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Chapter

Conversational Code Analysis:
The Future of Secure Coding
Fitzroy Nembhard and Marco M. Carvalho

Abstract

The area of software development and secure coding can benefit significantly
from advancements in virtual assistants. Research has shown that many coders
neglect security in favor of meeting deadlines. This shortcoming leaves systems
vulnerable to attackers. While a plethora of tools are available for programmers to
scan their code for vulnerabilities, finding the right tool can be challenging. It is
therefore imperative to adopt measures to get programmers to utilize code analysis
tools that will help them produce more secure code. This chapter looks at the
limitations of existing approaches to secure coding and proposes a methodology that
allows programmers to scan and fix vulnerabilities in program code by communi-
cating with virtual assistants on their smart devices. With the ubiquitous move
towards virtual assistants, it is important to design systems that are more reliant on
voice than on standard point-and-click and keyboard-driven approaches. Conse-
quently, we propose MyCodeAnalyzer, a Google Assistant app and code analysis
framework, which was designed to interactively scan program code for vulnerabil-
ities and flaws using voice commands during development. We describe the
proposed methodology, implement a prototype, test it on a vulnerable project and
present our results.

Keywords: secure coding, virtual assistant, code analysis, static analysis

1. Introduction

Computing systems face serious threats from attackers on a day-to-day basis.
Devices within a network could be targeted or used as launching pads to spawn
malware and other attacks to critical systems and infrastructure. A system is as
secure as its weakest link [1]. Therefore, software engineers must be cognizant of
the cyber-related challenges that plague modern computer systems and engineer
software with credible defenses. One of the first defenses against potential threats
to computer systems is careful analysis of program code during development and
taking necessary steps to minimize/eliminate vulnerabilities.

Program analysis falls into three main categories: static application security
testing (SAST) or static analysis, dynamic application security testing (DAST) or
dynamic analysis, and interactive application security testing (IAST). Static analysis
is a “technique in which code listings, test results, or other documentation are…
examined… to identify errors, violations of development standards, or other prob-
lems” [2]. Dynamic analysis is the “process of evaluating a system or component
based on its behavior during execution” [2]. IAST involves instrumenting a
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program with sensors to monitor program code in memory during execution in
order to find specific events that could cause vulnerabilities [3]. Two or more of
these approaches may be combined to create hybrid tools and techniques for ana-
lyzing program code. These hybrid systems are designed to achieve more compre-
hensive coverage and to decrease the false positives and false negatives of existing
approaches.

While researchers are interested in designing sound and complete code analysis
tools, achieving soundness and completeness remains an intractable problem [4–6].
Consequently, a lot of research in code analysis is centered on improving the alerts
of static analysis tools [4, 7]. More recently, several researchers have proposed
models based on deep learning and other machine learning approaches to scan and
fix vulnerabilities in program code [8]. Many of these tools are still at an infant
stage and have not yet made it to market. Based on current trends, we believe that
the future of code analysis will involve more refined tools based on artificial intel-
ligence (AI), machine learning, and other hybrid approaches.

In this work, we propose a hybrid code analysis framework that employs the use
of voice assistants (VAs) to allow a programmer to conversationally scan for and fix
potential vulnerabilities in program code. The use of voice assistants have grown
significantly in recent years. This work focuses primarily on the Google Assistant1

as it is the most popular [9] among other virtual assistants.
The rest of the chapter is organized as follows: first, we discuss related work in

the area of hybrid analysis in Section 2 followed by a discussion on challenges
affecting adoption of existing approaches in Section 3. In Section 4, we theorize
about the future of secure coding and propose a new code analysis approach in
Section 5. We then use a case study to evaluate our proposed approach in Section 6
and present our conclusion in Section 7.

2. Related work

This work falls in the area of hybrid analysis. In this section, we summarize
works in this area.

In 2006, Aggarwal and Jalote [10] combined static and dynamic analysis to
detect buffer overflow in C programs. Both static and dynamic approaches have
advantages and disadvantages. One of the disadvantages of dynamic analysis is the
requirement of a large number of test cases, which present an overhead. Some
dynamic analysis tools use a feature know as generate-and-patch or generate-and-
validate in an effort to auto-fix vulnerabilities. In 2015, the authors of [11] analyzed
reported patches for several DAST tools including GenProg, RSRepair, and AE, and
found that the overwhelming majority of reported patches did not produce correct
outputs. The authors attributed the poor performance of these tools to weak proxies
(bad acceptance tests), poor search spaces that do not contain correct patches, and
random genetic search that does not have a smooth gradient for the genetic search
to traverse to find a solution [11].

