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Immunomodulatory Molecule 
Capsular Polysaccharide A from 
Bacteroides fragilis
Sunita Sharma

Abstract

Capsular Polysaccharide A (CPSA) is a polymer of a tetrasaccharide unit found 
on the surface of the symbiotic gut bacteria Bacteroides fragilis. CPSA has been 
suggested to be important for maintaining a natural equilibrium between Th1 and 
Th2 cell levels in the normal immune system of mammals. If this equilibrium is 
disrupted, the human body can develop different autoimmune disorders. The gene 
locus responsible for CPSA biosynthesis has been previously identified. The locus 
was proposed to encode one glycosyl-1-phosphate transferase (WcfS) and three 
glycosyltransferases (WcfN, -P and -Q ), three sugar modifying enzymes (WcfM, 
WcfR and WcfO), a flippase (Wzx) and a polysaccharide polymerase (Wzy) 
based on homology tools. A route for the complete biosynthesis of CPSA has been 
elucidated. The initiating sugar transferase, WcfS has been previously identified 
and characterized. An in vitro method was used to enzymatically synthesize CPSA, 
which was assembled on a fluorescent analogue of the native bactoprenyl diphos-
phate anchor one sugar at a time. Function of the hypothesized pyruvyltransferase 
WcfO was also determined. This is the first study to characterize a pyruvyltrans-
ferase involved in polysaccharide biosynthesis from a prokaryote. The biosynthesis 
of the polysaccharide was achieved in a single pot, compared to multiple steps 
involved in chemical synthesis, displaying an enormous leap in the biosynthesis of 
complex molecules like CPSA.

Keywords: Bacteroides fragilis, pyruvyltransferase, glycosyltransferase, capsular 
polysaccharide A, biosynthesis

1. Introduction

B. fragilis is an obligate anaerobic bacterium which colonizes the intestinal tract 
of the human gut, and essentially all other mammals. It is an integral component of 
the normal gastrointestinal flora [1, 2]. It is classified as a Gram-negative, non-
spore forming and anaerobic bacilli. This mammalian symbiont and opportunistic 
pathogen depends on its capsular layer for virulence as well as for symbiosis in the 
mammalian gut [3, 4]. Eight capsule polysaccharides can be expressed on its sur-
face, depending on the environmental niche of the organism, designated as CPSA 
through CPSH [5–10]. Capsular polysaccharide A is one of the eight polysaccharides 
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found on the surface of B. fragilis, and is the most abundant. CPSA plays a role in 
abscess formation when the bacterium localizes outside of its normal niche in the 
gastrointestinal tract or during surgical procedures [11]. However, this view has 
been challenged when it was found that treating the animal with the CPSA and 
then introducing the abscess-inducing bacteria resulted in the immune system of 
the animal protecting itself against the production of abscesses. Furthermore, few 
studies have also claimed that the abscess formation by B. fragilis actually prevents 
infection in the wound by other pathogenic bacteria [12, 13].

CPSA is a unique polymer. It has both negatively and positively charged motifs 
present on each repeating monomer, making it a zwitterionic molecule [7, 14] 
(Figure 1). The presence of this zwitterionic character has been attributed to the 
novel immunologic activity displayed by CPSA. The zwitterionic character has been 
shown to modulate the mammalian immune system by interacting with the adaptive 
immune system [15]. Elimination of either charge group in CPSA results in a lack of 
in vivo activation of the T-cells [16, 17].

CPSA modulates the immune system by its stimulation of a T-cell dependent 
form of immunity that provides protection against the formation of the intraab-
dominal abscesses. At the molecular level, CPSA interacts with the MHCII pathway 
similar to traditional protein antigens [18]. The first step is endocytosis of CPSA 
by the antigen-presenting cells like dendritic cells. Once in the endosome, CPSA 
is depolymerized based on the chemical reaction, deaminative cleavage [19]. This 
cleaving is mediated by nitric oxide, that has been generated by the upregula-
tion of inducible nitric oxide synthase (iNOS). The 130 kDa CPSA is processed 

