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Abstract

The Hypothalamic – Pituitary – Adrenal (HPA) Axis is a unique system that 
mediates an immediate reactivity to a wide range of stimuli. It has a crucial role 
in synchronizing the behavioral and hormonal responses to internal and external 
threats, therefore, increases the chance of survival. It also enables the body systems 
to adapt to challenges put up by the pregnancy. Since the early stages of pregnancy 
and throughout delivery, HPA axis of the mother continuously navigates that of 
the fetus, and both have a specific cross talk even beyond the point of delivery and 
during postnatal period. Any disturbance in the interaction between the maternal 
and fetal HPA axes can adversely affect both. The HPA axis is argued to be the 
mechanism through which maternal stress and other suboptimal conditions during 
prenatal period can program the fetus for chronic disease in later life. In this chap-
ter, the physiological and non-physiological communications between maternal and 
fetal HPA axes will be addressed while highlighting specific and unique aspects of 
this pathway.

Keywords: Hypothalamic–Pituitary–Adrenal Axis, glucocorticoids, maternal stress, 
fetal programming, intrauterine environment

1. Introduction

It is fundamental to know that HPA axis is considered among the few body 
systems that start functioning as early as 8–12 weeks of gestation [1]. This indi-
cates that HPA axis is a vital system for fetal development, where Corticotrophin 
releasing hormone (CRH) and Adrenocorticotropic hormone (ACTH) are crucial 
for pituitary growth, adrenal cortical differentiation and maturation, as well as 
steroidogenesis in the fetus, which is driven mainly via Vascular Endothelial Growth 
Factor (VEGF) and epidermal growth factor (EGF) [2, 3]. Moreover, fetal HPA axis 
promotes other fetal organ structural and functional maturation such as lung, liver, 
gastrointestinal tract, central nervous system (CNS) and other organs important 
for postnatal thrive [4]. However, it has been found that early fetal environment 
can have detrimental effects on the proper physiological response of HPA axis, and 
subsequently can increase fetal risk of diseases later in life. In this chapter, possible 
intrauterine influences on this crucial pathway will be explored.
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2. Development and Anatomy of the pituitary gland

The hypophysis is a blend of two tissues. Around week 3 of gestation, a finger 
of ectoderm grows upward from the roof of the mouth forming a protrusion which 
known as Rathke’s pouch [5]. Later, this will develop into the anterior pituitary or 
adenohypophysis (Figure 1A). Simultaneously, another projection of ectodermal 
tissue evaginates ventrally from the diencephalon of the developing brain and form 
the posterior pituitary or neurohypophysis. As the fetus grows and develops, the 
two tissues grow into one another and become tightly apposed, but their struc-
ture remains distinctly different, reflecting their differing embryological origins 
(Figure 1B).

Based on the histological features, the adenohypophysis and neurohypophysis 
are subdivided as follow: (Figure 2)

• Adenohypophysis (Anterior pituitary):

Pars distalis: It is the distal thick round part of the adenohypophysis.
Pars tuberalis: It is the longitudinal part that surrounds the infundibular stalk.
Pars intermedia: It is a thin layer of tissue that is separated from the pars 
distalis by a hypophyseal cleft.

• Neurohypophysis (Posterior pituitary):

Pars nervosa: It is the thick, round distal part of the posterior pituitary.
Median eminence: It is the upper section of the neurohypophysis above the 
pars tuberalis.

Infundibular stalk: It is the “stem” that connects the pars nervosa to the base of 
the brain [6].

Figure 1. 
(A) Timeline of fetal pituitary gland development. (B) Pituitary gland embryogenesis.
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3. Basic regulation of HPA Axis

The HPA axis is regulated precisely and continuously. The main CNS regulation 
of HPA axis is through activation of corticotrophin releasing hormone (CRH) from 
the paraventricular nuclei (PVN) whose cell bodies are located in the hypothalamus 

Figure 2. 
Anatomy of human pituitary gland.

