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Chapter

Optimization Based Dynamic
Human Motion Prediction with
Modular Exoskeleton Robots as
Interactive Forces: The Case of
Weight Lifting Motion
Hyun-Joon Chung

Abstract

The optimization-based dynamics model is formulated for the weight lifting
motion with human and exoskeleton model as interactive force term in this chapter.
In the optimization algorithm, the human motion is defined as variables so that the
motion which we want to generate (box lifting motion in this case) can be
predicted. The objective function or cost function is defined as performance mea-
sure which can be switched by developer. In this paper we use the summation of
each joint torque square which is considered as the dynamic effort for the motion.
Constraints are defined as joint limits, torque limits, hand position, dynamic bal-
ance, exoskeleton assistive points, etc. Interaction force form exoskeleton robot can
be derived as generalized coordinates and generalized force which are related to
inertial reference frame and human body frame. The results can show how effective
the exoskeleton robots are according to their assistive force.

Keywords: Optimization algorithm, dynamic motion prediction, human modeling
and simulation, exoskeleton robot, force interaction

1. Introduction

To design or to assess the exoskeleton robot, it is necessary to simulate human
motion with interactive force from exoskeleton robot. Thus, we need the human
modeling and simulation which method the interactive force from exoskeleton can be
applied at. This is key motivation in this study and we formulate human motion
simulation with modular exoskeleton model and predict human motion with interactive
from modular waist and knee exoskeleton robot. To do that we formulate human
motion with assistive force from exoskeleton robot. There are many good researches
based on optimization techniques for simulation in different areas [1–4]. There are
couple of human modeling and simulation software such as OpenSim [5]. By given
motion OpenSim can generate muscle forces for that motion. Other is Santos which is
optimization-based motion simulation so called predictive dynamics [6]. Some of
human motion simulation is developed under optimization-based motion simulation
[7, 8]. And, lifting motions are studied with optimization based technique as well [9, 10].
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The modeling and simulation for human-exoskeleton is developed in [11]. In this study,
we also use optimization-based motion prediction and simulation method with recursive
Lagrange’s equations of motion which is highly nonlinear. It provides predicted human
motion as well as joint torques and ground reaction forces for weight lifting. This
method also gives us pretty fast calculation time and accurate results.

2. Mechanical modeling

2.1 Modular exoskeleton robot

There are many researches about exoskeleton with human-robot cooperation
[12]. Due to the wearability, convenience, comfort and easy portability, modular
exoskeleton robot is becoming a trend in the industrial work environment nowa-
days such as construction site, heavy industry, medical care, logistics, maintenance,
manufacturing process, etc. In this study, the modular means the modular type
according to the body parts of human being. For example, shoulder modular exo-
skeleton, knee modular exoskeleton. Biggest merit of modular exoskeleton may be
the bringing more comfortability rather than full-body exoskeleton robots. Of
course, it is possible only in the industrial area. If we look for the purpose of
rehabilitation in hospital, it may be different story. Also, once we narrow down the
application area, modular exoskeleton robot can be lighter, have more simple
structure and can be more compact. Some area, you do not need active exoskeleton
robot, and just passive exoskeleton is fine. Also, modular exoskeleton robot is
applicable either together or separate case by case. Furthermore, modular exoskel-
eton is more economical compare to the full-body exoskeleton robot. The following
Figure 1 shows the concept design of modular exoskeleton robot which we are
currently developing. In this study, exoskeleton assistive force can be applied
human body as an external force through the optimization process.

2.2 Human model

Humanmodel is constructed usingmechanical structure with revolute joints and
rigid body. Thus, each body segment is connected with revolute joint. There are 49
degrees of freedoms (DOF) in each body joint. Such as knee is 1 DOF, shoulder is 3DOFs

Figure 1.
The concept design of modular exoskeleton robot.
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etc. There are 6DOFs for global translation and rotation for human system to the inertial
reference frame.We put inertial reference frame at the point between the foot on the
ground as humanmodel is standing.We assume that body segment is rigid body and
there is nomuscle and tissue in this study. Therefore, it is assumed that allmuscle force is
converted to the joint torque. Also, we used GEBOD software to generate dynamic
properties of body segment for example thigh, pelvis, and torso [13]. In this study we
used 50 percentile male data which is representing averagemale size. Figure 2 describes
themechanical structure of current humanmodel to generateweight liftingmotionwith
waist and kneemodular exoskeleton robots. Each z-axis has DOF and transformation
matrix is combined sequentially from inertial reference frame to the head, hands, and
toes as a branch. The virtual branch depicts global DOFswhich ismentioned in previous
– 3 global translations and 3 global rotations. The torso part of the humanmodel has 4
spine joints and there are total 12 DOFs. Then, it leads to the right arm branch, left arm
branch, and head branch. Right arm and left arm branch has 4 joints and 9 DOFs
respectively including clavicle joint. Head branch has 2 joints and 5 DOFs. Right leg and
left leg has 4 joints and 7 DOFs respectively.

