than the original setup
devised by Fayek et al., though for parity sake, we continued to use the same Convo-
lution Network design.

We tested 6 procedures, representing combinations of two different variations.
The first variation was whether the learning model trained as an independent learning
model, a progressive learning model with prior blocks frozen, or a progressive learn-
ing model with prior blocks being freely pruned and updated. For independent learn-
ing procedures, the model was completely reset after each training cycle, whereas for
progressive learning procedures the model persisted across cycles (allowing for it to
“apply” prior knowledge to new data). The second was whether data was provided in
batches (similar to a clinical setting), or submitted all at once (the “ideal” for machine
learning analyses). In batched procedures, data was submitted one subset at a time, as
described prior. A strict max wall time of 8 hours was put in place for all protocols to
simulate the limited resources (in both time and hardware) that clinical settings often
have. All protocols were run on a single Tesla V100-PCIE-16GB GPU with 16GB of
RAM and two Intel(R) Xeon(R) Gold 6148 CPUs run at 2.40GHz (speeding up initial
protocol setup).

The initial architecture for all procedures is shown in Table 1. For progressive
learning procedures, new blocks were added which were half the size of the original

12

Machine Learning - Algorithms, Models and Applications

blocks, set to receive the the concatenated outputs of all blocks in the prior layer of
each set of blocks. All parameters were initialized randomly using PyTorch version
1.8.1 default settings. We used an ADAM optimizer with a learning rate of 0.001, first
moment β1 of 0.99, second moment β2 of 0.999, and weight decay λ of 0.001 during
training. For progressive learning models, an identical optimizer with one tenth the
learning rate was used for post-pruning model optimization. Each cycle consisted of
90 epochs of training. Progressive procedures were given 10 epochs per pruning cycle,
with pruning being repeated until the mean accuracy of the prior set of epochs was

Block Number Type Size Other

1 2DConvolution 32, 3x3 Stride = 1

2DBatchNorm

ReLU

[Concatenation]

2 2DConvolution 32, 3x3 Stride = 1

2DBatchNorm

ReLU

2DMaxPooling 2x2 Stride = 2

Dropout r = 0.25

[Concatenation]

3 2DConvolution 64, 3x3 Stride = 1

2DBatchNorm

ReLU

[Concatenation]

4 2DConvolution 64, 3x3 Stride = 1

2DBatchNorm

ReLU

2DMaxPooling 2x2 Stride = 2

Dropout r = 0.25

[Concatenation]

5 Flatten

Linear 512

1DBatchNorm 512

ReLU

Dropout r = 0.5

6 [Concatenation]

Linear 20

Softmax

Table 1.
The basic structure of the convolutional neural network being tested on the CIFAR-10 dataset. Based on the model
used by Fayek et al. [29]. [Concatenation] indicates where the output of one set of blocks would be concatenated
together before being fed into new blocks in the following layer, and can be ignored for independent learning tasks.

13

Delivering Precision Medicine to Patients with Spinal Cord Disorders; Insights into…
DOI: http://dx.doi.org/10.5772/intechopen.98713

greater than that of the new set of epochs, with the model’s state being restored to the
prior before continuing. The model’s training and validation accuracy was evaluated
and reported once per epoch. Protocol efficacy was measured via the max validation
accuracy of the model over all cycles and epochs and mean best-accuracy-per-cycle
(BAPC) for all cycles.

4.1.2 Results

For our full datasets, the model achieved diagnostic classification accuracy values
of 80-85% for most of the results. The simple model, without progression and with full
access to the entire dataset, reached a max accuracy of 81.13%, with a mean BAPC of
80.71%. Adding progression to the process further improved this, primarily though
the pruning stage, with a max accuracy of of 84.80%. However, the mean BAPC
dropped to 77.44%, as prior frozen parameters in the model appeared to make the
model “stagnate”. Allowing the model to update and prune these carried-over param-
eters improves things substantially, leading to a max accuracy of 90.66% and a mean
BAPC of 84.83%.

