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Abstract

Norovirus are a major cause of acute gastroenteritis worldwide. Diarrheal 
disease is now the fourth common cause of mortality children under the age of 
5 years but remain the 2nd most cause of morbidity. NoV are associated with 18% 
diarrheal diseases worldwide where rotavirus vaccinations has been successfully 
introduced. NoV has become major cause of gastroenteritis in children. NoV belong 
to family caliciviridae. They are non-enveloped, single stranded positive sense 
RNA Viruses. The genome consists of 3 Open reading frames, ORF-1 codes for 
non-structural protein, ORF-2 codes for major capsid protein VP1 and ORF-3 for 
minor capsid protein VP2. Based on sequence difference of the capsid gene (VP1), 
NoV have been classified in to seven genogroup GI-GVII with over 30 genotypes. 
Genogroups I, II, IV are associated with human infection. Despite this extensive 
diversity a single genotype GII.4 has been alone to be the more prevalent. Basic 
epidemiological disease burden data are generated from developing countries. 
NoV are considered fast evolving viruses and present an extensive diversity that is 
driven by acquisition of point mutations and recombinations. Immunity is strain or 
genotype specific with little or no protection conferred across genogroups. Majority 
of outbreaks and sporadic norovirus cases worldwide are associated with a single 
genotype, GII.4 which was responsible for 62% of reported NoV outbreaks in 5 
continents from 2001 to 2007. GII.4 variants have been reported as major cause of 
global gastroenteritis pandemics starting in 1995 frequent emergence of novel GII.4 
variants is known to be due to rapid evolution and antigenic variation in response 
to herd immunity. Novel GII.4 variants appear almost every 2 years. Recent GII.4 
variant reported include Lordsdale 1996, Farmington Hills 2002, Hunter 2004, 
Yerseke 2006a, Den Haag 2006b, Apeldoon 2007, New Orleans 2009,most recently 
Sydney 2012. Detailed molecular epidemiologic investigation of NoV is associated 
for understanding the genetic diversity of NoV strain and emergence of novel NoV 
variants. However, reports have revealed that not all individuals develop symptoms 
and a significant proportion remains asymptomatic after NoV infections.

Keywords: Acute gastroenteritis, ORF, Genogroups, Immunity

1. Introduction

The acute gastroenteritis is a major health problems, one of the most com-
mon infectious diseases among humans [1, 2]. The annual incidence of diarrheal 
disease is estimated of annual number is over 4.5 billion cases worldwide [3] 
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The global estimated of annual number of mortalities with gastroenteritis vary 
between 3.5–5 million cases in majority of deaths occurring among people in 
developing countries [4]. Diarrhoea remains into 10 most common communicable 
diseases found in India [5] (annual mortality is 2.5 million deaths each year in 
children less than five years of age in developing countries) [6].

In human enteric viruses account for more than half of all cases of gastroenteri-
tis worldwide [7, 8]. Viral causes of gastroenteritis are follow: norovirus, rotavirus, 
adenovirus (group F- type 40/41), astrovirus and sapovirus [9–11].

2. Norovirus

Norwalk virus is the prototype strain of Norovirus and was associated with an 
outbreak of gastroenteritis at an elementary school in Norwalk, Ohio, in 1968. The 
discovery of Norovirus as the aetiological agent of the outbreak was made by Albert 
Kapikian in 1972 [12].

Using immune electron microscopy (IEM), stool samples were examined from 
a volunteer who had been experimentally inoculated with a faecal filtrate from 
the original outbreak. From these studies, Kapikian proposed the name “Norwalk 
virus” as the causative agent of the outbreak [12]. This was the first human virus 
specifically associated with gastroenteritis.