Figure 3. 
Basic physiology of HPA axis regulation. CRH, corticotrophin releasing hormone; ACTH, adrenocorticotropic 
hormone; GC, glucocorticoids.
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and also produce arginine vasopressin (AVP). Through pituitary-portal circulation 
in median eminence of the hypothalamus, CRH will be secreted and carried to the 
anterior loop of the pituitary gland. Subsequently, this will stimulate the secretion 
of Adrenocorticotropic hormone (ACTH) into the peripheral circulation. As a 
result, the adrenal cortex will be stimulated for synthesis and secretion of glucocor-
ticoids into the blood stream (Figure 3) [7].

4. Circadian rhythm of cortisone secretion

The cortisone secretion in our circulation exhibits a specific regular rhythm 
known as the circadian rhythm (Figure 4). This is because plasma cortisone level 
will be high in early morning and gradually decreases in the circulation as we 
approach the night, and reaches its lowest level, the nadir, during early hours of our 
sleep. Then, the plasma level of cortisone gradually increases to return to its high 
level. This pattern can be disrupted by many factors such as stress, disease, exercise, 
and during physiological adaptation to pregnancy.

5. Molecular mechanism of glucocorticoid action

The glucocorticoid receptor (GR), a member of the nuclear steroid receptor 
superfamily that acts as a ligand-dependent transcription factor to regulate the 
expression of glucocorticoid-responsive genes [8].

The GR can activate or suppress gene expression depending on the glucocorti-
coid response element sequence in the promoter region of GR responsive genes or 
binding DNA indirectly via other transcription factors (Figure 5). The association 
of GR with various cell types, such as ovary, suggests that it has a direct impact on 
gonadal reproduction [9, 10].

Glucocorticoid receptors are usually found in the cytoplasm as a complex 
with heat shock proteins (HSP) 90, 70, and 23. When the glucocorticoids are 
secreted from the adrenal cortex, they enter the target cell cytoplasm and mobilize 
the HSP to bind the GR. This complex will then be translocated to the nucleus, 

Figure 4. 
Circadian rhythm of cortisol secretion.
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where it binds to a specific DNA sequence in the promotor region of the GR 
 responsive genes, resulting in activation of gene expression via attracting other 
transcription factors, which will bind to the promotor region as well as RNA poly-
merase II. GR can also modulate target gene expression through protein–protein 
interaction rather than direct DNA binding [11–13].

6.  Hypothalamic pituitary adrenal Axis interaction with different body 
systems

The HPA axis is a very complex system that plays a crucial role in many physi-
ological and pathological processes in the human body. One of earliest evidence 
that has led to the discovery of adrenal hormones and its fundamental functions 
was dated back to 1855 [14]. Thomas Addison found that adrenal insufficiency 
was associated with a group of manifestations that indicate dysfunction of other 
systems. Among these manifestations is excess of circulating lymphocytes. This has 
been confirmed in other studies that show adrenal gland removal will eventually 
result in thymus gland hypertrophy [15]. Hence, the wide pharmacological use of 
glucocorticoids to suppress the immune response in severe inflammation and ana-
phylactic reaction is mainly based on this interaction between the immune system 
and the HPA axis. Moreover, Addison noted that other systems involved include the 
gastrointestinal system (nausea, vomiting, loss of appetite and abdominal pain), 
cardiovascular system (hypotension), musculoskeletal system (muscle and joint 
pain and extreme fatigue), integumentary system (hyperpigmentation and hair 
loss), nervous system (irritability, depression and behavioral abnormality) and 
endocrine system (hypoglycemia).