When data was batched, a noticeable drop in accuracy was observed, as expected.
Without progressive learning, our model’s max observed accuracy was only 73.7% (a
drop of 7.37%), with a mean BAPC of 71.75%. The progressive model with frozen
priors initially performed better, reaching its maximum accuracy of 75.9% in its first
cycle, but rapidly fell off, having a mean BAPC of 66.0%. Allowing the model to
update its priors greatly improve the results, however, leading to a maximum accu-
racy of 82.4% and a mean BAPC of 79.02%, competing with the static model trained
on all data at once.

A plot of each model’s accuracy for each model setup, taken over the entire
duration (all cycles and epochs) for both the training and validation assessments, is
shown in Figure 5.

4.2 DenseNet

4.2.1 Methodology

To confirm that the success of the setup suggested by Fayek et al. was not due to
random chance, we also applied the technique to another model which is effective at
predicting the CIFAR-10 dataset; the DenseNet architecture [37]. DenseNets are
characterized by their “blocks” of densely connected convolution layer chains, leading
to a model which can utilize simpler features identified in early convolutions to
inform later layers that would, in a more linear setup, not be connected together at all.
These blocks are a perfect fit for our method, as they can be generated and added to
our progressive learning network just like any other set of layers. DenseNets have also
been shown to have better accuracy than classical convolution nets within the CIFAR-
10 dataset, reaching error rates of less than 10% in many cases [37]. However, the
dense connections make the networks extremely complex, and they are generally
highly over-parameterized as well, making them prone to over-fitting in some cases.

Our testing methodology was largely identical to that of the Convolutional net-
work tested in the previous section. One change was to use a Stochastic Gradient
Descent (SGD) optimizer with an initial learning rate of 0.1. Training was done in
batches of 64, for a total of 300 epochs per cycle. The learning rate is reduced by a
factor of 10 when 50% and 75% of the epochs for each cycle has passed. The SGD

14

Machine Learning - Algorithms, Models and Applications

optimizer was set with a weight decay of 0.0001 and a momentum of 0.9. Dropout
layers with a drop rate of 0.2 were added after each block as well. The initial architec-
ture for the network was based on the ‘densenet-169’ architecture, and is shown in
Table 2, having a growth rate of 32, an initial feature count of 64, and consisting of 4
blocks of densely connected convolution layers, each with 6, 12, 32, and 32 convolu-
tion layers respectively. For progressive learning systems, new blocks followed the
same architecture with half the growth rate (16) and initial features (32). These
changes were made to maintain parity with the original DenseNet CIFAR-10 test [37].

4.2.2 Results

For our full datasets, we saw an accuracy values of around 90%. The simple model,
without progression, reached a max accuracy of exactly 90%, but was only able to run
one cycle to completion before the 8 hour time limit was reached. Adding progression
to the process improved this slightly, resulting in a max accuracy of of 90.66%, but
only barely completed its first pruning cycle before the time limit was reached. As a
result, the same accuracy was observed for both progressive models with and without

Figure 5.
The training progression of the ConvNet model replicated from Fayek et. al’s study [29] in various forms. From left
to right, the model on its own, reset after every cycle (static), a progressively learning model, with prior traits frozen
(progressive, frozen), and a progressively learning model, with all traits open to training and pruning each cycle
(progressive, free). Training accuracy is shown in blue, with validation accuracy shown in orange. The maximum
observed accuracy for each is indicated via a horizontal dotted (training) or dashed (validation) line. The dotted
horizontal lines indicate where the training of the model for a given cycle was complete (not including the pruning
of progressive models). Note that the total number of epochs taken between these cycles differs from cycle to cycle in
progressive models, as a result of the pruning stage cycling until a validation accuracy loss was observed.

15

Delivering Precision Medicine to Patients with Spinal Cord Disorders; Insights into…
DOI: http://dx.doi.org/10.5772/intechopen.98713

priors being trainable, as no new prior blocks were added. Slight variations were still
observed, however, due to how the model’s initialization process differs.