2.1 Classification

Norovirus, previously known as Norwalk-like viruses, belongs to the family, 
Caliciviridae [13]. The Caliciviridae family is comprised of four genera, Norovirus, 
Sapovirus, Lagovirus and Vesivirus [14]. Norovirus and Sapovirus are found in 
the genera Norovirus and Sapovirus, respectively, whilst other caliciviruses of 
veterinary importance, rabbit hemorrhagic disease virus and feline calicivirus, are 
found in Lagovirus and Vesivirus, respectively. Recently, two additional generas 
have been proposed within the Caliciviridae family, provisionally named Becovirus 
or Nabovirus, a bovine enteric calicivirus [15–17]. All six genera infect animals, but 
only Norovirus and Sapovirus contain strains that infect both humans and animals.

Based on phylogenetic analysis of the full length nucleotide sequence of the 
capsid gene [VP1], the Norovirus genus is divided into five genogroups (GI, GII, 
GIII, GIV and GV). Norovirus GI, GII and GIV are associated with human gastro-
enteritis. Norovirus GII includes porcine, as well as human strains, GIII contains 
only bovine strains, and GV contains only murine strains [18].

2.2 Structure

Norovirus is a small virion of 27 to 32 nm in diameter and has a buoyant density of 
1.33 to 1.41 g/cm3 in caesium chloride [19, 20]. It is a non-enveloped, single-stranded, 
positive-sense, RNA virus with a genome of 7.4 to 7.7 kb [21, 22]. The RNA is polyad-
enylated at the 3′ end. All calicivirus genomes begin with a GU [nucleotide sequence] 
at the 5′ end terminal. A 5′ end sequence, of between 16 and 28 nucleotides depend-
ing on the genus is repeated internally in the genome and corresponds to the start of 
the subgenomic RNA [located at the start of the capsid gene, VP1]. This sequence is 
thought to be part of an RNA-dependent RNA polymerase [RdRp] promoter [23].

The Norovirus genome contains three ORFs: ORF1, ORF2 and ORF3.
The initial characterisation of the genome was based on the sequence homol-

ogy of ORF1 in human calicivirus to characterised proteins of picornaviruses [24]. 
These conserved motifs included a “2C-like” helicase [a nucleoside triphosphatase, 
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NTPase, in Norovirus genome], a “3C-like” protease [3CLpro] and a “3D-like” RdRp 
(RdRp in Norovirus genome). Proteolytic mapping and enzymatic studies using 
site directed mutagenesis and recombinant expression systems have revealed the 
presence of three other non-structural proteins within the Norovirus polyprotein, 
including a 3A-like protein, a viral protein-genome linked (VpG) and a N-terminal 
protein of unknown function [25–29]. All six non-structural proteins proceed N to 
C terminus in the Norovirus polyprotein (Figure 1).

ORF1 encodes a 200 kDa polyprotein which undergoes proteolytic cleavage 
mediated by a virus-encoded 3CLpro, located upstream of the RdRp. Proteolytic 
processing is rapid, co-translational and results in the production of six non-struc-
tural proteins [30, 31]. ORF2 encodes the major structural protein, VP1 [60 kDa], 
which is responsible for capsid-related functions, including self-assembly and 
capsid formation, host interactions and immunogenicity of the virus [32–34].

The ORF3 region encodes a small basic protein of 20 to 30 kDa involved in expres-
sion and stability of the VP1 capsid protein [34]. Downstream from ORF3, a 42 to 78 
nucleotide non-translated region is present and attached to a polyadenylated tail [35].

2.3 Non-structural proteins

2.3.1 N terminal protein

Expression of the Norovirus N terminal protein demonstrated that the N 
terminal protein was localised to the golgi apparatus and led to its disassembly 
into discrete aggregates [36]. In addition, the N terminal protein interacts with the 
vesicle-associated membrane protein–associated protein A [VAP-A], which plays 
a role in regulated vesicle transport [37, 38]. Therefore, the N terminal protein is 
predicated to interact with intracellular membranes and may act as an anchor to 
membrane-bound replication complexes of Norovirus [39].