In 2012, [12] proposed a hybrid approach that uses source code program slicing
to reduce the size of C programs while performing analysis and test generation. The
authors used a minimal slicing-induced cover and alarm dependencies to diminish
the costly calls of dynamic analysis [13].

1 Google, Google Assistant, and Dialogflow are registered trademarks of Google, Inc. The use of these

names or tools and their respective logos are for research purposes and does not connote endorsement of

this research by Google, Inc. or any of its partners.
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In 2014, [14] implemented a hybrid architecture as the JSA analysis tool, which
is integrated into the IBM AppScan Standard Edition product. The authors aug-
mented static analysis with (semi-)concrete information by applying partial evalu-
ation to JavaScript functions according to dynamic data recorded by the Web
crawler. The dynamic component rewrites the program per the enclosing HTML
environment, and the static component then explores all possible behaviors of the
partially evaluated program.

In 2015, [15] applied a program slicing technique, similar to [12], to create a tool
called Flinder-SCA. The authors also implemented their program using the Frama-C
platform. The main difference between [12, 15] is that [15] performs abstract
interpretation and taint analysis via a fuzzing technique wheres [12] does not
perform taint analysis or fuzzing.

Also, in 2015, [16] proposed a hybrid malicious code detection scheme that was
designed using an AutoEncoder and Deep Belief Networks (DBN). The
AutoEncoder deep learning method was used to reduce the dimensionality of data.
The DBN was composed of a multilayer Restricted Boltzmann Machines (RBM) and
a layer of BP neural network. The model was tested on the KDDCUP’99 dataset but
not on actual program code.

In 2019, [17] proposed SapFix, a static and dynamic analysis tool which
combines a mutation-based technique, augmented by patterns inferred from
previous human fixes, with a reversion-as-last resort strategy for fixing high-firing
crashes. This tool is built upon Infer [18] and a localization infrastructure that
aids developers in reviewing and fixing errors rapidly. Currently, SapFix is
targeted at null pointer exception (NPE) crashes, but has achieved much success at
Facebook [18].

In a dissertation produced in 2021, [19] proposed a code generation technique
for Synchronous Control Asynchronous Dataflow (SCAD) processors based on a
hybrid control-flow dataflow execution paradigm. The model is inspired by classical
queue machines that completely eliminates the use of registers. The author uses
satisfiability (SAT) solvers to aid in the code generation process [19].

To the best of our knowledge, our work is the first to employ modern virtual
assistants to conversationally scan and fix vulnerabilities in program code. In [20],
the authors established a voice user interface (VUI) for controlling laboratory
devices and reading out specific device data. The results of their experiments
produced benchmarks of established infrastructure and showed a high mean accu-
racy (95% � 3.62) of speech command recognition and reveals high potential for
future applications of a VUI within laboratories. In like manner, we propose the
integration of personal assistants with code analysis systems to encourage
programmers to produce more secure code.

3. Challenges affecting adoption of existing approaches

Several code analysis and vulnerability detection surveys have categorized tools
in the literature [7, 21–23]. While surveys are essential in advancing research, many
of them do not focus on tools found on websites. It must be noted that the average
programmer does not look for tools in research papers. To that end, we conducted a
Google search and found several popular websites that present various tools that
programmers may use to scan their code for vulnerabilities. Figure 1 shows a bar
chart highlighting the number of tools found on these websites. As shown in the
figure, GitHub and Wikipedia list the most tools and are often the top websites
returned in search results due to their popularity. We further grouped the most
popular static analysis tools found on these websites by language as shown in
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Figure 1.
The large number of code analysis tools found on popular websites.

Figure 2.
Static analysis tools categorized by programming language.
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Figure 2. As can be seen, this non-exhaustive list could overwhelm many
programmers in determining the best tools for their projects.