When data was batched, a much more significant drop in accuracy occured as
compared to the Convolutional network. Without progressive learning, our model’s
max observed accuracy was only 69.9% (a drop of more than 30%), with a mean
BAPC of 65.87%. However, it was able to run for all 10 cycles within the allotted
8 hour time span. The progressive model with frozen priors performed even worse,
reaching a maximum accuracy of 67.1% in its first cycle, and only completing 5 cycles
before the time limit, only reaching a mean BAPC of 64.28%. Allowing the model to
update its priors somewhat improved the results, leading to a maximum accuracy of
71.7% and a mean BAPC of 68.28%, showing some slight recovery over the static
model in a batch scenario. However, it also only managed to run through 5 cycles
before the time limit was reached.

Block Number Type Size Other

1 2DConvolution 64, 7x7 Stride = 2, Padding = 3

2DBatchNorm

ReLU

2DMaxPooling 3x3 Stride = 2, Padding = 1

[Concatenation]

2 Dense Block Layers = 6 Bottleneck = 4, r = 0.2

Transition Block

[Concatenation]

3 Dense Block Layers = 12 Bottleneck = 4, r = 0.2

Transition Block

[Concatenation]

4 Dense Block Layers = 32 Bottleneck = 4, r = 0.2

Transition Block

[Concatenation]

5 Dense Block Layers = 32 Bottleneck = 4, r = 0.2

Transition Block

[Concatenation]

6 2DBatchNorm 1664

[Concatenation]

7 ReLU

2DAdaptiveAveragePool 1x1

Flatten

Linear 1664

Table 2.
The structure of the DenseNet mdoel being tested on the CIFAR-10 dataset. Based on the model used by Huang
et al. [37]. Dense block indicates a densely connected convolution block, with transition block indicating a
transition layer, both being detailed in Huang et. al’s original paper. [Concatenation] indicates where the output
of one set of blocks would be concatenated together before being fed into new blocks in the following layer, and can
be ignored for independent learning tasks. Where it appears, r indicates dropout rate for the associated block.

16

Machine Learning - Algorithms, Models and Applications

A plot of each model’s accuracy for each model setup, taken over the entire
duration (all cycles and epochs) for both the training and validation assessments, is
summarized in Figure 6.

5. Discussion and conclusions

The results of our tests show great promise for how these approaches to machine
learning use in precision medicine can be used, while nonetheless highlighting some
significant shortcomings which will need to be considered should this framework
become common practice. Most notably, we see that model’s which over-fit the
available data are extremely detrimental to the system, even if the underlying model
would be better with all data immediately available to it. This is shown very clearly
with the effectiveness of pruning in all our models, with clear gains in accuracy
observed, likely as a result of the process helping counteract over-fitting resulting
from over-parameterized models. Finding an “ideal” model for a given task is already
a difficult task, and our results show that this is only exacerbated by the conditions of

Figure 6.
The training progression of the DeepNet model replicated from Huang et. al’s original ‘densenet-169’model [37] in
various forms. From left to right, the model on its own, reset after every cycle (static), a progressively learning
model, with prior traits frozen (progressive, frozen), and a progressively learning model, with all traits open to
training and pruning each cycle (progressive, free). Training accuracy is shown in blue, with validation accuracy
shown in orange. The maximum observed accuracy for each is indicated via a horizontal dotted (training) or
dashed (validation) line. The dotted horizontal lines indicate where the training of the model for a given cycle was
complete (not including the pruning of progressive models). Note that the total number of epochs taken between
these cycles differs from cycle to cycle in progressive models, as a result of the pruning stage cycling until a validation
accuracy loss was observed.

17

Delivering Precision Medicine to Patients with Spinal Cord Disorders; Insights into…
DOI: http://dx.doi.org/10.5772/intechopen.98713

a clinical environment. Nevertheless, there is clearly potential in this framework, with
the Convolutional network tested on clinical-like batch data being near identical in
effectiveness to its static counterpart trained on the full dataset.

We are also optimistic that many opportunities remain for improvement in pro-
gressive learning implementations. Our current implementation of the progressive
learning framework is locked to a specific set of initial data inputs, being unable to add
new ones should they become available. In theory, this could be as simple as adding a
new set of initial blocks to the existing network, in effect acting like a “progression”
stage with custom new blocks (as well as an update to existing new block generation
procedures to match). However, this has a number of issues that we have not, at
present, found a way to resolve. First, each branch is likely to “learn” at different
rates, resulting in one set of blocks associated with a given set of input data containing
more redundant features per-progression stage than the rest. This proves problematic
during pruning, however; we either over-prune blocks with important features within
them, or under-prune those which contain an abundance of redundant and/or noise-
contributing features. We believe this can be resolved, but were simply unable to do
so by the time of this publication.