2.3.2 NTPase

NTPase protein (alternatively designated p41) of the Norovirus GI strain, 
Southampton virus, has NTPase activity and a helicase domain. The protein 

Figure 1. 
Genomic organisation of NoV. The genomic organisation and nucleotide positions are shown with reference to 
human NoV/Lordsdale virus/1993/UK, GenBank accession number X86557. The NoV genome is organised into 
three ORFs, with the 3′ end of ORF1 overlapping the 5′ end of ORF2 by 20 bp, and the 3’end of ORF2 overlaps 
the 5′ end of ORF3 by one bp. ORF1 encodes for six non-structural proteins: N terminal protein, nucleoside 
triphosphate (NTPase), a 3A-like protein, viral protein-genome linked (VpG), “3C-like” protease (3CLpro) 
and an RdRp. ORF2 encodes for the major structural protein, VP1, which self assembles into the viral capsid. 
ORF3 encodes for a minor structural protein, VP2, involved in stabilisation of VP1. The polyadenylated tail at 
the 3’end of the genome is indicated by [a]. The two putative RdRp promoter sites are shown below the image as 
black boxes.
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sequence of the Norovirus p41 protein showed regions of high similarity to the 2C 
protein of enteroviruses. Norovirus may hydrolyse NTPs for a function distinct 
from nucleic acid unwinding [40]. The specific role of p41 in the viral replicative 
cycle has not yet been determined.

2.3.3 3A-like protein

A parallel between picornaviruses and caliciviruses have been demonstrated 
for the 3A and 3A-like protein, respectively [41–43]. The 3A-like protein [alter-
natively designated p22 or p20 for Norovirus GI and GII, respectively] in the 
Norovirus genome occupies a position similar to that of the 3A protein in picor-
navirus. The specific function of the Norovirus 3A-like protein is unknown, but it 
has been suggested to be involved in cellular membrane trafficking and replication 
complexes [44].

2.3.4 VpG

VpG is essential for the production of infectious caliciviruses [45]. Human 
VpG has been shown to bind to translational initiation factors in vitro and may 
also be involved in the recruitment of ribosomes to viral RNA. Recently, VpG has 
been suggested to play a role in RNA replication [46, 47]. VpG was uridylylated 
in vitro by the RdRp, suggesting it may function as a protein-primer during 
RNA replication. Another study by Belliot and colleagues demonstrated that 
Norovirus VpG was nucleotidylylated by the proteinase-polymerase form of 
the human Norovirus RdRp. This occurred in a template-independent manner 
in the presence of Mn2+; furthermore, the linkage between RNA to VpG was 
covalent. Mutational analysis identified tyrosine 27 of the Norovirus VpG as the 
target amino acid for this linkage, which was susceptible to phosphodiesterase 
treatment. Thus, the linkage of RNA to VpG via a phosphodiester bond was 
confirmed. In addition, there was evidence for the presence of an RNA element 
in the 3′ end of the polyadenylated genome which enhanced nucleotidylylation of 
the VpG by the RdRp in the presence of Mg2+ [48].

2.3.5 “3C-like” protease

Norovirus 3CLpro (19 kDa) is crucial to the proteolytic processing of ORF1 
polyprotein into six non-structural proteins. Characterisation of Norovirus 3CLpro 
has revealed an active nucleophilic residue in the conserved GDCG motif, common 
to all chymotrypsin-like 3Cpro. The motif contains amino acid residues essential 
to formation of an active site. The amino acid residues exists as a catalytic triad in 
Norovirus, and include cysteine (Cys139), histidine (His 30), and glutamate (Glu 
54), which function as a nucleophile, general base, and anion, respectively. All three 
amino acid residues are important to the enzymatic activity for proteolysis [49, 50].

It has also been suggested that the Norovirus 3CLpro can cleave the host encoded 
poly [A]-binding protein, and as a result, cellular translation is inhibited. This sug-
gests an important mechanism of host cell modulation during viral replication [51].