In addition, the ability to combine code analysis approaches coupled with the
number of programming languages that exist result in a large number of tools from
which coders can choose to analyze their code. This makes it onerous for a pro-
grammer or organization to decide on a particular code analysis tool. Further, tools
often require special configuration, which may take time to fine tune for best
results. Many tools also suffer from usability issues, lengthy vulnerability reports,
and false positives, making programmers avoid them altogether [24–26].

Another challenge affecting adoption of code analysis tools is monopolization of
the market by certain companies. For-profit companies usually have the resources
to improve tools by adding more state-of-the-art approaches such as cloud-based
scanning, IAST support, and report generation. While these developments often
advance the field of code analysis, they sometimes discourage small organizations
and individuals from investing the effort and resources required to procure state-
of-the-art tools. Thus, a streamlined, modern, cost-effective approach is needed to
help encourage programmers to produce more secure code.

4. The future of code analysis

We believe that the future of code analysis lies in hybrid systems that combine
several approaches to achieve useful analyses and actionable reports that will
encourage programmers to produce more secure software. Based on current trends
in machine learning, especially in deep learning, and natural language processing
(NLP) (e.g., virtual assistants), it is safe to say that future code analysis will rely
heavily on AI, ontologies, NLP, and machine learning. For example, when
discussing the trends and challenges of machine learning, the authors in [27] “envi-
sion a fruitful marriage between classic logical approaches (ontologies) with statis-
tical approaches which may lead to context-adaptive systems (stochastic
ontologies) that might work similar to the human brain” [27].

Our projection is that code analysis frameworks will facilitate plug-and-play
(PnP) models. Figure 3 illustrates a generalized PnP model that uses virtual assis-
tants to manage the analysis process. Using this plug-and-play model, programmers
may select the code analyzer that best fits their project based on factors such as
project type, project size, speed, efficiency, security, etc. This is similar to the

Figure 3.
A suggested model showing code analysis as part of a plug-and-play paradigm that facilitates the inclusion of
any analysis tool and the use of a virtual assistant to manage the analysis process.
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current landscape with virtual assistants and recommender systems. Currently, a
person may use a virtual assistant like the Google Assistant to navigate a list of
restaurants based on price, location, menu, reviews, etc. The virtual assistant may
update the users preferences based on selections over time. This concept can also
apply in code analysis where the chosen scanner used in the PnP model could be
based on past scans or popularity.

The code analyzer featured in the model in Figure 3may use any combination of
approaches including SAST, DAST, and IAST, which could be cloud-based or local-
ized to the user’s computer. These approaches could be backed by any algorithm

Figure 4.
A mockup of an analytical dashboard for code analysis on a curved display.

6

Coding Theory - Recent Advances, New Perspectives and Applications



that results in significant performance gains. It has been shown in the literature that
deep learning and other ensemble methods perform very well in a large number of
contexts including infected host detection [28], intrusion detection systems
[29, 30], and malware analysis [31, 32], to name a few. Interestingly, many of these
approaches can be used to create or improve code analyzers in an effort to help
programmers produce more secure software.

Another feature of code analyzers of the future is a deep reliance on data
analytics, visualizations and state-of-the-art interfaces. As discussed in the litera-
ture [8, 33], the interface of a code analyzer can have a negative or positive impact
on its use and adoption. Therefore, for a system to be adopted in any project or
organization, users must be able to gain insights from the way it presents its results.
Figure 4 shows a mockup of what we believe the interface of future code analyzers
will look like. These interfaces will be in the form of dashboards instead of the
customary lengthy bug reports displayed in a console.

5. Proposed approach

The proposed approach is to integrate a virtual assistant with a code analysis
framework that allows users to scan, analyze, refactor and fix their code of incon-
sistencies and vulnerabilities. In this section, we describe the proposed approach
using the system architecture.

5.1 System architecture

The system architecture for MyCodeAnalyzer is shown in Figure 5. The system
consists of three main components: the virtual assistant, the webhook API and the

Figure 5.
MyCodeAnalyzer system architecture.
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code scanning environment. The code scanning environment consists of a web app,
an integrated development environment (IDE) plugin, code analyzers and
refactoring tools. Google Assistant was chosen as the virtual assistant because of its
popularity and easy-to-use App Engine and Dialogflow frameworks. The process
flow is as follows: a user invokes a Google Assistant app (aka, Google Actions app)
using a set of phrases understood by the system. This app is specially designed to
understand trigger phrases associated with code analysis. Trigger phrases are training
phrases that are entered into Dialogflow using an intent management system.
Dialogflow is a natural language understanding platform that allows users to design
and integrate a conversational user interface into a mobile app, web application,
device, bot, interactive voice response system, etc. [34]. Figure 6 captures the cur-
rent intents incorporated into MyCodeAnalyzer. Each intent is backed by machine
learning and NLP technology that uses named entity recognition (NER) and other
approaches to extract entities from speech, determine context, and carry out tasks.