Figure 1. 
Tetrameric repeat unit of the CPSA found on B. fragilis. It consists of an acetamido-4-amino-6-
deoxygalactopyranose (AADGal), 4,6-pyruvate galactose (4,6-pyr-gal), N-acetylgalactosamine (GalNAc), 
and a galactofuranose (Galf) sugar.
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to 15 kDa units. After being processed, the endosomes fuse with lysosomes and 
exocytic vesicles to form MIIC vesicle carrying HLA-DR and the accessory molecule 
HLA-DM. HLA-DM catalyzes the binding of MHCII to CPSA fragments, which is 
then presented to the CD4+ T cell receptor (Figure 2). This leads to the prolifera-
tion of the CD4+ T cell population, that produces IL-10, which is responsible for 
providing protection against the formation of intra-abdominal abscesses [15, 20].

CPSA can restore the immune system from a variety of autoimmune disorders, 
making it a promising candidate for a therapeutic drug. Colonization of nude mice 
with wild type B. fragilis, that produces the zwitterionic capsular polysaccharide A, 
protected animals from antibiotic induced experimental autoimmune encepha-
lomyelitis (EAE), while animals infected with mutant B. fragilis deficient in the 
production of the polysaccharide were not protected [12, 21]. In germ free animal 
models of Inflammatory Bowel Disease (IBD), it was found that CPSA alone with-
out the bacterial carrier was enough to stimulate normal immune system function 
and prevent intestinal inflammatory disease [22, 23]. CPSA has been given thera-
peutically to decrease pro-inflammatory cytokine production in an experimental 
model of colonic irritation [24].

2. CPSA gene locus

CPSA is a polymer of a tetramer repeated approximately 160 times. Its size 
is estimated to be 110 kDa [25]. The CPSA tetrameric repeat unit consists of an 

Figure 2. 
Depolymerization of CPSA in antigen presenting cell. 1. Internalization of CPSA in an endosome. 2. iNOS 
upregulation produces NO, which cleaves 130 kDa CPSA to ~15 kDa units. 3. Endosome fuses with the lysosome. 
4. Endo-lysosome fuses with exocytic vesicle to form MIIC vesicle which has HLA-DR, HLA-DM and processed 
polysaccharide. In here, processed polysaccharide is loaded on HLA-DR with the help of HLA-DM. 5, 6. The 
loaded HLA-DM is presented on the surface of the antigen presenting cell to be recognized by alpha beta TCR 
present on CD4+ T-cell.
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acetamido-4-amino-6-deoxygalactopyranose (AADGal), 4,6-pyruvate galactose 
(4,6-pyr-Gal), N-acetylgalactosamine (GalNAc), and a galactofuranose (Galf) 
sugar (Figure 3) [26]. The structure of CPSA has previously been well investigated 
using total correlated spectroscopy and NOESY NMR [27]. Three-dimensional 
structure of a highly related PSA2 molecule shows a right-handed helix with two 
repeating units per turn, and a pitch of 20 Å. The zwitterionic motif is formed with 
alternating anionic carboxylate lying in repeated grooves and the cationic-free 
amines exposed on the outer surface of the carbohydrate [12, 28].

Although the chemical composition of CPSA is known, yet the biochemical 
pathway involved in its production is poorly documented [29, 30]. The location of 
the proposed CPSA locus was knocked out, making a mutant B. fragilis which did 
not express CPSA on its surface, thereby confirming the location of the biosynthetic 
locus (Figure 4). Within the CPSA locus, there are eleven genes, of which nine 
express proteins similar to other proteins involved in various other polysaccharide 
biosynthesis (Table 1).

2.1 Initiating the CPSA biosynthesis

The function of the nine genes have been elucidated and a pathway has been 
constructed (Figure 5). The identity of the genes present in the CPSA gene locus 

Figure 4. 
CPSA locus in the B. fragilis genome.

Figure 3. 
Tetrameric repeat of CPSA.
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suggests that the most likely route for assembling the complex bacterial polysac-
charide is a Wzy-dependent pathway in which the repeat unit oligosaccharides are 
assembled one sugar at a time on the cytosolic face of the bacterial inner membrane 
[31]. Assembly of the oligosaccharide takes place on a C55 isoprenoid bactopre-
nol [32]. It is a hydrophobic anchor which holds the growing polymer in the cell 
membrane.