2.3.6 RNA-dependent RNA polymerase

The Norovirus RdRp is a non-structural protein involved in the replication of 
the Norovirus genome. It has been proposed that Norovirus proteinase-polymerase 
precursor is a bifunctional enzyme with protease and RdRp activity both exhibited 
during viral replication [52].
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2.4 Structural proteins

2.4.1 VP1

ORF2 encodes the major capsid protein, VP1, of the Norovirus genome. The VP1 
capsid protein can be divided into three domains, the N terminal domain, shell [S] 
domain, which is buried inside the capsid, and a protruding [P]domain. A flex-
ible hinge connects the S and P domains. The S domain is highly conserved and is 
essential for the formation of the icosahedral capsid shell. The P domain comprises 
of two subdomains: P1, a moderately conserved subdomain and P2, which is hyper-
variable in its nucleotide sequence. The P2 subdomain of the norovirus genome is 
the most exposed region of the capsid structure, hence, it contains immune and 
cellular recognition binding sites [53–56].

2.4.2 VP2

ORF3 encodes a small minor structural protein, VP2, of the Norovirus genome. 
VP2 is highly variable in sequence between strains and varies in length from 208 to 
268 amino acids. The function of VP2 involves the upregulation of VP1 expression 
and stabilisation of the VP1 in the virus structure. Furthermore, VP2 protects VP1 
from disassembly and protease degradation [57]. The role of VP2 in viral replication 
is unknown, but it may interact with RNA, due to its highly basic, and therefore be 
involved in packaging of the viral genome. In addition, the VP2 protein is reported 
to be involved in the formation of infectious viral particles [58, 59].

2.4.3 Transmission

A highly infectious agent, Norovirus is primarily transmitted through person-to 
person and commonly via the faecal oral route. Aerosolised vomitus contain-
ing Norovirus is another transmission mode by which the virus disseminates in 
outbreaks of gastroenteritis [60, 61]. A study by Marks et al. reported attack rates 
of Norovirus infections of up to 60% in individuals in close proximity (who were 
seated next to and on the adjacent table in a restaurant) to the index person who 
vomited. The attack rate of infection was directly proportional to the distance from 
the vomiter. Other sources of transmission include the consumption of contami-
nated food (oysters, vegetables, fresh and frozen produce) [62–65] or water (drink-
ing, ice or recreational) [66–68]. In addition, fomite contamination in an outbreak 
setting has been demonstrated as an alternative transmission route [69, 70].

3. Clinical features and pathogenesis of norovirus

3.1 Clinical manifestation

Norovirus infection is characterised by an onset of vomiting, diarrhoea, nausea, 
and may also be accompanied by variable systemic symptoms including, fever, 
headache, chills or myalgia [71–74]. Diarrhoeal stool is non-bloody, lacks mucus 
and may be loose or watery. Following an incubation period of 1 to 2 days, the 
illness is usually mild and self-limited, which generally persists for a short duration 
of 1 to 3 days. A 68% sensitivity and 99% specificity was determined when the 
criteria was used in conjunction with laboratory detection techniques, including 
ELISA and nucleic acid amplification assays [75]. Norovirus infection affects all 
age groups and is often more severe in the elderly, the young, and in transplant and 
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immunocompromised patients [76–79]. Studies have shown that symptoms can per-
sist for up to five days or longer and infection may progress to chronic disease [80]. 
Prolonged viral shedding can occur in the presence or absence of clinical symptoms 
and death may occur [81–86].

3.2 Pathogenesis

The pathogenicity of NoV was studied in human volunteers inoculated with 
the prototype strain, Norwalk virus [NoV GI]. Acute infection with NoV resulted 
in a histopathological lesion in the jejunum and correlated with a broadening and 
blunting of the villi and crypt cell hyperplasia of the small intestinal tract. These 
observations provided suggestive evidence that NoV replication is restricted to the 
small intestine.