Figure 6.
Current Dialogflow intents used by MyCodeAnalyzer.
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The intents in MyCodeAnalyzer are organized into 6 main categories: Default
Welcome Intent, vulnerability-scanning, clone-detection, Cancel, Bye, and Default Fall-
back Intent. The Default Welcome Intent is used to welcome the user to the system and
provide a description of potential requests that the application can fulfill. The
vulnerability-scanning intent is the most complex of the intents and uses a tree-like
structure to allow the user to conversationally scan a project for vulnerabilities, email
a scan report or auto-fix errors based on the capabilities of the code analyzer. The
clone-detection intent is used to scan a project for duplicated code and to provide a
visualization showing a side-by-side comparison of similar code. While clones may
not be vulnerable, they could become bloat in a project and could potentially lead to
vulnerabilities. The Cancel intent is used to exit a task currently underway. Bye is used
to exit the system and the Default Fallback Intent, as the name suggests, is used to ask
the user to repeat a phrase for clarification or serve as a graceful fail mechanism.

Once invoked, the Google Assistant app communicates with the Google Conver-
sation API to determine the user’s intent. After intent has been determined, the
Google Actions app then uses webhooks to communicate with a web service running
on the user’s computer. Using a tunneling service, the web service interacts with the
user’s IDE by way of a plugin. This plugin invokes a code analyzer or refactoring tool,
takes actions based on the user’s request, and places a message in a message queue.
The web service then reads the queue and returns the message to the Google Assistant
app, which then reads the message back to the user. The webhooks were set up in
Dialogflow and run as servlets on Google App Engine. A servlet accepts valid
Dialogflow POST requests and responds with data that is processed by the Google
Assistant app and returned as output messages to the user. Figure 7 further shows the
internals of the system during a conversation between the user and the assistant.
While only the static analysis portion of the system is demonstrated in this work, the
system is modular enough for dynamic and hybrid analysis tools to be incorporated

Figure 7.
Internals of MyCodeAnalyzer showing the flow of information throughout the system.
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using the PnP approach discussed in Section 4. This approach provides a more
complete code analysis depending on the user’s preferences.

5.2 Accessing information about the coding environment

Two types of code-related information are accessed on the user’s computer: code
within the IDE and code from a Git repository (e.g., GitHub) currently opened in a
web browser. The first type of information is important because it helps us to scan
code being actively developed, while the second type is used in the case where the
user would like to ensure that a repository is safe before forking it.
MyCodeAnalyzer can detect GitHub pages that are open in a browser. On systems
running MacOS, Applescript is used to communicate with the web browser. Other
approaches will be employed in the future to reproduce this functionality on
machines running other operating systems.

In order to access the user’s computer to scan the code being worked on in the
IDE or referenced in the browser, a methodology must be established to access this
information in a minimally invasive manner. To do so, we created a plugin for a
given IDE. Currently, we have plugins for IntelliJ IDEA and Eclipse. The plugin
becomes a part of the IDE, monitors the code being developed, and updates a
message queue (data file) with information about the code files and projects
manipulated by the programmer. Also, special system calls are used to access any
browser tabs that point to GitHub projects. A local web app in the form of a Spring
MVC REST API [35] runs on the user’ s computer. The job of the local web app is to
communicate with MyCodeAnalyzer by way of a tunnel in order to scan local code
or GitHub projects displayed in the user’ s web browser.

