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Chapter

Introductory Chapter: Uncertainty 
Management to Support Pollution 
Prevention and Control Decisions
Rehab O. Abdel Rahman and Yung-Tse Hung

1. Introduction

The progressive growth in industrialization and population caused severe 
environmental problems worldwide, these problems need to be analyzed, monitored, 
controlled and mitigated when appropriate to ensure the quality and sustainability 
of life [1]. Currently, there is growing international recognition for these problems 
and in particular environmental pollution is receiving considerable attention either 
on the international, regional, national and individual scales. To help controlling the 
existing pollution sources and preventing new pollution sources/areas, strengthen 
regulations have been issued and human and natural resources have been allocated 
all over the world [1]. The results of these efforts will be very helpful in supporting 
various sustainable development goals that were identified in the United Nation 
2030 agenda [2]. Among these goals, the achievement of good health and well-being 
(Goal 2), clean water and sanitation (Goal 4), affordable and clean energy (Goal 5), 
industry, innovation and infrastructure (Goal 9), sustainable cities and communities 
(Goal 11), responsible consumption and production (Goal 12), climate action (Goal 
13), life below the water and on land (Goals 14 and 15, respectively) are affected by 
the efforts to prevent and control the environmental pollution.

To ensure effective pollution prevention and control, there is a need to prove 
that each planned/operated human activity will not impose negative impacts on 
the human society and the environment. This situation is stressful for the decision 
makers, e.g. policy makers, designers, regulators, where the decisions must balance 
the benefits from this activity to the society and its potential negative impacts on 
the environment, their probabilities, and their consequences. Different assessment 
methodologies were ratified more than 5 decades ago and are used as tools to support 
the decision making process. These assessments aim to provide systematic proce-
dures to study the impacts/risks of the human activities on their societies and on 
the environment. These assessments include life cycle assessment (LCA), life cycle 
sustainability assessments (LCSA), environmental impact assessment (EIA), strate-
gic environmental assessments (SEA), and risk assessments (RA) [3, 4]. LCA is used 
to assess the environmental impacts associated with the life cycle stages of a product 
or service supply chain, e.g. raw material extraction processes, manufacturing 
and processing, transportation, usage and disposal. It includes goal definition and 
scoping, inventory assessment, impact assessment, and interpretation. LCSA aims 
to evaluate the impacts of a product or service on the environment (LCA), social life 
(social life cycle assessment S-LCA) and society’s economic (life cycle costing, LCC) 
towards more sustainable products throughout their life cycle [5, 6]. EIAs are widely 
used for regulating human activities worldwide. EIAs focus on the evaluation of the 
impacts of specified project over its different life phases, i.e. construction, operation, 
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and closure, on the ecological components of the environment. EIA performed by 
identifying the baseline project, assessing and mitigating the impacts, and monitor-
ing planning. SEA aims to evaluate the environmental impacts of alternative visions 
and development intentions incorporated in policy, planning or program initiative 
[7, 8]. Finally, RA used to assess health risk assessment (HRA), hazard risk assess-
ment (HZRA), and environmental (ecological) risk assessment (ERA).

To build confidence in these assessment’s results and subsequently in the 
decisions to be taken based on them, there is a need to identify, present, and 
describe the uncertainties associated with data collection and analysis, scenario 
developments, and expert judgment. In this chapter, uncertainty management to 
support regulatory decision making process to prevent and control pollution will 
be presented. In this respect, it should be noted that basic elements for regulatory 
decision making process include clear identification of the applied laws, regulations 
and acceptance criteria, assessment of the safety significance, verification of col-
lected data and information, assigning priorities, and clarification of the analysis/
assessment to be performed [3]. Based on the safety significance of the activity, 
it might require a simple qualitative assessment, i.e. for activities of low safety 
significance, or it might need in-depth quantitative assessment, i.e. for activities 
of high safety significance. Depending on the existing regulations, this assessment 
can cover impacts (e.g. EIA) and/or risks (e.g. RA) to human, property, or/and the 
environment, and the results of the assessment are used to manage these impacts 
and/or risks, i.e. prioritize the efforts to minimize or mitigate the impacts and/or 
risk. The rest of this chapter is devoted to introduce the uncertainty management. 
This will be achieved by introducing the applications of risk assessment to support 
the regulatory decision making process, then elements of the uncertainty manage-
ment will be overviewed.