Additional studies in volunteers who developed an illness or characteristic 
lesion, showed the levels of the small intestinal brush border enzymatic activities 
[alkaline phosphatase, sucrase and trehalase] were significantly reduced, resulting 
in transient carbohydrate malabsorption [87]. Furthermore, there was a marked 
delay in gastric emptying. It has been suggested that the reduced gastric motility 
is responsible for symptoms, specifically nausea and vomiting associated with 
gastroenteritis.

3.3 Immunity

The immunogenicity associated with Norovirus disease is not well defined. Early 
studies on host immune responses to Norovirus infection were based on human 
challenge studies by oral immunisation with either infectious virus or recombinant 
VLPs [88–93]. Challenge studies have shown that short-term immunity lasts for six 
to 14 weeks, and is strain specific [94]. Thus, infection is induced following chal-
lenge to a serologically distinct strain. Interestingly, individuals with high levels of 
pre-existing antibodies against Norwalk virus were reportedly more susceptible 
to infection than individuals who had a non-detectable or had low levels of serum 
antibodies after challenge with the same strain.

More recently, the structural recognition site of HBGAs by Norovirus has been 
determined by mutagenesis and crystallographic studies [95]. Based on crystal-
lographic structures, the receptor site involved in host-cell recognition was the P 
domain, more specifically the outermost P2 surface on the Norovirus capsid gene 
[96, 97]. Such findings will provide an understanding into the complex interac-
tion between HBGAs and Norovirus, and could lead to intervention strategies to 
block attachment of virus to host recognition sites. The study of the role of genetic 
mechanisms in Norovirus infection is a new area in Norovirus immunology, and 
further studies are required to understand the complex interactions between 
specific Norovirus genotypes (particularly, newly emergent Norovirus strains) and 
susceptibility to infection.

3.4 Replication

Little is known about human Norovirus biology, in particular, human Norovirus 
replication, immunogenicity and pathogenicity due to the lack of an in vitro 
cell culture and small animal model systems [98]. However, in recent times our 
understanding of calicivirus replication has come from other studies, including 
the animal calicivirus, Feline calicivirus [99], and the use of a gnotobiotic pig as 
an animal model for the study of human Norovirus pathogenesis [100]. However, 
a significant advancement in the study of Norovirus biology was the development 
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of the first in vitro cell culture system for the cultivation of murine norovirus 1 
(MNV-1) [101]. MNV-1 was used to study immunity and pathogenesis of Norovirus 
in a mouse model. Subsequently, MNV-1 was successfully propagated in the murine 
macrophage cell line RAW 264.7 and revealed a tropism for cells of the haemato-
poietic lineage, specifically the macrophages and dendritic cells. It was proposed 
that macrophages could contribute to the spread of Norovirus through the host. 
Norovirus infection of dendritic cells in the lumen of the intestine also provides a 
point of infection for Norovirus; however, it remains unclear if human Norovirus 
targets such cells. Regardless, MNV share many molecular and biological proper-
ties with human Norovirus, and therefore, provides an important animal model 
to understand the biology and pathogenesis of human Norovirus infection. Other 
systems which have provided significant information regarding Norovirus replica-
tion are the replicon and reverse genetics systems.

Molecular advances have led to the development of a Norovirus replicon and a 
recombinant T7 vaccinia virus expressed Norovirus [102–105]. Studies have shown 
Norovirus RNA is infectious and capable of replication in three cell types: human 
hepatoma Huh7-cells, hamster BHK21 cells and human embryonic kidney [HEK] 
293 T/17 cells. However, the main limitation of these systems was the inability for 
virions to spread to other neighbouring cells in the culture system. The inability to 
culture human Norovirus has been suggested to occur at the level of attachment and 
entry into the cells. Another in vitro cell culture system for human Norovirus was 
recently reported based on a rotating wall vessel bioreactor technology to engineer a 
3D model of the human small intestinal epithelium (Figure 2).