3. Kinematics and dynamics analysis

3.1 Kinematics

Denavit-Hartenberg (DH) method is used to analyze the kinematics of human
motion [14]. In the Denavit-Hartenberg method any point ir can be transferred to
the global reference frame as 0r in Figure 3 and it can be presented as Eq. (1).

Figure 2.
Mechanical structure of human model.
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0r ¼ 0Ti
ir (1)

Transformation matrix 0Ti in Eq. (1) can be obtained as follows.

0Ti ¼
0T1

1T2⋯
i�1Ti ¼

Y

i

n¼1

n�1Tn (2)

i�1Ti ¼

cos qi � cos αi sin qi sin αi sin qi ai cos qi
sin qi cos αi cos qi � sin αi cos qi ai sin qi
0 sin αi cos αi di

0 0 0 1

2

6

6

6

4

3

7

7

7

5

(3)

where the parameters q, α, a, d, are DH parameters. The qi is the joint angle
between the xi-1 axis and the xi axis about the zi-1 axis according to the right hand
rule. The di is the distance between the origin of the i-1th coordinate frame and the
intersection of the zi-1 axis with the xi axis along the zi-1 axis. ai is the distance
between the intersection of the zi-1 axis with the xi axis and the origin of the ith frame
along the xi axis. αi is the angle between the zi-1 axis and the zi axis about the xi axis
according to the right hand rule. In here, we use qi as our generalized coordinates. As
mentioned before, the inertial reference frame is located at the point between foot.
The origin of inertial reference frame is O in the above Figure 2. Thus, all kinematic
chain starts from origin of inertial reference frame. For the efficiency of calculation
time, we use recursive way for kinematic information as follows:

Ai ¼ Ai�1Ti (4)

Bi ¼ _Ai ¼ Bi�1Ti þ Ai�1
∂Ti

∂qi
_qi (5)

Ci ¼ _Bi ¼ Ci�1Ti þ 2Bi�1
∂Ti

∂qi
_qi þ Ai�1

∂
2Ti

∂q2i
_q2i þ Ai�1

∂Ti

∂qi
€qi (6)

where Ai is position matrix, Bi is velocity matrix, and Ci is acceleration matrix.

3.2 Dynamics

Once we obtain the kinematic information, we can use them to calculate dynamics
of motion simulation. The equations of motion are derived from Lagrange’s equation.

Figure 3.
Articulated chain.
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Q i ¼
d

dt

∂L

∂ _qi

� �

�
∂L

∂qi
(7)

where L is Lagrangian which is L = K – V (kinetic energy – potential energy),
and qi is the generalized coordinate. Total kinetic energy is derived as

K ¼
X

n

j¼1

K j ¼
1

2

X

n

i¼1

tr _AiJi _A
T

i

� �

: (8)

where Ai is joint angle matrix and Ji is inertia matrix at ith reference frame. Also,
the potential energy for system can be given as

V ¼ �
X

n

j¼1

m jg
TA j

jr j �
X

n

j¼1

fTkA j
kr f δjk (9)

where mj is the mass of the body segment represented as jth reference frame, g is
gravity force vector, fk is an external force which is defined in global reference
frame and acting on the body segment expressed in kth reference frame, krf is the
location of external force acting on the link expressed in the kth reference frame, δjk
is Kronecker delta. Then, the equations of motion can be derived from above
equations (Eqs. (7)–(9))

τi ¼ tr
∂Ai

∂qi

X

n

j¼i

iT jJ j €A
T

j

 !

� gT
∂Ai

∂qi

X

n

j¼i

m j
iT j

jr j � fTk
∂Ai

∂qi

X

n

j¼i

iT j
kr f δjk �GiAi�1z0

(10)

where τi is the joint torque acting on the joint represented with generalized
coordinate qi, Gi is external moment which is defined in the global reference frame
and z0 is [0 0 1 0]T. Ground reaction force can be calculated using global force
transformation the mechanical system of human body. Obtained joint torques are
used to evaluate joint torque constraints and objective functions in later section.

4. Optimization formulation

Optimization based motion simulation in this chapter is performed according to
the following process:

Step1: Prepare input data.
Step2: Function approximations for joint variables.
Step3: Kinematics analysis.
Step4: Dynamics analysis.
Step5: Objective function evaluation.
Step6: Constraints evaluation.
Step7: Print out if converge. Otherwise go back to step 2.
Kinematics and dynamics are covered in previous section, so we will discuss the

joint variables, objective function, and constraints evaluation in this section.