The enzymes responsible for the synthesis of the first sugar, AADGal, in the 
tetrameric repeat, and the enzyme that catalyzes the transfer of this sugar to the 
bactoprenol anchor have been well characterized [33]. AADGal is synthesized 
by the sequential action of a dehydratase and an aminotransferase, which is then 
transferred to the bactoprenyl anchor by a hexose phosphate initiating transferase. 

ORF Size (aa) Size (kDa) Role Accession no.

wzx 482 56 flippase AAK68914.1

wcfM 364 43 galactopyranose mutase AAK68915.1

wcfN 291 34 glycosyltransferase AAK68916.1

wzy 434 43 polymerase AAK68917.1

wcfO 357 40 pyruvyltransferase AAK68918.1

wcfP 378 44 glycosyltransferase AAK68919.1

wcfQ 268 32 glycosyltransferase AAK68920.1

wcfR 407 45 aminotransferase AAK68921.1

wcfS 195 23 glycosyltransferase AAK68922.1

Table 1. 
Functions of the gene products in the CPSA biosynthesis operon.

Figure 5. 
Pathway of CPSA biosynthesis.
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Figure 7. 
Biosynthesis of bactoprenyl linked monosaccharide.

Within the CPSA biosynthesis locus, there is a predicted aminotransferase gene, 
wcfR, and a hexose phosphate initiating transferase, wcfS, but no predicted dehy-
dratase was found. However, a gene encoding a potential dehydratase, ungD2, has 
been identified elsewhere in the B. fragilis genome. When this gene was knocked out 
by Coyne et al, they found out that, synthesis of the seven out of the eight capsular 
polysaccharides was stopped. Initial studies with UngD2 and WcfR did not show 
any promise in the synthesis of AADGal. Hence a previously well characterized 
dehydratase, PglF [34], from Campylobacter jejuni was used to provide the substrate 
needed for WcfR function. The coupling of these enzymes together led to the pro-
duction of AADGal (Figure 6) [35, 36]. This also points to the notion that depend-
ing on homology alone for functional assignment of genes, is not always right, and 
wet lab results are needed to confirm the function of the gene product.

The synthesized UDP-AADGal was further used as a potential substrate for 
WcfS, identified as the initiating hexose phosphate transferase. Studies done by 
Mostafavi et al. demonstrated that WcfS was indeed the initiating hexose phosphate 
transferase, which lead to the formation of the bactoprenyl linked monosaccharide 
(Figure 7) [33].

As mentioned previously, assembly of the polysaccharides in bacterial cells is 
done on a C55 bactoprenyl anchor. It is produced by the condensation of farnesyl 
diphosphate (FPP) to eight units of isopentenyl diphosphate (IPP), done by the 
enzyme undecaprenyl diphosphate synthase (UPPS). A major drawback of using 
this compound in in vitro assays is that, it does not have easily distinguishable 
chromophores associated to it, hence very few rapid assays are available to detect 
and quantify the activity of enzymes associated with polysaccharide synthesis. 
To circumvent this problem, the Troutman lab developed fluorescent analogues 
of the native bactoprenyl, which are easily traceable [25, 37]. Assays done using 
these analogues take a short time to reveal valuable information about the enzymes 
when compared to traditional assays, which follow the more tedious route of using 
radioactive labeled substrates. Mostafavi et al. used a p-nitroaniline bactoprenyl 
phosphate analogue to find out the function of WcfS (Figure 7) [33].

Figure 6. 
Biosynthesis of AADGal.
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2.2 Glycosyltransferases involved in CPSA biosynthesis

Cell surface polysaccharides are nothing but complex carbohydrates. They 
play important roles in a number of biological processes such as cell growth, 
cell to cell interactions, immune response, and inflammation. The polysaccha-
rides are synthesized by a class of enzymes known as glycosyltransferases [38]. 
Glycosyltransferases are an enzyme superfamily responsible for the attachment 
of carbohydrate moieties to a wide array of acceptors that include nucleic acids, 
polysaccharides, proteins, lipids, and carbohydrates. The majority of glycosyl-
transferases are sugar nucleotide-dependent enzymes, and utilize nucleoside 
diphosphate sugars (NDP-sugars) as donors for the glycosidic bond formation. 
In other cases, the sugar donors can also be lipid phosphates and unsubstituted 
phosphate [39].