However, the model may not provide direct evidence of in vitro propagation of 
human Norovirus and needs further investigation [107]. Nevertheless, the system 
can offer an insight into host-cell interaction in Norovirus infection.

Recently, an infectious reverse genetics system for MNV that generates.
infectious virus from a genomic complementary DNA [cDNA] clone under 

the control of an RNA polymerase II promoter was described. The principle of 
the Norovirus reverse genetics system was demonstrated by mutagenesis of the 
protease polymerase cleavage site to show that the protease-polymerase cleavage 
was essential for the recovery of infectious MNV [108]. Overall, the development of 
such systems provides an approach to perform functional analyses of the Norovirus 
genome, as well as the study of the molecular biology and replication of Norovirus.

3.5 RNA recombination

RNA recombination is an important mechanism in the evolution of RNA 
viruses. Recombination in viruses can affect phylogenetic groupings, increase the 

Figure 2. 
Intestinal biopsy of jejunal tissue from a human volunteer infected with Norwalk virus. (A-left fig) Normal 
jejunal biopsy before administration of Norwalk virus. Villi and cellularmorphology appear normal.  
(B-right fig) Jejunal biopsy after administration with the viral agent. Villi are broadened and flattened; 
epithelial lining cells appear disorganised. Image taken from [106].
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virulence and pathogenicity of the virus, and affect anti-viral drug design. By 
exchange of genetic material through recombination, a new variant of the virus is 
produced [109]. In recent years, human Norovirus recombinants have been detected 
frequently in cases of gastroenteritis worldwide. This increase in prevalence of 
Norovirus recombinants suggests that infection with at least two virus strains is 
common. The proposed site of recombination in Norovirus is within the highly 
conserved ORF1/ORF2 overlap [110–112].

3.6 Treatment and prevention

Norovirus associated gastroenteritis is mild and self-limiting, and gener-
ally resolves without complications. However, death from Norovirus associ-
ated gastroenteritis has been previously reported [113–115]. In severe cases of 
Norovirus infection, hospitalisation is required and the administration of an oral 
fluid and electrolyte treatment is often required to replace the loss of fluids. The 
oral administration of bismuth subsalicylate after the onset of symptoms has been 
demonstrated to reduce the duration of abdominal cramps and gastrointestinal 
symptoms during experimentally induced Norovirus illness in adults [116]. The 
best control measure for the prevention of Norovirus infection is with good 
hygiene practices. These include, thorough and frequent hand washing, and the 
disposal or disinfection of contaminated materials. In addition, extra measures 
should be implemented in healthcare facilities to prevent large-scale outbreaks, 
such as restriction of staff movement between wards containing infected patients, 
the isolation of symptomatic patients, the exclusion of affected staff from work 
until 48 h after the cessation of symptoms, and the closure of affected units to 
limit the spread of infection. However, the impact of preventive measures in 
affected institutions is reduced due to the environmental stability of Norovirus 
outside the host. This is due to the fact that Norovirus has a non-enveloped struc-
ture, is acid stable, persists in the environment and resistant to chlorination of up 
to 300 ng/ml. Furthermore, quaternary ammonium disinfectants are ineffective in 
the disinfection of Norovirus [117, 118]. Although a combination of detergent and 
sodium hypochlorite solution has been reported to be effective in the decontami-
nation of surfaces [119]. Therefore, to prevent and control the spread of Norovirus 
disease, strict hand hygiene and use of effective disinfectants should be enforced 
during outbreaks. Importantly, for the efficient implementation of precautionary 
measures in an outbreak setting, a rapid detection system for the diagnosis of a 
Norovirus infection would be ideal.

4. Laboratory diagnosis

4.1 Detection of norovirus

Detection of the aetiological agent of gastroenteritis is important as only bacte-
rial and parasitic agents are treatable by current therapeutic agents.