5.2.1 Accessing code within the IDE

Listing 1 shows the Applescript code that is used to check for gui-based applica-
tions that are currently open on the user’ s computer. Following this is a snapshot of
the corresponding output, which includes the Intellij IDEA IDE in the list. This
Applescript code is added to the REST app where it is run on localhost and invoked
by MyCodeAnalyzer to determine if the user is actively using an IDE. To further
contextualize the process of determining which code the user would like to scan, it
is also of interest to find out the frontmost or most active application on the user’s
computer. To do so, the code shown in Listing 2 was used. This code is expected to
return a single application, which in turn allows MyCodeAnalyzer to return a more
direct response to the user. For example, a response might be, “Say IDE, if you would
like me to scan the code that you are currently working on in IntelliJ” instead of using
indirect phrases such as “…may be working on.”

set text item delimeters to ", "

tell application "System Events" to

(name of every process where background only is false) as text end tell

Listing 1. Applescript code used to list all gui-based applications that are cur-
rently running on the user’ s computer.

The following is a sample output generated using the code in Listing 1:
"Google Chrome, Sublime Text, Terminal, idea, pycharm,Teams, Mail, teXShop,

Notes, Spotify, Finder, Microsoft PowerPoint, X11.bin, AdobeReader, iTunes,

Microsoft Excel,Script Editor, Activity Monitor, System Preferences, Safari,

Preview"
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Since most IDEs are standalone applications, we believe the best way to have
access to the user’ s code in a minimally invasive manner is to be an “insider” (That
is, to use a plugin that becomes part of the IDE). Consequently, the goal of the
plugins was to monitor the code being developed by taking note of the coding
project and the coding files being manipulated by the user. To accomplish this,
listeners were added to the IDE to detect when the text editor portion of the IDE is
active, when tabs are activated or switched, and when code files are edited. The
message queue is updated with the following pieces of information when the afore-
mentioned actions are performed: ProjectName, ProjectLocation, CurrentFile,
DateAdded, CurrentlyActive. This queue is then queried for active files and projects
when POST requests are made by the Google Assistant app to the local REST service
running on the user’s computer.

tell application "System Events"

name of application processes whose frontmost is true end tell

Listing 2. Applescript code used to determine the most active application on a
computer.

5.2.2 Accessing code referenced by tabs opened in the web browser

Like IDEs, web browsers provide little to no way for outside tools to access their
core areas. However, the Applescript-based techniques used previously for
accessing the System Events utility can be used to access the tabs that are currently
open in the web browser on the user’ s device. Listing 3 is used to retrieve tabs
currently open in Google Chrome. This script can be modified to get tabs in other
browsers such as FireFox or Safari. MyCodeAnalyzer then checks if any of the URLs
point to valid public GitHub accounts, which are then searched for coding projects
if the user requests that a scan of a Git project be performed.

set text item delimeters to ","

tell application "Google Chrome" to URL of tabs of every window

as text

end tell

Listing 3. Applescript code used to retrieve tabs currently open in Google Chrome.

6. Case study

In this section, we present a case study that demonstrates an implementation of
our proposed methodology. The main goal of this case study is to demonstrate the
applicability of integrating a virtual assistant into a code analysis framework to
allow the user to conversationally scan their code for vulnerabilities. The system is
currently in a prototypical stage. Here we perform a scan of a coding project using
the Google Assistant app via an Apple iPhone.

The following was done based on the proposed approach discussed in Section 5:

1.Create a Google Assistant app

A Google Assistant app was created based on the intents depicted in Figure 7.
Dialogflow, Google App Engine, and Google Actions Console are key
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components in the design of the app. Once designed, the app was tested using
the Google Actions API Simulator as well as released in alpha mode and tested
on a smart phone running the Google Assistant.

Figure 8.
A conversation between MyCodeAnalyzer and a human tester while scanning the OWASP WebGoat project.
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2.Create a local web app to interface with the Google Assistant app and the
coding environment

The local web app was created using Spring Boot [35] and was launched on the
computer via Apache Tomcat [36].

3.Create an IDE plugin for IntelliJ IDEA

Our IntelliJ IDEA plugin was created and installed in IntelliJ version 2020.3.2.
The plugin was installed using the IntelliJ plugin installer, which installs a local
plugin from a JAR (Java ARchive) file.

4.Choose and integrate a code analyzer

PMD [37] static code analyzer (version 6.31.0) was chosen for this study.
PMD uses a rule-based system to find common programming flaws in code
written in 8 programming languages, offering the most support for Java and
Apex. The rules used by PMD are divided into categories such as best
practices, error prone, and security. For this case study, a set of rules was
selected from the error prone and security categories.