The glycosyltransferases have been classified by sequence homology into 96 
families in the Carbohydrate Active enZyme database (CAZy), each of which cata-
lyze the reaction as shown in Figure 8 [40]. Chain elongation of the oligosaccharide 
units in complex carbohydrates is achieved by the addition of monosaccharide units 
through the action of different glycosyltransferases in a specific sequence. The 
CAZy database provides a highly powerful predictive tool, as the structural fold and 
mechanism of action are invariant in most of the families [22]. Therefore, where the 
structure and mechanism of a glycosyltransferase member for a given family has 
been reported, some assumptions about other members of the family can be made. 
Substrate specificity, however, is more difficult to predict, and requires experimen-
tal characterization of individual glycosyltransferases.

Determining both the sugar donor and acceptor for a glycosyltransferase of 
unknown function can be challenging, and it is one of the reasons there are sig-
nificantly fewer well characterized isoprenoid linked sugar glycosyltransferases 
when compared to the glycosyltransferases responsible for synthesizing disac-
charides or the oligosaccharides [40]. The less reports on isoprenoid linked sugar 
transferases can be attributed to the fact that, a high throughput method has not yet 
been developed which will enable for faster characterization. Another challenge in 
characterizing the glycosyltransferases is the availability of rare sugars, as most of 
the bacterial polysaccharides contain rare sugars. Rare sugars, such as rhamnose or 
fucose, may provide the bacterial polysaccharides with additional biological proper-
ties compared to those composed of more common sugar monomers [23, 41]. Rare 
sugars are monosaccharides that are not commonly found in nature, in comparison 
to D-glucose, D-galactose, D-fructose, D-xylose, D-ribose, and L-arabinose which 
are more abundant [23]. Moreover, the traditional methods like radioisoptopic 

Figure 8. 
General reaction scheme for a glycosyltransferase (GTs).
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labelling, thin-layer chromatography (TLC) used to characterize the glycosyltrans-
ferase, often tends to be tedious and challenging in tracking the product.

Glycosyltransferases catalyze glycosidic bond formation with either overall 
retention or inversion of anomeric configuration when compared to the stereo-
chemistry in the sugar donor (Figure 9). Inverting glycosyltransferases are gener-
ally believed to proceed via a single displacement SN2 mechanism with concomitant 
nucleophilic attack by the acceptor at the anomeric carbon, facilitated by proton 
transfer to the catalytic base, and leaving group departure [22]. Structural data have 
shown that several inverting glycosyltransferases, contain no obvious candidate 
catalytic base indicating these enzymes use an alternative mechanism [38, 39].

The reaction coordinate employed by retaining glycosyltransferases has been 
much debated, and it could be possible the mechanism is not conserved for all 
retaining enzymes. One possibility is a double displacement mechanism via a 
covalent mechanism, analogous to that used by glycoside hydrolases [22]. A report 
by Soya et al. provided mass spectrometry evidence for the formation of a covalent 
intermediate between the donor substrate and a cysteine, which had been substi-
tuted for the candidate catalytic nucleophile, on two retaining glycosyltransferases 
[42]. The more favored mechanism in the field is an SN1 or SN1-like mechanism, 
which involves interaction between the leaving group and attacking nucleophile on 
the same face. This mechanism is supported by kinetic isotope effect studies to ana-
lyze the structure of the transition state and by computational modeling [38, 39].

The CPSA gene locus has three genes, wcfQ , wcfP and wcfN, that putatively 
encode for glycosyltransferases [29, 30]. Each of these glycosyltransferases is 
expected to transfer a sugar moiety to the bactoprenyl linked monosaccharide, the 
disaccharide and the trisaccharide. Based on the CAZy database, and homology 
studies, WcfQ and WcfN are hypothesized to belong to the glycosyltransferase 
superfamily A, which follows the inverting mechanism in the sugar transfer. 
Whereas WcfP is proposed to belong to the glycosyltransferase superfamily B, 
which follows the retaining mechanism [40].