2. Risk assessment to support regulatory decision making process

Early RA studies were limited to HRA and comprised health problem identifica-
tion, dose–response assessment, exposure assessment, and risk characterization. 
Then HZRA studies were used as a tool to evaluate the risks of specific system or 
process. Figure 1 illustrates the steps of HZRA that is used to support the decision 
making process for a system in the design phase, where the system’s hazards are 
identified, accidents probabilities and consequences are evaluated, then risks are 
characterized. If the risk is acceptable, then the decision will support the construc-
tion and/or operation of the system, otherwise there will be a need to modify the 
system. Finally, integrated risk assessment (IRA) methodology was developed to 
estimate the health and ecological risks. It consists of three phases [9]:

• Problem identification: in which the hazard is identified and the assessment 
context is set up by identifying the goals, objectives, scope, and assessment 
activities.

• Risk analysis: aims to identify the exposures and their effects on human and 
the environment. In this step, assessment models are developed; required data 
are collected; and modeling results are analyzed to characterize the exposures 
and their effects. Detailed information about the development of assessment 
models are found elsewhere [1].

• Risk characterization: aims to estimate the risks based on the information of 
exposures and their effects.



3

Introductory Chapter: Uncertainty Management to Support Pollution Prevention and Control…
DOI: http://dx.doi.org/10.5772/intechopen.98465

Each step in the risk assessment is associated with uncertainties that need to be 
identified, presented and described, and their effects needs to be quantified.

Risk assessment studies are applied to support the decision making process for 
policy and regulatory decision makers and for project decision makers, Table 1 lists 
some of these applications and their examples [10]. Decision making process that 
relies on the risk assessments are classified as risk-based and risk-informed decision 
making processes [11]. On one hand, the first relies totally on the risk assessment 
results, thus allowing efficient risk management and ensure a defensible basis 
for the decision. On the other hand, the risk-informed decision making process 
consider other factors with the risk assessment results, (e.g. existing expert judg-
ment, stakeholder involvement, and other engineering insights). The guidance for 
conducting the risk assessment is differed from country to another, where the level 
of acceptable risks, nature of the uncertainty analysis, and risk communication 
programs may be defined or not [12].

Risk assessments are classified based on the adopted technique to assess the 
risk into qualitative, semi-quantitative, and quantitative assessments. Qualitative 
assessments are widely used in chemical process industries to analyze potential 
equipment failure and human errors that can initiate incidents. They are applied 
throughout the facility life cycle to identify critical safety equipments for special 
maintenance, testing, or inspection, as a part of the facility management of change 
program, and to investigate possible causes of incidents [13]. Examples of qualita-
tive hazard evaluation techniques include what if analysis, checklist analysis, and 

Figure 1. 
Environmental risk assessment scheme for project during the design phase.
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HAZOP. Examples of risk analysis tools include failure modes, effect and criticality 
analysis (FMECA), and layer of protection analysis (LOPA) [14]. Quantitative risk 
assessments originated in nuclear, aerospace, and electronic industries, they are 
further sub-classified into deterministic, probabilistic or combination of them. 
Traditionally, deterministic approaches were adopted by relying on the defense in 
depth strategy and appropriate safety margin, and following conservative require-
ments in the design, manufacturing and operation of the project. In this approach, 
design basis accident is identified during the problem identification phase, its 
consequences are determined within the risk analysis phase, finally safety barriers 
are designed to mitigate or prevent the accident consequence [3, 15, 16]. On the 
other hand, the probabilistic approach is used to analyze all feasible scenarios; 
where a broad spectrum of initiating events and their event frequency are addressed 
in the problem identification phase. Then the consequences of those events and 

Point of comparison Deterministic approach Probabilistic approach

Assumptions Relies on conservative/bounding 

assumptions to address the uncertainties

Relies on best estimate, yet it 

uses conservative assumptions in 

determining the success criteria

Initiating events and 

hazards

Limited events are considered Comprehensive set of events are 

selected including both DBA* & 

behind DBA

Events frequencies & failure probabilities 

are treated approximately

Explicitly treatment of the 

initiating events frequency and 

failure probability

Consideration of 

accidents

Addressed separately Integrate all the initiating events

Uncertainty 

management

Use of conservative assumptions, or 

best estimate codes and models with 

uncertainty analysis

Explicit uncertainty treatment in 

the models

Prioritization Give rough indication on the relative 

importance of the system

Included in modern probabilistic 

safety assessment models

*DBA design basis accident.

Table 2. 
Features of the deterministic and probabilistic risk assessment [16].

Field Applications Example

Policy & 

regulatory

Design regulations Determine acceptable risk level

Prioritization of environmental risks Identify regulated chemicals and 

products

Provide basis for site-specific decision Planning or sitting for certain 

installation

Comparison of risk Support substitution decision

Project License application Show compliance with legislation

During design phase Show the safe operation and 

product safety

During sitting Support Site selection study

Prioritization and evaluation of risk reduction measures

Table 1. 
Application of risk assessment studies to support the decision making process.
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weights are analyzed. Table 2 summarizes the main features of both approaches 
[16]. An example of the risk-informed regulatory process in the nuclear industry 
is the USNRC risk-informed processes that consider compliance with regulations, 
consistency with defense in depth strategy, risk informed analysis, and perfor-
mance monitoring. USNRC indicated that the application of risk-informed decision 
making process enhances the deterministic approach [15].