Another potential improvement would be to “carry-over” output layers weights
between progression stages. This would allow for the network to have better forward
transfer, so long as the task’s end goal (categorical prediction, single metric estimation
etc.) remains the same. In our implementation, this is currently not the case, with the
output layer being regenerated every cycle, keeping it in line with the original Pro-
gressive Learning framework’s design [29]. The difficulty of implementing such as
system, as well as its effectiveness in improving model outcomes, has yet to be tested.

One other major hurdle is that of long term memory cost. As currently
implemented, pruning does not actually remove parameters from the model; it simply
masks them out during training and evaluation, preventing them from contributing to
the models predictions. While this improves the speed and accuracy of the model being
generated, its memory footprint expands infinitely as more cycles are run. Resolving
this issue is difficult, however, requiring the model to effectively fully re-construct itself
to account for any now-removed parameters. Doing so would allow the model to come
to a “static”memory cost, as the number of pruned parameters approaches the number
of new ones added every cycle. In turn, this would enable applications where the model
is expected to existing for very long duration in limited resource systems. Such com-
pression techniques are an ongoing field of research at time of writing; as such, we
believe such a implementation will be possible in the near future.

Finally, testing our methodology on a real-world clinical dataset is needed before
we can be sure it is truly effective. While the CIFAR-10 dataset [34] has been shown
to work effectively for machine learning testing purposes, our assumptions about
clinical data still need to be confirmed. We intend to put our framework to the test
soon, assessing its effectiveness at predicting DCM severity using the DCM data
mentioned throughout this chapter; nevertheless, this framework should be consid-
ered experimental until such results (from ourselves or others) are acquired. Contin-
ual learning systems trained for clinical data also retain the limitations of continual
learning, such as increased potential to over-fit and the inability to transfer new
knowledge obtained to help with the understanding of prior knowledge. Modifications
to the progression procedure have been proposed to amend this [29], though these
have not been tested at time of writing.

Overall, however, we believe our framework for machine learning system design
in precision medicine should work well as a road-map for future research, even

18

Machine Learning - Algorithms, Models and Applications

though refinements remain to be made. With systems such as the Progressive Learn-
ing framework available, these new systems can adapt to changes in data trends while
accepting new data in effectively random batches, both important requirements for a
clinical environment. Well designed data storage and management also allows such
systems to easily access, update, and report important metrics to all necessary parties,
while remaining open to changes as new research is completed. Through the applica-
tion of these techniques, modern medicine should be able to not only adapt to the age
of information, but to benefit immensely from it.

Abbreviations

DCM Degenerative Cervical Myeolopathy
CIFAR Canadian Institute for Advanced Research
mJOA Modified Japanese Orthopedic Association
BIDS Brain Imaging Data Structure
CNN Convolutional Neural Network
DCLN Deeply Connected Learning Network
BAPC Best Accuracy Per Cycle
SGD Stochastic Gradient Descent

Author details

Kalum J. Ost1,2, David W. Anderson2† and David W. Cadotte1,2,3,4*†

1 Hotchkiss Brain Institute, Calgary, Alberta, Canada

2 Cumming School of Medicine, Calgary, Alberta, Canada

3 Division of Neurosurgery, Departments of Clinical Neurosciences and Radiology,
University of Calgary, Alberta, Canada

4 Combined Orthopedic and Neurosurgery Spine Program, University of Calgary,
Alberta, Canada

*Address all correspondence to: david.cadotte@ucalgary.ca

†These authors contributed equally.

© 2021 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms of
theCreative CommonsAttribution License (http://creativecommons.org/licenses/by/3.0),
which permits unrestricted use, distribution, and reproduction in anymedium, provided
the originalwork is properly cited.

19

Delivering Precision Medicine to Patients with Spinal Cord Disorders; Insights into…
DOI: http://dx.doi.org/10.5772/intechopen.98713

References

[1] Julia Adler-Milstein and Ashish K Jha.
Hitech act drove large gains in hospital
electronic health record adoption. Health
Affairs, 36(8): 1416–1422, 2017. doi:
10.1016/j.cell.2019.02.039.