Figure 5. 
Molecular mechanism of glucocorticoid action. GRα, glucocorticoid receptor alpha; HSPs, heat shock proteins; 
GREs, glucocorticoid responsive elements; TF, transcription factor; TFREs, transcription factor responsive 
elements.
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7. Interaction between HPA Axis and reproductive hormones

It has been found that the HPA axis exhibits inhibitory effects on the female 
reproductive system through the inhibitory effects of CRH and CRH-induced 
proopiomelanocortin peptides on the hypothalamic gonadotropin-releasing 
hormone secretion. Moreover, glucocorticoids will suppress pituitary secretion of 
luteinizing hormone (LH) as well as ovarian production of estradiol and progester-
one, with increased peripheral tissue estrogen resistance. Therefore, it was evident 
that stress, eating disorders, chronic excessive exercise, melancholic depression, 
chronic alcoholism, and Cushing disease result in patients suffering from amenor-
rhea, known as hypothalamic amenorrhea. This is characterized by low follicular 
stimulating hormone (FSH), LH, Estradiol (E2) and progesterone, associated 
with anovulation at the same time, and hence the name hypo-gonadotrophic 
hypogonadism.

On the other hand, estrogen is a profound stimulator of CRH gene promotor 
region and will, therefore, cause an increase in CRH production and its end-prod-
uct, cortisone, rendering the female body in a hypercortisolism state, especially 
around the ovulation time of the menstrual cycle and during the early stages of 
pregnancy.

Reproductive tissue is found to be under the influence of the local HPA axis 
hormones. The ovaries and the endometrium both contain CRH and its receptors 
as autocoid regulators. These HPA axis components are crucial in the ovulatory 
process, corpus luteum lysis, endometrial shedding in menstruation, and blastocyst 
endometrial implantation, if pregnancy occurs. Placental CRH plays an important 
role in the adaptation of other systems to pregnancy and acts as a parturition clock, 
involved in the initiation of labor [16].

The Gonadal function is under the influence of the hypothalamic–pituitary-
gonadal (HPG) axis, which is run just parallel to HPA axis. In the HPG axis, the 
Gonadotrophin-releasing hormone (GnRH) released from the hypothalamus 
will be transported by the portal circulation to the anterior pituitary to enhance 
and cause the release of gonadotrophic hormone, FSH, and LH. FSH will bind its 
receptors and promote granulosa cell growth and release of estradiol and other 
hormones like inhibin, activin and follistatin. Whereas LH will promote the oocyte 
maturation, ovulation, and corpus luteum luteinization. High levels of circulating 
estrogen and progesterone can cause negative feedback inhibition on hypothalamic 
release of GnRH and pituitary production of FSH and LH. In situations of high 
glucocorticoid release, as in stress or in Cushing disease, the individual will suffer 
from hypogonadotropic hypogonadism. Glucocorticoids cause gonadal dysfunc-
tion through binding to glucocorticoid receptors in the hippocampus region of the 
brain and will, subsequently, affect the individual behavior and cause inhibition 
of GnRH release. This will lead to a significant reduction in FSH and LH produc-
tion with subsequent decrease in circulating estrogen and progesterone hormones. 
Glucocorticoids impact the ovaries directly by inhibiting steroid hormone synthesis 
or causing glucocorticoid-induced apoptosis [17, 18].

8. HPA Axis during pregnancy and labor

It is clear now that HPA axis interacts with the reproductive hormones and plays 
an essential role in the normal menstrual cycle, ovulation, and embryo endome-
trial implantation. However, this interplay is very precise, necessitating a balance 
between the levels of the glucocorticoids and reproductive hormones to maintain 
normal fertility and reproductivity of the human being.
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During early pregnancy, in human, the cortisol level is lower than that in late 
pregnancy. As the pregnancy continues, the cortisol level increases, resulting in 
a greater difference between nadir and peak. The lower levels of glucocorticoids 
in early pregnancy are suggested to facilitate the blastocyst implantation in the 
endometrium, as evidenced by higher salivary cortisol levels 1–3 weeks post-
conception found in women with miscarriage when compared to those with 
continuous pregnancy.