WcfQ , identified as the first glycosyltransferase, transfers galactose to the 
isoprenoid linked monosaccharide, even though it was observed by authors that, 
WcfQ could also transfer glucose to the bactoprenyl linked monosaccharide. This is 
because WcfQ required glucose in much excess when compared to galactose. It was 
also found out that even though WcfP had the capability of transferring galactose, 
WcfQ was more efficient in it, hence it was identified as the galactosyltransferase 

Figure 9. 
Glycosyltransferases catalyze glycosyl group transfer with either inversion or retention of the anomeric 
stereochemistry with respect to the donor sugar.
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in the CPSA biosynthetic pathway. Moreover, based on the Carbohydrate-Active 
enZYmes (CAZY) database the WcfQ sequence matched the GT_2 family of gly-
cosyltransferases which invert the configuration of the anomeric carbon of the 
donor, while WcfP was similar to a GT_4 family glycosyltransferase, which retains 
the anomeric stereo-configuration of the donating sugar [43, 44]. The published 
structure of the CPSA tetrasaccharide unit suggests that the linkage should be in 
a beta configuration [27]. This supported the conclusion that WcfQ is the protein 
responsible for introducing galactose, and that it introduces the sugar in the appro-
priate beta configuration [45].

As stated before, WcfP is related to the GT_4 family of proteins suggesting that 
it is a retaining glycosyltransferase, it was therefore more likely that WcfP cata-
lyzed UDP-GalNAc transfer to the galactose, but it was not known if it transferred 
UDP-GalNAc to the unpyruvylated disaccharide or the pyruvylated disaccharide. 
Both WcfN and WcfP were analyzed with the pyruvylated and the unpyruvylated 
disaccharides, it was demonstrated that WcfP transfers only UDP-GalNAc to the 
pyruvylated disaccharide.

In homology studies, WcfN was predicted to be a member of the GT_2 family, 
whose members have been identified to transfer furanose residues. WcfN was also 
hypothesized to be an inverting transferase, which inverts the stereochemistry of 
the anomeric carbon. Since the linkage between the third and the fourth sugar in 
the tetrasaccharide repeat unit is in the beta configuration, WcfN fitted the role of 
being the last glycosyltransferase. WcfN was found to transfer the galactofuranose 
to the trisaccharide, hence completing the mapping of the pathway of synthesis of 
the tetrasaccharide.

2.3 WcfM as the galactopyranosemutase

Polysaccharides composed of furanosyl residues are important constituents of 
many bacteria, protozoa, fungi, plants and archaebacteria [46, 47]. The furanosyl 
constituents have also been identified in glycopeptides, glycolipids as well as 
nucleotide sugars. D-Galactose is by far the most widespread hexose in the furanose 
form in naturally occurring polysaccharides, and the most impressive examples of 
these glycans are encountered in mycobacteria [48–50]. Galactofuranose, (Galf), 
which is thermodynamically less stable than galactose, is essential for the viability 
of several pathogenic species of bacteria and protozoa. It is absent in this form in 
mammalian cell structure, hence the biochemical pathways by which galactofu-
ranose containing glycans are assembled have been attractive sites for drug action 
[47, 51]. This potential has led to an increased interest in the synthesis of molecules 
containing galactofuranose residues, and their subsequent use in studies directed 
towards understanding of the enzymes that process these residues and the identifi-
cation of potential inhibitors of these pathways [46].

The enzyme UDP-galactopyranose mutase is central to galactofuranose 
metabolism. Most organisms cannot use exogenous galactofuranose, and UDP-
galactofuranose appears to be the biological source of galactofuranose residues 
in polysaccharides [46]. The major structural component of the Mycobacterium 
tuberculosis cell wall contains a galactan chain of approximately thirty-five galac-
tofuranose units, and the biosynthesis of the galactan is essential for viability 
[47]. The O-antigens of both Escherichia coli and Klebsiella pneumoniae contain 
galactofuranose as a component of lipopolysaccharide [47]. Several galactofuranose 
containing glycoconjugates have been found in Trypanosoma cruzi, the causative 
agent of Chagas disease, including glycoinositolphospholipids, lipopeptidophos-
phoglycans and mucin-like proteins. The galactomannan of Aspergillus fumigatus 
also contains galactofuranose, and this polysaccharide is used for clinical detection 
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of fungal infections. Finally, it is also known that stopping galactofuranose 
biosynthesis in Leishmania major attenuates its virulence [46–48, 51]. The above-
mentioned pathogenic organisms all use the same building block for synthesizing 
galactofuranose-containing polysaccharides: uridine diphosphogalactofuranose 
(UDP-galactofuranose). This sugar nucleotide is produced from UDP-Glcp by 
the enzymes UDP-Glucose 4-epimerase (generating UDP-Galp,) and UDP-
galactopyranose mutase (UGM), which catalyzes the transformation of UDP-Galp 
to UDP-galactofuranose. The gene encoding UGM was first identified in E. coli in 
1996, followed shortly by its identification in K. pneumoniae and M. tuberculosis 
[48, 49, 52] . More recently, UGM was identified in the eukaryotes A. fumigatus, 
Cryptococcus neoformans, L. major and T. cruzi.