Furthermore, for clinical and epidemiological studies the availability of 
detection methods for viral nucleic acid, viral antigen, or antibody responses is 
valuable. Various methods have been used for the diagnosis of Norovirus infection, 
including electron microscopy [EM], IEM, radioimmunoassays, ELISAs and viral 
RNA based nucleic acid amplification assays. Of the available detection methods, 
the most commonly used assays for Norovirus diagnosis include ELISAs and 
RT-PCR [120].
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4.1.1 Electron microscopy

The detection of Norovirus has traditionally relied on EM. It enables the identi-
fication of Norovirus by their characteristic morphology. However, the sensitivity 
of EM detection is low, requiring at least 106 viral particles/g of stool for visualisa-
tion. Therefore, this technique is useful only for specimens collected immediately 
upon the onset of illness when substantial quantities of viral shedding occur. 
Furthermore, EM is a robust tool but time consuming, requires a high level of tech-
nical skill, is labour intensive and not available to all clinical laboratories. Thus, EM 
is not feasible for large epidemiological studies. Modifications of the EM method, 
such as, or solid phase IEM [121–125] have also been used to aid in virus identifica-
tion. Both these methods are based on antigen–antibody reactions. However, like 
EM, the application of IEM is rarely applied to epidemiological investigations.

4.1.2 Elisa

An ELISA offers an efficient diagnostic method for the identification of Norovirus 
infection. The rapid turnover and simplicity for screening a large number of samples 
makes ELISAs an ideal system for use in a diagnostic laboratory. Norovirus are anti-
genically diverse and therefore assays may be limited in the detection of a broad range 
of Norovirus strains in circulation. This has probably contributed to the poor perfor-
mance assessments [sensitivity and specificity] of commercially available ELISAs in 
different countries when compared to sensitive molecular methods, such as RT-PCR 
[126–128]. The potential for ELISAs to give false negatives and false-positives due to 
poor sensitivity and poor specificity, respectively, has limited their use for diagnosing 
outbreaks where large numbers of samples are being tested.

4.1.3 Reverse transcription-polymerase chain reaction

RT-PCR has remained the most reliable means of diagnosing Norovirus infection 
as it is the most sensitive routine method used compared to EM and ELISA  
[129, 130]. The availability of RT-PCR amplification has greatly facilitated sequenc-
ing and genome characterisation of Norovirus strains [131–133]. The RT-PCR assay 
employs primers that target conserved regions of the Norovirus genome, such as 
the RdRp and/or the VP1 gene. Until recently, Norovirus RT-PCR assays have used 
primers that targeted the RdRp [3′ end of ORF1 of the Norovirus genome], which 
is highly conserved among Norovirus. By sequence analysis of the capsid gene 
[VP1] in the Norovirus genome, another conserved region located at the 5′ end of 
the capsid gene was identified. This region offered better segregation of Norovirus 
genotypes by phylogenetic analysis. Moreover, analysis of both regions, RdRp and 
VP1 is necessary for the detection of Norovirus recombinant strains. These techni-
cal advances have improved detection and enhanced epidemiologic surveillance by 
molecular genotyping and sequence analysis. However, conventional RT-PCR assays 
have progressively been replaced by real-time RT-PCR, which is more sensitive, 
faster and offers quantification of RNA viruses. This technology is not only quicker 
but enables quantitation using the Ct of the unknown target RNA sample compared 
directly to the Ct of a standard curve, which contains a defined number of copies of 
the target virus. The Ct value is the basis for accurate and reproducible quantitation 
using real-time RT-PCR. The application of a standard curve in a real-time RT-PCR 
assay also enables the determination of viral kinetic parameters associated with 
Norovirus infection, such as the number of viruses excreted [that is, a measure of 
viral load in a sample], duration of viral excretion and the viral decay rate.
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Several real-time nucleic acid amplification assays have been developed for the 
detection and quantitation of Norovirus RNA in clinical specimens, by the use of 
SYBR Green dye chemistry, and probes, including taq-man probes and hybridiza-
tion probes [134, 135].
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