[2] R Scott Evans. Electronic health
records: then, now, and in the future.
Yearbook of medical informatics, (Suppl
1):S48, 2016.

[3]Michael Bliss. William Osler: A life in
medicine. Oxford University Press, 1999.

[4] Zheng-Guo Wang, Liang Zhang, and
Wen-Jun Zhao. Definition and
application of precision medicine.
Chinese Journal of Traumatology, 19(5):
249–250, 2016.

[5] Christina L Aquilante, David P Kao,
Katy E Trinkley, Chen-Tan Lin, Kristy R
Crooks, Emily C Hearst, Steven J Hess,
Elizabeth L Kudron, Yee Ming Lee, Ina
Liko, et al. Clinical implementation of
pharmacogenomics via a health system-
wide research biobank: the university of
colorado experience, 2020.

[6] Jessica R Williams, Dalia Lorenzo,
John Salerno, Vivian M Yeh, Victoria B
Mitrani, and Sunil Kripalani. Current
applications of precision medicine: a
bibliometric analysis. Personalized
medicine, 16(4):351–359, 2019. doi:
10.2217/pme-2018-0089.

[7]Omar Khan, Jetan H Badhiwala,
Giovanni Grasso, and Michael G
Fehlings. Use of machine learning and
artificial intelligence to drive
personalized medicine approaches for
spine care. World Neurosurgery, 140:
512–518, 2020. doi: 10.1016/j.
wneu.2020.04.022.

[8] Renato Cuocolo, Martina Caruso,
Teresa Perillo, Lorenzo Ugga, and Mario

Petretta. Machine learning in oncology:
A clinical appraisal. Cancer letters, 481:
55–62, 2020. doi: 10.1016/j.
canlet.2020.03.032.

[9] Aria Nouri, Lindsay Tetreault,
Anoushka Singh, Spyridon K Karadimas,
and Michael G Fehlings. Degenerative
cervical myelopathy: epidemiology,
genetics, and pathogenesis. Spine, 40
(12):E675–E693, 2015. doi: 10.1097/
BRS.0000000000000913.

[10] Benjamin M Davies, Oliver D
Mowforth, Emma K Smith, and Mark
RN Kotter. Degenerative cervical
myelopathy. Bmj, 360, 2018. doi:
10.1136/bmj.k186.

[11] Ivana Kovalova, Milos Kerkovsky,
Zdenek Kadanka, Zdenek Kadanka Jr,
Martin Nemec, Barbora Jurova, Ladislav
Dusek, Jiri Jarkovsky, and Josef
Bednarik. Prevalence and imaging
characteristics of nonmyelopathic and
myelopathic spondylotic cervical cord
compression. Spine, 41(24):1908–1916,
2016. doi: 10.1097/
BRS.0000000000001842.

[12] Lindsay A Tetreault, Branko Kopjar,
Alexander Vaccaro, Sangwook Tim
Yoon, Paul M Arnold, Eric M
Massicotte, and Michael G Fehlings. A
clinical prediction model to determine
outcomes in patients with cervical
spondylotic myelopathy undergoing
surgical treatment: data from the
prospective, multi-center aospine north
america study. JBJS, 95 (18):1659–1666,
2013. doi: 10.2106/JBJS.L.01323.

[13] Josef Bednarik, Zdenek Kadanka,
Ladislav Dusek, Milos Kerkovsky,
Stanislav Vohanka, Oldrich Novotny,
Igor Urbanek, and Dagmar
Kratochvilova. Presymptomatic
spondylotic cervical myelopathy: an

20

Machine Learning - Algorithms, Models and Applications

updated predictive model. European
Spine Journal, 17(3):421–431, 2008. doi:
10.1007/s00586-008-0585-1.

[14] Benjamin S Hopkins, Kenneth A
Weber II, Kartik Kesavabhotla, Monica
Paliwal, Donald R Cantrell, and Zachary
A Smith. Machine learning for the
prediction of cervical spondylotic
myelopathy: a post hoc pilot study of 28
participants. World neurosurgery, 127:
e436–e442, 2019. doi: 10.1016/j.
wneu.2019.03.165.