In the past several years’ major milestones have been achieved, which include 
an in-depth understanding of the mechanism of UDP-galactopyranose mutase 
(UGM), the enzyme which produces UDP-galactofuranose, and is the donor species 
used by galactofuranosyltransferases. A number of methods for the synthesis of 
galactofuranosides have also been developed [50]. UDP-galactofuranose has also 
been prepared by a number of approaches, and currently it appears that a che-
moenzymatic approach is the most viable method for producing multi-milligram 
amounts of this important rare sugar [46, 50].

The biosynthetic gene operon of CPSA encodes a wcfM gene, which was found 
to be homologous to other galactopyranose mutases. It is homologous to two known 
UDP-galactopyranose mutases, one from Streptococcus pneumonia (Cps33fN: 66% 
identity and 82% similarity) and the other from E. coli (59% identity and 79% 
similarity). The gene encodes a 43 kDa protein with one potential N-terminal 
transmembrane domain. Like other galactopyranose mutases, the protein is hypoth-
esized to catalyze the reaction as shown in Figure 10. The product of WcfM is 
required for the final step in the synthesis of the CPSA tetrasaccharide repeat unit. 
The last glycosyltransferase transfers UDP-galactofuranose to the trisaccharide.

2.4 WcfO as the pyruvyltransferase

Pyruvyltrasferases and pyruvylation have been less studied in prokaryotes, 
despite a burgeoning evidence of its presence in bacteria. Addition of pyruvate 
moiety gives a negative charge to the polymer and is utilized by the bacteria in 
various functions [53]. An example of this is the pyruvylation of ManNAc residue 
by the enzyme CsaB in the secondary cell wall polymer of Bacillus anthracis and 
Paenibacillus Alvei [54, 55]. This pyruvylated residue comes in use in anchoring the 
S-layer proteins in Gram positive bacteria by binding to the SLH domains of the 
S-layer proteins [56]. Knocking out the CsaB has led to a lethal phenotype, which 
suggests that, pyruvylation of the secondary cell wall polymer is essential to the 

Figure 10. 
Reaction catalyzed by UGM.
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growth and survival of the bacteria [55]. CsaB was recently characterized by the 
Schaffer group [57]. Including WcfO, a total of three pyruvyltransferases have now 
been functionally characterized. Pvg1b is from an eukaryote, and whose crystal 
structure has been solved [58, 59].

Polysaccharides of various prokaryotes are covalently linked with variable 
combinations of sulfates and pyruvates, for example, Rhizobium leguminosarum: 
4,6-pyrGalactose and 4,6- pyrGlucose, Bacillus anthracis: 4,6-pyrManNAc, and 
Xanthomonas campestris: 4,6-pyrMannose. These modifications provide a highly 
negative charge of these polysaccharides, which is often essential for function [60]. 
For example, when the pyruvyltransferase PssM, responsible for the pyruvate 
modification in the R. leguminosarum exopolysaccharide was deleted, the bacterium 
was found to be ineffective in infecting pea plants to initiate the formation of root 
nodules. This led to formation of aberrant root nodules, which were unable to fix 
nitrogen [61, 62]. Moreover, some studies have linked the pyruvic acetals in oligo- 
and polysaccharides to their immunological properties [63, 64].