Women with chronic stress in early pregnancy have been noted to have blunting 
of cortisol levels in the morning, with no change in the nadir point of the circadian 
rhythm. As pregnancy progresses to mid and late gestation, HPA control will be 
altered and hypo-responsiveness to stress will also be evident. Unfortunately, the 
placental production of HPA peptides will challenge precise maternal HPA axis 
function assessment [19, 20].

However, in animal studies, in early pregnancy, the basal and stress-
exposed HPA axis activities were found to be similar to non-pregnant animals. 
Nonetheless, in late pregnancy, pregnant rats show reduced basal activity of HPA 
axis in addition to less reactivity to stress exposure. The hypo-responsiveness 
in late pregnancy has been investigated in animal models. In rats, the decreased 
HPA axis activity and hypo-responsiveness to stress in late pregnancy could be 
due to attenuated vasopressin secretion from the hypothalamus with maintained 
CRH. The lack of augmenting vasopressin effect will result in a weak response 
of the anterior pituitary to CRH and subsequently, less ACTH release in basal 
conditions and upon stress exposure. Moreover, there will be reduced excit-
atory input signals from the stress processing network in the limbic forebrain, 
brainstem and other brain centers delivered to PVN in the hypothalamus. On the 
other hand, some other experimental studies on rats found that progesterone 
neuropeptide metabolite, allopregnanolone, exhibits an inhibitory effect on HPA 
axis. Allopregnanolone level is higher in late pregnancy than in early pregnancy 
due to higher levels of circulating progesterone hormone [21]. Other research 
groups have postulated that an increased level of circulating cortisol in maternal 
circulation towards the end of the pregnancy downregulates the hypothalamic 
CRH release and mediates hypo-responsiveness to stress [22–24]. This HPA axis 
hypo-responsiveness to stress during late pregnancy could be a biological defense 
mechanism to maintain the fetus in a safe environment, clear of any detrimental 
effect of stress-induced high glucocorticoid secretion [21, 25].

The fetus, also, protected from the unwanted effects of high maternal glucocor-
ticoids by placental 11 β Hydroxysteroid dehydrogenase B2 enzyme (11β HSDB2) 
(Figure 6). This enzyme is responsible for inactivating 80–90% of maternal corti-
sol to inactive cortisone before delivering it to the fetal circulation. Despite all these 
natural mechanisms to minimize fetal overexposure to maternal glucocorticoids, 
these mechanisms fail to offer such protection during maternal stress, infection, 
and inflammation. Maternal and amniotic fluid (fetal) cortisol levels were both 
found to have a positive correlation, indicating that any increase in maternal serum 
cortisol level will be associated with some degree of fetal cortisol levels as well (as 
measured by amniotic fluid) [26].

Interestingly, it has been found across different species, including human, that 
ACTH and cortisol are increased on the day of parturition [27–35]. During the first 
and second stages of labor (cervical dilation and fetal expulsion, respectively), there 
will be high maternal HPA axis hormones [28, 36–39]. This could be contributed to 
by increased endometrial and placental CRH and ACTH, which subsequently induces 
fetal HPA axis hormones secretion, including ACTH and cortisol, during the third 
trimester of pregnancy and up to the time of delivery. The unique biological role of 
placental CRH is to act as a stopwatch for pregnancy and determine the labor initiation 
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timing [40–42]. This was suggested by many studies which found an exponential 
increase of placental CRH in maternal and fetal circulation as pregnancy progresses 
(Figure 7). Moreover, higher levels of placental CRH in maternal circulation are 
associated with preterm delivery, whereas pregnant women with lower levels have 
longer pregnancy.