5.Chose a vulnerable project

The OWASPWebGoat [38] project was used to evaluate the system.WebGoat
is an insecure application that allows researchers and developers to test
vulnerabilities commonly found in Java-based applications that use common
and popular open source components [38].

6.Test the system and report results

To integrate the Google Actions app with the local web app, Ngrok [39] was
chosen as the tunneling tool. Ngrok is a tool that exposes local servers behind
NATs and firewalls to the public Internet over secure tunnels [39].

6.1 Results and discussion

In this section, we capture a conversation between the Google Assistant app
during the analysis of the WebGoat Project, present the report generated by the
assistant, and discuss the results. It must be noted that the errors found by the
Assistant during the code analysis are the same as those that would be produced by
the standalone PMD project.

At this early stage of the project, the main benefit of the system is the ability to
use a virtual assistant to perform code analysis while multitasking, thus improving
productivity. After the system is setup, the programmer can configure and engage
with the VA by voice without having to manually configure the code analyzer or
browse and try to understand lengthy bug reports. The assistant can be used to
perform actions based on the severity of the vulnerabilities found in the project. In
the current version of MyCodeAnalyzer, Google Assistant can email the user a well-
formatted report or read out the most important action items after analyzing the
code. Figure 8 captures a conversation between a human tester and the Google
Assistant. Figure 9 shows a formatted vulnerability report generated by the assis-
tant and emailed to the user after scanning the WebGoat project. The WebGoat
project has more severe vulnerabilities, but only those in the figure were captured
by PMD based on the rulesets used by the analyzer. As can be seen from the report,
MyCodeAnalyzer was able to process the lengthy XML reported returned by PMD
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into a more easily understood report that captures only pertinent information.
These results demonstrate the applicability of using a framework backed by virtual
assistants to scan code for vulnerabilities and generate meaningful reports.

6.2 Challenges

It is important to outline some challenges with the use of VAs for code analysis
and mitigation of vulnerabilities. The main challenge with this new approach to
code analysis is adoption. A recent study involving a small sample of participants
shows that currently the primary use of VAs are for music procurement (40% of
users), for information (17%), and automation (9%) [40]. Since this is a new
avenue of research, there may be initial challenges with adoption in the code
analysis arena. However, we believe that as the market grows and coders get
exposed to this technology, the adoption rates will increase. Researchers predict a
growing use for digital voice assistants over the next few years [41, 42].

Another challenge with using the PnP model discussed in this research is han-
dling the differences between output reports from different code analyzers. To
mitigate this issue, the code analysis community may require standardization of
vulnerability reports in popular formats such as XML, JSON, and HTML. Currently,
most tools include information such as files, classes, and line numbers where errors
are found. While the output formats may be different, NLP techniques such as NER
can also be used to mine these reports for key pieces of information to achieve a

Figure 9.
The report generated by MyCodeAnalyzer and emailed to the user after scanning the OWASPWebGoat project.
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standard format that can be handled by the virtual assistant and the proposed
analysis framework.

7. Conclusion

Getting programmers to write secure code remains a challenge. Security is often
sacrificed in an effort to add a feature to a software product or to meet a deadline.
When security is sacrificed for other gains, the end result is a product riddled with
bugs or vulnerabilities. Steps must be taken to encourage programmers to produce
more secure software. In this research, we discussed the limitations of existing code
analysis approaches and propose a framework that allows programmers to use
virtual assistants to conversationally scan and fix potential vulnerabilities in their
code. Virtual assistants are becoming popular in everyday activities such as procur-
ing and listening to music, finding places of interest, managing a smart home,
shopping, etc. We posit that as they become more mainstream, they can be used to
manage code analysis while keeping programmers productive. We implement our
proposed methodology using the Google Assistant and demonstrate its utility in an
effort to find new, creative ways to help programmers produce more secure soft-
ware. Future work will involve extending the model to use any applicable code
analyzer based on a plug-and-play paradigm, adding data analytics and visualiza-
tions to help programmers draw insights from their code, implementing the
refactoring and auto-fixing modules, and conducting a user study to evaluate the
framework.

Abbreviations

DAST Dynamic application security testing
IAST Interactive application security testing
NLP Natural language processing
PnP Plug-and-play
SAST Static application security testing
SCAD Synchronous control asynchronous dataflow
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