Among the eleven proteins encoded in the CPSA gene operon, one of the 
genes transcribes a hypothesized pyruvyltransferase based on homology studies 
performed using pBLAST [31]. There is little sequence similarity to other known 
proteins with the wcfO gene product. WcfO has very minimal sequence identity 
to the two characterized pyruvyltransferases Pvg1p from S. pombe and PssM from 
R. leguminosarum. The activity of CPSA is dependent on its zwitterionic character 
in which the –AADGal amino group is positively charged while the pyruvate is 
negatively charged [16]. Due to the fact that all other sugar modifying enzymes and 
glycosyltransferases required for CPSA biosynthesis have been located in the CPSA 
biosynthesis operon, it was proposed by the authors that the wcfO gene product 
was likely responsible for the pyruvylation modification required for the formation 
of the second sugar in the CPSA tetrasaccharide repeat unit. WcfO is capable of 
modifying galactose or glucose when they are linked to the isoprenoid lipid carrier. 
This points to the direction that, there may be sub-families within the pyruvyl-
transferase family that utilize different substrates. Kinetic evaluation of WcfO was 
performed by the authors to test if discriminated between glucose and galactose, 
and it apparently utilized both the substrates with equal vigor.

3. Significance of capsular polysaccharide A

Previous studies on the CPSA molecule have revealed it to be effective as a thera-
peutic molecule, the tetrasaccharide repeat needs to be a polymer of ten repeat units 
or longer. If shorter than that, it fails to activate the immune system [64, 65]. CPSA 
operon encodes for a flippase wzx, which takes the repeat unit and flips it from the 
cytoplasmic space to the periplasmic space, where the polymerase wzy, utilizes the 
repeat unit and polymerizes it till it reaches a length of approximately 130 repeat 
units [65, 66].

Recent successes in cancer vaccines and in monoclonal antibody cancer immu-
notherapy have given the impetus towards development of vaccines targeting 
cancer-associated carbohydrates. The Andreana group have been developing carbo-
hydrate immunogens to elicit a T-cell dependent immune response. CPSA is known 
to stimulate a strong T-cell mediated response. They have successfully linked CPSA 
to the tumor-associated carbohydrate antigen (TACA), Sialyl Thomsen-nouveau 
(STn) and were able to obtain a robust immune response to the antigen [67–71]. 
They have further reported total synthesis of the CPSA unit in 19 steps with a final 
yield of 5% [67]. Chemoenzymatic assembly is a faster and scalable approach, that 
can be used as an alternative or in combination with chemical synthesis. CPSA 
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obtained in this way, can then be linked to the antigen. The chemoenzymatic 
method has also been used to create capsule polysaccharide based glycoconjugates 
for Neisseria meningitidis serotypes A, C and X [72–74]. In some cases, recombinant 
glycosyltransferases can be used to assemble non-native carbohydrate antigens in 
compliant host organisms like Escherichia coli. This method has been successfully 
used by the Brendan W. Wren lab for the in vivo assembly of capsular polysaccha-
ride from several serotypes of Streptococcus pneumoniae. A similar approach is also 
currently being applied with respect to CPSA, wherein the whole CPSA biosynthe-
sis and assembly will be done inside E. coli. This will allow to have access to longer 
oligomers of CPSA, which can be helpful in studies towards size requirement in 
eliciting immune response. So far there have been no reports of CPSA unit being 
polymerized synthetically.

4. Conclusion

CPSA molecue has a very common modification on its surface. Pyruvylation of 
sugars is fairly common yet an extensive search of the literature reveals little on suc-
cessful isolations of an enzyme responsible for this sugar modification. However, 
very recently a family of genes has been identified that appear to be involved in 
pyruvate transfer reactions in prokaryotes. A publication in 2013 showed successful 
purification of pyruvyltransferase Pvg1p from the eukaryote Schizosaccharomyces 
pombe. This group demonstrated the activity of Pvg1p on beta-nitrophenyl 
galactose, a substrate analogue of galactose [54]. Apart from this eukaryotic 
pyruvyltransferase Pvg1p and the prokaryotic pyruvyltransferase PssM from R. 
leguminosarum, no other pyruvyltransferases have been characterized [55]. More 
studies are needed in uncovering this family of enzymes, and also a path needs to be 
elucidated towards the polymerization of CPSA, to reap its full therapeutic benefits.
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