The placental CRH is a weak stimulator of maternal pituitary ACTH, therefore, 
the exponential increase in placental CRH levels is not associated with an equivalent 
increase in maternal cortisol levels. However, the main effect of placental CRH 
would be exerted on the myometrial responsiveness to the uterotonic effect of 
oxytocin and prostaglandin F2α (PGF2α). This effect of CRH is suggested to be 
through the reduction in C-AMP in the myometrium. It also acts as a potent vaso-
dilator of feto-placental vessels, adding more efficacy in delivering oxytocin and 
prostaglandin to the myometrium and enhancing the contractility [1]. Whereas 
in fetal circulation, it acts directly on the fetal pituitary gland, stimulating ACTH 
release with subsequent increase in cortisol and dehydroepiandrosterone sulphate 
(DHEAS) release from fetal adrenal glands. This increase in fetal cortisol level is 

Figure 6. 
Interaction of maternal and fetal HPA axes during pregnancy.
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essential for fetal lung maturity and alveolar surfactant production. It also induces 
more placental CRH production that initiate parturition onset [3, 43].

9. HPA Axis during lactation

After placental delivery, the placental-CRH levels fall sharply in the maternal cir-
culation leading to a reduction in maternal cortisol levels (Figure 7). However, because 
there will be no change in glucocorticoid binding protein (GBP), the biologically 
active glucocorticoid level in maternal circulation will be maintained. Despite that, 
HPA axis will continue to be hyporesponsive to stress up to 1–3 months postpartum 
then gradually returns to normal function [44, 45]. In contrast, the salivary cortisol 
level in lactating mothers was found to be still high at 2 months after delivery [23].

Despite higher basal levels of HPA axis hormones during lactation, those women 
also exhibit less HPA axis responsiveness to stress. Interestingly, this blunted 
response to stress during lactation is more evident in multiparous rather than 
primiparous breast-feeding mothers [46].

The effect of lactation on modulating the HPA axis in basal status and in 
response to stress are postulated to be mediated through multiple neurohormonal 
mechanisms, one of which is low estradiol and other sex steroids. This results in 
loss of the induction effects of estradiol on the maternal adrenal cortex. Hence, this 
can be translated into lower cortisol levels in response to stress during lactation as 
compared to that during pregnancy [47, 48].

Moreover, suckling also can modulate HPA axis function depending on the 
environmental factors of the mother. Suckling can stimulate HPA axis only in the 
presence of the offspring and during early, but not late, lactation. This could be 
due to high circulating levels of oxytocin [49–51] and prolactin hormones [52, 53] 
during lactation. Because these hormones are known suppressors of HPA axis, they 
can cause a reduction in ACTH release.

Interestingly, maternal caring of the offspring during early postpartum period 
was associated with enhanced negative feedback inhibition of fetal hypothalamic 
CRH and reduced stress response behaviors [54, 55].

Figure 7. 
Placental CRH exponential increase in maternal circulation as pregnancy progress.
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10. HPA Axis role in Fetal programming of adult disease

Optimal intrauterine fetal environment is pivotal for healthy fetal organ growth 
and maturation, hence subsequent proper function throughout the lifespan of the 
individual. Suboptimal conditions encountered in this environment can produce 
lifelong detrimental effects on the human body. This is the main concept of the fetal 
programming hypothesis by Barker [56, 57].

Therefore, any type of intrauterine insult can result in fetal programming of 
adult disease. This has been revealed by a bulk of epidemiological studies and 
also by many animal experimental studies. Our data from maternal low protein 
diet model have shown that maternal low protein diet during a specific period of 
gestation can program metabolic syndrome phenotype in the offspring in later 
life [58]. This metabolic phenotype was a result of altered expression of key lipid 
metabolism related genes and insulin signaling pathway. Preliminary data from 
our animal model and from other groups [59–61] indicates that the programming 
effect was through a fetal glucocorticoid overexposure secondary to placental 
11 β HSD 2B downregulation [62]. In addition to its main site in the placenta, 
11 β HSD 2B is also found to be expressed in a wide range of fetal tissue such 
as the brain and liver. Placental 11 β HSD 2B is crucial for protecting the fetus 
from exposure to excess maternal cortisol, however, normal expression of brain 
11 β HSD 2B is found to play a fundamental role in preventing depression and 
other psychological disorders in later life independent from placental isoform, 
suggesting a tissue specific function for 11 β HSD 2B [63]. While in liver, the 
overexpression of 11 β HSD 1 enhances hepatic lipid deposition and other meta-
bolic abnormalities [64]. Additionally, it has been shown that the under expres-
sion of fetal brain 11 β HSD 2B is associated with downregulation of serotonin 
(5-hydroxytryptamine) receptor type 1A (5 HT1A) which is, in turn, associated 
with psychological abnormalities in later life [63]. This can explain the associa-
tion between the early separation anxiety in human infants and permanent 
hypercortisonemia as well as high β endorphin later in life with psychopathic 
manifestations [65].