3. Uncertainty management in risk assessments

Uncertainty management is used to build confidence in the outcome of the RA 
results. Subsequently, the adaptation of well-developed uncertainty identification, 
classification, inventory, quantification and assessment, and combination schemes 
are essential for reliable decision making process. In the first step, identification of 
inherent uncertainty sources in the studied system is achieved. In the uncertainty 
combination step, the total uncertainty is obtained by aggregating all the quantified 
uncertainties, where different forms of uncertainties with different mathematical 
presentations are aggregated to produce a confidence sentence in the system perfor-
mance. In this section, approaches to classify, inventory and quantify uncertainties 
will be introduced.

3.1 Uncertainty classification

In general, different sources of uncertainty associate the problem identification 
and risk analysis phases in the risk assessment methodology. These uncertainties 
might be related to the system variability and randomness, the presence of errors, 
either in the measurements, or modeling and analysis, scenarios or data insignifi-
cance, and lack of knowledge, indeterminacy, judgment, and linguistic imprecision 
in decision making [17–25]. Some of these uncertainties could be reduced and 
others are irreducible.

Two uncertainty classification systems are used; the first is based on the ability 
to reduce these uncertainties and the second is based on their sources [18–24]. The 
first consists of two classes, i.e. Epistemic & Aleatory, and this system is effectively 
used in building confidence in the uncertainty management outcomes, where:

• Irreducible uncertainties (Type I) are aleatory, i.e. related to the random-
ness/stochastic nature of the system, and cannot be reduced but they could 
be better characterized. Examples include uncertainties associated with 
natural hazard identification, and those associated with the system  
heterogeneity [18, 22].

• Reducible uncertainties (type II) are epistemic, i.e. arose due to the lack of 
knowledge, and could be reduced by gaining additional information or data. 
Epistemic uncertainties are associated with the nature of some mechanisms at 
specified conditions, e.g. radiological health effects at low doses [23].

It should be noted that during uncertainty management it is important to 
differentiate between these types and justify the consideration of certain type that 
associates the features, events, or processes (FEP) of the studied system towards 
reliable uncertainty quantification.

Uncertainty classification based on the uncertainty sources includes the  
following classes, where each class includes both epistemic and aleatory  
uncertainties [23, 24]:
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• Natural variation in the system properties/features: the spatial and temporal 
heterogeneity of the system properties or features is associated with uncertainty. 
This heterogeneity is inherent in the system and needs to be identified during 
the problem definition phase. In modeling the fate and transport of pollutants 
in the environment or within the engineered systems that prevent and control 
the migration of these pollutants, this variability act as a source for two types of 
uncertainties. The first is aleatory due to the randomness of the system properties/
features, e.g. the spatial distribution of permeability of the geological formation. 
The second is epistemic due to the lack of knowledge about the temporal evolu-
tion of this randomness, e.g. how the permeability will be changed with time.

• Measurement errors: these errors associate the data collection process and 
include random and systematic errors. The first is relatively easy to be detected 
and quantified, where they associate the reduced tool/device sensitivity, pres-
ence of noise, and imprecise definition. Uncertainties due to random errors 
are addressed using probabilistic methods [23, 24]. The systematic errors are 
harder to be quantified, they resulted from a bias in the sampling and they 
need a perfect calibration procedure to account for them.

• Conceptual model development. Models are abstractions of the real system; 
during conceptual model development there is a need to optimize the studied 
system. In this step, the less important FEPs are excluded [1]. This is a source 
of epistemic uncertainty that is reduced by performing a sensitivity analysis to 
optimize the selected FEPs. This source of uncertainty is more prominent in 
deterministic approaches.

• Computational model errors: there are several types of errors that associate 
the computational modeling of the data. Regardless the type of the used math-
ematical models, e.g., empirical, mechanistic, or black box, its application is 
associated with errors that arise from the validity of the model to represent the 
studied system and the accuracy and stability of the numerical model [25–27]. 
Uncertainties associated with model validity might be aleatory or epistemic, 
whereas those due to the accuracy and stability of the numerical model are 
epistemic and are reduced by adopting a systematic verification procedures.

• Subjective judgment: during the analysis of the data, expert judgment is 
required especially in the following cases; lack of data, and lack of knowledge; 
this will lead to subjective uncertainty. Examples of these cases are the need 
for extrapolation or interpolation of the data, and assignment of parameter 
distribution [28, 29].