[15]Omar Khan, Jetan H Badhiwala,
Muhammad A Akbar, and Michael G
Fehlings. Prediction of worse functional
status after surgery for degenerative
cervical myelopathy: A machine learning
approach. Neurosurgery, 2020. doi:
10.1093/neuros/nyaa477.

[16] Kalum Ost, W Bradley Jacobs,
Nathan Evaniew, Julien Cohen-Adad,
David Anderson, and David W Cadotte.
Spinal cord morphology in degenerative
cervical myelopathy patients; assessing
key morphological characteristics using
machine vision tools. Journal of Clinical
Medicine, 10(4): 892, 2021. doi: 10.3390/
jcm10040892.

[17] Benjamin De Leener, Simon Lévy,
Sara M Dupont, Vladimir S Fonov,
Nikola Stikov, D Louis Collins, Virginie
Callot, and Julien Cohen-Adad. Sct:
Spinal cord toolbox, an open-source
software for processing spinal cord mri
data. Neuroimage, 145:24–43, 2017. doi:
10.1016/j.neuroimage.2016.10.009.

[18] Takashi Kameyama, Yoshio
Hashizume, Tetsuo Ando, and Akira
Takahashi. Morphometry of the normal
cadaveric cervical spinal cord. Spine, 19
(18):2077–2081, 1994. doi: 10.1097/
00007632-199409150-00013.

[19]Nitin B Jain, Gregory D Ayers, Emily
N Peterson, Mitchel B Harris, Leslie

Morse, Kevin C O’Connor, and Eric
Garshick. Traumatic spinal cord injury in
the united states, 1993-2012. Jama, 313
(22):2236–2243, 2015.

[20] Raia Hadsell, Dushyant Rao, Andrei
A Rusu, and Razvan Pascanu. Embracing
change: Continual learning in deep neural
networks. Trends in Cognitive Sciences,
2020. doi: 10.1016/j.tics.2020.09.004.

[21]Mongodb. https://github.com/mong
odb/mongo, 2013.

[22]Nathan Evaniew, David W Cadotte,
Nicolas Dea, Christopher S Bailey, Sean
D Christie, Charles G Fisher, Jerome
Paquet, Alex Soroceanu, Kenneth C
Thomas, Y Raja Rampersaud, et al.
Clinical predictors of achieving the
minimal clinically important difference
after surgery for cervical spondylotic
myelopathy: an external validation study
from the canadian spine outcomes and
research network. Journal of
Neurosurgery: Spine, 33(2):129–137, 2020.
doi: 10.3171/2020.2.spine191495.

[23] Lindsay Tetreault, Branko Kopjar,
Aria Nouri, Paul Arnold, Giuseppe
Barbagallo, Ronald Bartels, Zhou
Qiang, Anoushka Singh, Mehmet Zileli,
Alexander Vaccaro, et al. The modified
japanese orthopaedic association scale:
establishing criteria for mild, moderate
and severe impairment in patients with
degenerative cervical myelopathy.
European Spine Journal, 26(1):78–84,
2017. doi: 10.1007/s00586-016-4660-8.

[24] Krzyszt of J Gorgolewski, Tibor
Auer, Vince D Calhoun, R Cameron
Craddock, Samir Das, Eugene P Duff,
Guillaume Flandin, Satrajit S Ghosh,
Tristan Glatard, Yaroslav O Halchenko,
et al. The brain imaging data structure, a
format for organizing and describing
outputs of neuroimaging experiments.
Scientific data, 3(1):1–9, 2016. doi:
10.1038/sdata.2016.44.

21

Delivering Precision Medicine to Patients with Spinal Cord Disorders; Insights into…
DOI: http://dx.doi.org/10.5772/intechopen.98713

[25] A. Chen, J. Beer, N. Tustison, P.
Cook, R. Shinohara, and H. Shou.
Removal of scanner effects in covariance
improves multivariate pattern analysis in
neuroimaging data. bioRxiv p, 2019.