With regard to metabolism, glucocorticoid excess has been linked to clinical 
observations associated with metabolic syndrome, such as central obesity, hyper-
tension, hyperlipidemia, and glucose intolerance [66–68]. In liver, glucocorticoids 
increase the activities of enzymes involved in fatty acid synthesis and promote the 
secretion of lipoproteins [67, 69]. The hepatic lipogenic effect of glucocorticoids 
is consistent with clinical findings that glucocorticoid therapy causes triglyceride 
accumulation within the liver and is responsible for the non-alcoholic fatty liver 
disease [70, 71]. Therefore, it has been suggested that prenatal exposure to maternal 
glucocorticoids could be responsible, at least in part, for the development of the 
offspring phenotype [62].

As these adrenal hormones have powerful programming properties during 
the perinatal period, it can be speculated that long-term disturbances observed in 
offspring may be, in part, mediated by maternal glucocorticoid excess. Consistent 
with this hypothesis is the fact that hypertension in rats induced by maternal 
dietary protein restriction can be prevented by pharmacological blockade of 
glucocorticoid biosynthesis in the pregnant dam and her offspring, but reversed by 
concomitant corticosterone administration [67, 72]. In low protein animal model 
of adult disease, adrenalectomy resulted in the removal of the hypertensive state 
in a corticosterone-dependent manner [67, 73]. This animal model has shown low 
protein-exposed offspring developed disturbances of hypothalamic–pituitary–
adrenal axis activity and up-regulation of glucocorticoid-sensitive enzymes in liver 
and brain [74].
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Across a wide range of human epidemiological and experimental studies and 
other animal models of programming, the HPA axis is the universal target of the 
different intrauterine insults through which the programming of adult disease will 
be mediated [75–81].

11. Conclusion

To sum up, the HPA axis is a complex neurohormonal network that controls a 
vast majority of the body physiological performance. It is not surprising that the 
HPA axis develops very early in the embryo, at around 3 weeks of gestation and 
ACTH become detectable at around 10 weeks of gestation. This can be translated to 
the fact that the HPA axis is a crucial pathway that respond to surrounding threat to 
ensure survival. HPA axis has a double phase function, i.e., in-utero and ex-utero. 
During each phase it will interact differently with the environment. While the HPA 
axis is controlling the other endocrine systems in the body, however, it remains 
under continuous feedback loop regulation by downstream hormones. This is a pre-
cise way to maintain hormonal balance and homeostasis. During intrauterine life, 
the fetal HPA axis interacts with the maternal axis through the placental barrier, 
which is equipped with 11 β HSD enzyme, the placental security guard, allowing 
only 10–20% of active maternal cortisol to access the fetal circulation. Regardless 
of the insult encountered during intrauterine life, the HPA axis in mother and fetus 
will be dysregulated and the placenta barrier mechanism impaired. The detrimental 
effects will continue beyond the intrauterine life and will be conveyed later in 
adult life as cardiovascular, metabolic, and psychological diseases. Maternal stress, 
illness, infection, inflammation, malnutrition, and other stressors are all able to 
induce fetal programming of adult disease through the HPA axis. Finally, healthy 
lifestyle as an effective strategy in disease prevention should undoubtedly be started 
long before the birth of the individual. The mother should start a healthy lifestyle 
to ensure the wellbeing of her offspring in the adult life as soon as the pregnancy is 
detected.
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