It should be noted that both types of uncertainty classifications are used to 
quantify, assess and minimize the uncertainty in the decision making process. 
Skinner et al. developed a classification system based on the ability of the uncer-
tainty to be reduced and their location, in the system, data, model and the subjec-
tive uncertainty in the form or language, extrapolation and decision, and their 
associated sub-location as illustrated in Figure 2 [19].

3.2 Uncertainty inventory

Uncertainty inventory includes all the information and questions relating to the 
identified and classified uncertainty. It is developed to obtain traceable, updatable 
and defensible record of uncertainty assessment and quantification, where
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• It includes multiple quantities of interest and permits their categorization at 
different levels of information, e.g. system vs. component level,

• It supports the determination of the nature of the total uncertainty and priori-
tizes the efforts towards efficient uncertainty reduction,

• It focuses on the information necessary for decision making, and risk/reliability 
estimation,

3.3 Uncertainty quantification

Both linguistic and numerical uncertainty quantifications approaches are used 
to analyze and assess the uncertainty in a given system. The quantification methods 
depend on the propagation of uncertainties in the system model and then assess the 
model output response due to this uncertainty propagation. The mathematical repre-
sentations of the uncertainty are based on the use of probability, imprecise probabil-
ity and possibility theories. For deterministic risk assessment, the uncertainty might 
be quantified either using a one factor at a time (OFAT) or multi- variant techniques. 
OFAT allows the change of one uncertain factor or parameter within a specified 
range with keeping the rest of the factors or parameters fixed [27]. This allows the 
examination of the effect of the factor variability/randomness/presence on a single 
process output or multi outputs. Figure 3 illustrates the application of OFAT in 
assessing the risk of a system, where a single valued specified factor is propagated 
through the system, and the model outputs are quantified (Figure 3a and b). To 
quantify the uncertainty in the risk estimate of that system, discrete values or proba-
bilistic uncertainty information of the uncertain parameter are propagated through 
the system which generates statistical information in the risk values for the uncertain 
parameter (Figure 3a and c). Different sampling methods could be used to represent 
the probabilistic information in that parameter, i.e. Latin hypercube sampling. OFAT 
does not allow the investigation of the interaction between uncertain parameters and 
their effect on the system output (s), nor allowing the determination of the outputs 
dependence [24, 26]. To overcome the latter, the parameters are often selected based 
on their ability to produce a conservative decision.

Figure 2. 
Uncertainty classification according to Skinner et al. [19].
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The use of the multi-variant approach is adopted by varying the factors or param-
eters simultaneously and investigating their individual and combined effects on the 
process output. This approach is applied using statistical experimental design, (e.g. 
response surface methodology, Taguchi) which allows the development of regression 
models that correlate between the multi variant inputs and the process outcomes either 
for multi-variant – single objective or multi-variant – multi objective problem based 
[25, 27, 30–33]. Integrated tools were developed to quantify and assess the uncertainty 
in RA, an example of these tools is the Quantifying Margin and Uncertainty, which 
used to support the certification of the reliability and safety for a physical system and 
quantify the performance thresholds and their margins and the associated uncertainty 
in their evaluation. This tool widely used to quantify uncertainties that are dominated 
by lack of knowledge in risk-informed decision analysis [34].

3.4 Sensitivity analysis to support the uncertainty management

Sensitivity analyses are used as tools to reduce the uncertainty, where it is used 
to prioritize the research efforts to reduce uncertainty associated with the scenario, 
conceptual model, input data, modeling process, and the designed system [35]. 
Differential and probabilistic sensitivity analyses are used to support the uncer-
tainty quantification and reduction. Differential sensitivity analysis is used when 
exact risk formula exists, this technique is computationally efficient; however, it is 
only valid in vicinity of the base case and might require intensive efforts to drive 
the sensitivity coefficients [35]. Probabilistic sensitivity analyses are conducted 
by assign probability density functions to each input parameter, generate an input 
matrix using suitable sampling method, calculate the outputs, and assess the influ-
ences and relative importance of each input/output relationship [36]. In probabi-
listic risk analysis, the marginal distributions of the studied parameters and the 
dependence between them need to be specified [36]. In this case, interval probabil-
ity, Dempster-Shafe structure, and probability boxes are widely used approaches.

4. Conclusion

In this chapter the approaches to manage uncertainty within the risk assess-
ment framework to support the decision making process for pollution prevention 

Figure 3. 
Application of the OFAT approach in uncertainty quantification, (A) uncertainty propagation in the model, 
(b, c) modeling outputs for single parameter value (b) and uncertain parameter (c).
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