4.1 Variables

To generate weight lifting motion, our optimization variable is joint angle
profiles. These joint angle profiles are approximated using B-spline function
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approximation [15]. The control points in B-spline function approximation are
updated in each iteration through the optimization process. Also, we used clamped
B-spline which is that the starting point and end point of spline curve are matching
to the control points. Following equation describes the B-spline approximation for
the joint angle profiles qi.

qi t,pð Þ ¼
X

m

j¼0

N j tð Þp j (11)

where t = {t1,… ,ts} is knot vector, p = {p1,… ,pm} is the control points, Nj is the
basis function of B-spline function approximation. Here, control points P becomes
optimization variables.

4.2 Performance measure and objective function

We define the energy consuming (dynamic effort) for the given motion as the
performance measure for weight lifting motion prediction and simulation. In this
study, we use the joint torque square which is proportional to the mechanical
energy. This mechanical energy is a reasonable criterion to minimize [4]. Then, it is
formulated as objective function in optimization formulation as follows:

f ¼

ðT

0

X

w1τi
2

h i

dt (12)

where wi is the weighting parameters of each joint, τi is the joint torque of each
joint. The joint torque is calculated from above dynamics equation (Eq. (10)).

4.3 Constraints

Constraints are the one of the motion control way in this optimization formula-
tion and we used minimal set of constraints to generate motion in this formulation.
The list of constraints are as follows:

1. Joint angle limits

2. Joint torque limits

3.Foot position and hand position

4.Stability condition

The joint angle limits and torque limits for the human motion are determined
based on the literature [16–19]. Zero Moment Point(ZMP) method is used for the
stability condition constraint [20]. Each constraint is formulated as follows
accordingly:

qL
≤q tð Þ≤qU (13)

τ
L
≤ τ tð Þ≤ τ

U (14)

ri tð Þ ¼ ~ri (15)

zzmp ∈FSR, xzmp ∈FSR (16)
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4.4 Analytical gradients

The analytical gradients of each constraints and objective function are provided
to the optimization solver. These analytical gradients improve the accuracy as well
as calculation time for convergence in optimization process. Analytical gradients for
constraints and objective function are as follows:

∂C

∂x1
¼

∂C

∂q1

∂q1
∂x1

þ
∂C

∂q2

∂q2
∂x1

þ⋯þ
∂C

∂qn

∂qn
∂x1

þ
∂C

∂ _q1

∂ _q1
∂x1

þ⋯þ
∂C

∂ _qn

∂ _qn
∂x1

þ⋯þ
∂C

∂€qn

∂€qn
∂x1

∂C

∂x2
¼

∂C

∂q1

∂q1
∂x2

þ
∂C

∂q2

∂q2
∂x2

þ⋯þ
∂C

∂qn

∂qn
∂x2

þ
∂C

∂ _q1

∂ _q1
∂x2

þ⋯þ
∂C

∂ _qn

∂ _qn
∂x2

þ⋯þ
∂C

∂€qn

∂€qn
∂x2

⋮

∂C

∂xm
¼

∂C

∂q1

∂q1
∂xm

þ
∂C

∂q2

∂q2
∂xm

þ⋯þ
∂C

∂qn

∂qn
∂xm

þ
∂C

∂ _q1

∂ _q1
∂xm

þ⋯þ
∂C

∂ _qn

∂ _qn
∂xm

þ⋯þ
∂C

∂€qn

∂€qn
∂xm

(17)

∂τ

∂xk
¼

∂τ

∂q j

∂q j

∂xk
þ

∂τ

∂ _q j

∂ _q j

∂xk
þ

∂τ

∂€q j

∂€q j

∂xk
(18)

where C represents constraints, qi is joint angle profile, xi is control point of B-
spline function approximation, τ is joint torque profile. The analytical gradients of
each constraint are calculated in the form of Eq. (17). For the analytical gradient of
objective function is calculated by using Eqs. (12) and (18).

5. Numerical experiments

5.1 Weight lifting motion

Figure 4 depicts weight lifting motion. The weight is defined as W and it is
applied as and external load in dynamics equilibrium equations of motion. Weight
object is virtual and only hand location is guided by position constraints. Foot is
located on the ground and weight is moving up vertically in 0.15 m from 0.5 m
above ground and away from heal position by 0.25 m as shown in Figure 4.
Dynamic stability constraint which is ZMP are imposed on the foot support region
area. Joint angle limits and joint torque limits are imposed based on the literature
review. It is assumed that the assistive moment is applied hip joint and knee joint
which axes are parallel to the horizontal axis of inertial reference frame.