[26] Xiangjie Li, Kui Wang, Yafei Lyu,
Huize Pan, Jingxiao Zhang, Dwight
Stambolian, Katalin Susztak, Muredach
P Reilly, Gang Hu, and Mingyao Li. Deep
learning enables accurate clustering with
batch effect removal in single-cell rna-
seq analysis. Nature communications, 11
(1):1–14, 2020. doi: 10.1038/s41467-020-
15851-3.

[27] Samuel J Yang, Scott L Lipnick, Nina
R Makhortova, Subhashini Venugopalan,
Minjie Fan, Zan Armstrong, Thorsten M
Schlaeger, Liyong Deng, Wendy K
Chung, Liadan O’Callaghan, et al.
Applying deep neural network analysis
to high-content image-based assays.
SLAS DISCOVERY: Advancing Life
Sciences R&D, 24(8):829–841, 2019. doi:
10.1177/2472555219857715.

[28] Jake Turicchi, Ruairi O’Driscoll,
Graham Finlayson, Cristiana Duarte,
Antonio L Palmeira, Sofus C Larsen,
Berit L Heitmann, and R James Stubbs.
Data imputation and body weight
variability calculation using linear and
nonlinear methods in data collected from
digital smart scales: simulation and
validation study. JMIR mHealth and
uHealth, 8(9):e17977, 2020.

[29]Haytham M Fayek, Lawrence
Cavedon, and Hong Ren Wu.
Progressive learning: A deep learning
framework for continual learning.
Neural Networks, 128:345–357, 2020. doi:
10.1016/j.neunet.2020.05.011.

[30]Olaf Ronneberger, Philipp Fischer,
and Thomas Brox. U-net: Convolutional
networks for biomedical image
segmentation. In International Conference
on Medical image computing and

computer-assisted intervention, pages 234–
241. Springer, 2015.

[31] Alex Krizhevsky, Ilya Sutskever, and
Geoffrey E Hinton. Imagenet
classification with deep convolutional
neural networks. Advances in neural
information processing systems, 25: 1097–
1105, 2012.

[32] Ting Zhang, Guo-Jun Qi, Bin Xiao,
and Jingdong Wang. Interleaved group
convolutions. In Proceedings of the IEEE
international conference on computer
vision, pages 4373–4382, 2017.

[33] Liangru Ke, Yishu Deng, Weixiong
Xia, Mengyun Qiang, Xi Chen, Kuiyuan
Liu, Bingzhong Jing, Caisheng He,
Chuanmiao Xie, Xiang Guo, et al.
Development of a self-constrained 3d
densenet model in automatic detection
and segmentation of nasopharyngeal
carcinoma using magnetic resonance
images. Oral Oncology, 110:104862, 2020.
doi: 10.1016/j.
oraloncology.2020.104862.

[34] Alex Krizhevsky, Geoffrey Hinton,
et al. Learning multiple layers of features
from tiny images. 2009.

[35] Adam Paszke, Sam Gross, Soumith
Chintala, Gregory Chanan, Edward
Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and
Adam Lerer. Automatic differentiation
in pytorch. 2017.

[36]Martín Abadi, Ashish Agarwal, Paul
Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy
Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow,
Andrew Harp, Geoffrey Irving, Michael
Isard, Yangqing Jia, Rafal Jozefowicz,
Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dandelion Man’e, Rajat
Monga, Sherry Moore, Derek Murray,

22

Machine Learning - Algorithms, Models and Applications

Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever,
Kunal Talwar, Paul Tucker, Vincent
Vanhoucke, Vijay Vasudevan, Fernanda
Viégas, Oriol Vinyals, Pete Warden,
Martin Wattenberg, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng.
TensorFlow: Large-scale machine
learning on heterogeneous systems,
2015. URL https://www.tensorflow.org/.
Software available from tensorflow.org.

[37] Gao Huang, Zhuang Liu, Laurens
Van Der Maaten, and Kilian Q
Weinberger. Densely connected
convolutional networks. In Proceedings of
the IEEE conference on computer vision and
pattern recognition, pages 4700–4708,
2017.

23

Delivering Precision Medicine to Patients with Spinal Cord Disorders; Insights into…
DOI: http://dx.doi.org/10.5772/intechopen.98713