5.2 Simulation setting

For the optimization, sequential quadratic programming (SQP) is adopted. The
sequential quadratic programming is very effective for the large scale nonlinear
constrained optimization problem. The commercial software SNOPT is used which
is well known as the effectiveness for large scale nonlinear problem SQP solver [21].
Total number of variables for optimization is 330 and total number of constrains is
1,766. The weighting parameters in objective function are set to equally in current
study. Numerical experiment is performed while the weights are set to 15 kg and
30 kg. Also, different assistive moments from exoskeleton robot are tested in the
experiment. The postprocessing for animation and snapshot was performed using
Commercial software MATLAB.
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6. Results

The simulation results are shown in following Figure 5. The assistive force from
exoskeleton robot is tested from 10 N/m to 50 N/m for waist and knee exoskeleton.
Then, we checked energy consumption for the lifting motion from the simulation.
The results are Table 1 and Figure 6. As shown in the Table 1, it is obvious that the
exoskeleton robot reduces the total energy consumption of weight lifting motion.
Most energy minimized case for each 15 kg and 30 kg lifting case is written in italic
in the table. In some case, the total energy is more than no assistive force case.

Figure 4.
Weight lifting motion with waist and knee exoskeleton robots.

Figure 5.
Simulation snapshot for weight lifting motion.
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Lifting

weight

Exo assistive

force (N/m)

Objective function

value (energy

consumption)

Lifting weight Exo assistive

force (N/m)

Objective

function value

(energy

consumption)waist knee waist knee

15 kg 0 0 3.3260043054–002 30 kg 0 0 6.6957529363–002

10 10 3.0190845608–002 10 10 4.6085529919–002

20 10 2.7882680491–002 20 10 5.8372796346–002

30 10 2.6598938935–002 30 10 5.3928838227–002

40 10 2.6341574623–002 40 10 5.0509039531–002

50 10 2.7108828860–002 50 10 4.8111291575–002

10 20 2.4055151982–002 10 20 4.5952969619–002

20 20 2.7788637489–002 20 20 4.5957540847–002

30 20 2.6149510912–002 30 20 5.4008290188–002

40 20 2.5534968466–002 40 20 5.0232961805–002

50 20 2.5946755651–002 50 20 4.7482075385–002

10 30 2.3808412818–002 10 30 4.6126512561–002

20 30 2.3808412818–002 20 30 4.3911156137–002

30 30 2.6053418696–002 30 30 4.4983526018–002

40 30 2.5083330659–002 40 30 5.0310773358–002

50 30 2.5137987323–002 50 30 4.7204074709–002

10 40 2.4208434896–002 10 40 12.775145795–002

20 40 2.2956322073–002 20 40 4.6699616710–002

30 40 2.2447356818–002 30 40 4.6284398370–002

40 40 2.4985189230–002 40 40 4.2840986427–002

50 40 2.4684139732–002 50 40 4.7280245854–002

10 50 2.4132838565–002 10 50 16.305738815–002

20 50 2.3243927837–002 20 50 10.469578598–002

30 50 2.2435740271–002 30 50 4.7176051325–002

40 50 2.1731970674–002 40 50 4.3894974761–002

50 50 2.4583949090–002 50 50 4.2854122138–002

Table 1.
Numerical experiment results for weight lifting motion.

Figure 6.
The contour plot of numerical experiment results.
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It might be the assistive force is bothering the balance mechanism of human body
while weight lifting motion so human uses more energy to recover the balance back.

7. Conclusions

We have studied optimization-based motion simulation with modular waist and
knee exoskeleton robot as an assistive force. We used Denavit-Hartenberg method
for kinematics, Lagrange’s equations of motion with external force and moment
term, B-spline function approximation. In motion simulation, the performance
measure is mechanical energy which is presented as the summation of joint torque
squares. Minimal constraints are applied such as joint angle limits, torque limits,
dynamic balance, and hand/foot positions., the optimization process find out the
minimized energy consumed motion under the assistive forces from the modular
waist and knee exoskeleton robots which are applied during the weight lifting
motion.

This method provides unique feature with human-exoskeleton modeling and
simulation area. It can give us predictive motion of human so that the exoskeleton
parameters are adjusted based on the predicted motion simulation. Also, human
motion can be generated automatically for the control algorithm of robot to collab-
orate with human. It can be used as evaluation and assessment tool for the design
parameters of exoskeleton robot development in any given tasks according to
human factors. Furthermore, this can reduce the development cost of exoskeleton
because not many prototypes are necessary and provides safe design and test pro-
cess during the exoskeleton development procedure. Of course, the musculoskeletal
model should be developed for more accurate calculation of human factors and it
will be remained as future works.
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