
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

Chapter

A Numerical Simulator Based
on Finite Element Method for
Diffusion-Advection-Reaction
Equation in High Contrast
Domains
Hani Akbari

Abstract

Implementation of finite element method (FEM) needs special cares, particu-
larly for essential boundary conditions that have an important effect on symmetry
and number of unknowns in the linear systems. Moreover, avoiding numerical
integration and using (off-line) calculated element integrals decrease the computa-
tional cost significantly. In this chapter we briefly present theoretical topics of FEM.
Instead we focus on what is important (and how) to carefully implement FEM for
equations that can be the core of a numerical simulator for a diffusion–advection-
reaction problem. We consider general 2D and 3D domains, high contrast and
heterogeneous diffusion coefficients and generalize the method to nonlinear para-
bolic equations. Although we use Matlab codes to simplify the explanation of the
proposed method, we have implemented it in C++ to reveal the efficiency and
examples are presented to admit it.

Keywords: finite element method, diffusion–advection-reaction equation,
boundary condition, implementation

1. Introduction

In a domain Ω in
n, n ¼ 1, 2, 3, consider a partial differential equation of the

form of

∇ � �κ∇uð Þ þ γ � ∇uþ μu ¼ f in Ω, (1)

where the unknown function u, reaction coefficient μ and the given function f
are scalar functions Ω ! ð Þ. Diffusion coefficient κ and the (convergence free)
advection coefficient γ are defined in Ω and give (normally piecewise constant)
values in

n�n and
n, respectively. Eq. (1) is called a diffusion–advection-reaction

equation and has immense applications in science and engineering. Transport of
heat, momentum and energy, solid mechanics, CO2 sequestration, computational
fluid dynamics and biophysics are a few number of research fields that as a part of
the solution strategy need to solve (1) numerically.

1

After several steps, numerical solution of Eq. (1) is obtained by solving a linear
system

Ax ¼ b (2)

where A and b are called stiffness matrix and right hand side vector, respec-
tively. In practice each term of diffusion, advection or reaction is accumulated
separately in the stiffness matrix.

Several challenges make finding the numerical solution of (1) difficult. 3 of the
most important are 1) complex geometry of Ω, 2) heterogeneity and high contrast in
coefficient κ that produce very ill-conditioned linear systems and 3) large scale
domains. A very common numerical method to solve (1) is FEM that uses a mesh
representing the complex geometries accurately and overcomes the first issue. We
can employ powerful linear solvers such as multigrid or multiscale methods to
resolve the effect of heterogeneity and high contrast in κ in the linear system.
Finally a careful implementation in parallel machines reduces computational time
of large scale simulations considerably. However, lots of effort and research are still
needed to propose a method obtaining a reliable solution in a reasonable time for
real problems. Other issues such as uncertainties in the data or nonlinear coupled
system of equations should be addressed, as well.

Considering a positive definite κ we explain (and implement) how to obtain a
finite element solution of (1) through the following steps.

1. In Matlab we generate arbitrary 2D and simple 3D domains. The main domain
is divided into a collection of subdomains, called elements where each element
includes some nodes. Numbered nodes and elements generate a mesh. Actually
by a mesh we mean 2 data structures, Cells (integer valued) that stores
identifier or index of nodes in each element and Nodes (real valued) that
stores coordinates of each node. Many software such as Matlab, GID and
Gmesh generate reliable meshes. Corresponding to each element e, a positive
definite matrix (a constant or a 2� 2 matrix in 2D or a 3� 3 matrix in 3D),
named κe, will be set to form κ. In each element e, we can also set μe and γe to
form μ and γ in Eq. (1), respectively. See Section 2 for details.

2.A brief introduction to FEM is presented that covers weak formulation
(Section 3), shape functions and reference elements (Section 4).

3.Evaluating of element integrals and preparing table of calculated integrals are
discussed in Section 4.1. Then with help of affine mappings (Section 4.2) we
use a linear combination of element integrals to accumulate into the stiffness
matrix which is explained in Section 5. Note that different types of elements
(for example triangles and rectangles in 2D) might exist in the mesh and we
can have an unstructured mesh, generally. Hence element integrals should be
considered for any type of elements exist in the mesh.

4.Efficient implementation of boundary conditions, particularly Dirichlet
boundary condition is presented in Section 5.2. We show that how a correct
but careless implementation of Dirichlet boundary conditions decreases both
accuracy and efficiency.

5.After assembly of the linear system (2), we use Matlab functions to solve the
linear system and plot the result. Linear solvers are the core of a numerical
simulator and their efficiency has a direct impact on the overall simulation. We
refer to [1] for further discussions and references.

2

Recent Advances in Numerical Simulations

6.Generalization to more complex equations such as Eq. (25) now becomes
straightforward and solving strategy is given in Section 6.

We finish this chapter by introducing the necessary topics to have an indepen-
dent and efficient simulator in Section 7. Most of the topics presented here are fully
discussed in [1–3] which are of great value for further reading.

2. Mesh generation

Implementation of FEM is began with mesh generation which is dividing the
main domain into several subdomains or elements. Each element is finite (finite

Figure 1.
Creating a geometry and generating its mesh shown in Figure 2.

3

A Numerical Simulator Based on Finite Element Method for Diffusion-Advection-Reaction…
DOI: http://dx.doi.org/10.5772/intechopen.98291

elements) and has a regular shape such as triangle or cuboid. Each element has a
specific type, such as linear or bilinear, which is defined by shape functions and
explained in Section 4. We prefer to use Lagrange triangles and parallelograms in
2D and tetrahedron and cuboid in 3D space as elements. The reason of such selec-
tion is to avoid numerical integration to evaluate definite integrals (of Lagrange
elements) arise in FEM.

The main output of the mesh generation is two sets, nodes and elements that
form the mesh. Nodes are not necessarily the vertices of the elements, for example
in linear Crouzeix-Raviart element nodes are placed at edge midpoints or in qua-
dratic Lagrange (triangle) elements midpoints and vertices together form the nodes.

In presence of complex geometries mesh generation can be a challenge for
software mesh generators. For not very complicated geometry, Matlab, with a good
quality, can generate triangular and tetrahedron mesh for 2D and 3D domains,
respectively. We give an example, as shown in Part 1 of Figure 1.

First with createpde (1) we create a raw model considering one partial differen-
tial equation. Then we import or create geometry for this model. For our purposes 3
stacked cylinders with radius 2 and heights 1, 3 and 2 would be fine as shown in
Figure 2. pdegplot shows how Matlab has specified regions (cylinders) and faces by
numbering them. Then generateMesh generates a mesh with linear (or quadratic by
default) tetrahedron elements and can be viewed by pdeplot3D. Smaller value for
Hmax gives a finer mesh. Setting Nn and Ne for number of nodes and elements,
respectively, Nodes that stores 3 Cartesian coordinates of each node is a matrix of size
3�Nn. Since all elements are linear tetrahedron, Cells that stores index of nodes of
each element, would be a 4�Ne matrix. For example the first element of the mesh is
formed by 4 nodes, stored in Cells(:,1) and Nodes(:,Cells(:,1)) returns 3D coordinates
of that 4 nodes. So we can simply traverse over nodes and elements by their index.
Moreover, we can extract element indices of a region with findElements or node
indices of a region or a face by findNodes, where are necessary to set boundary
conditions. For example we find node indices of bottom and top faces of the domain
in Lines 21–22, since we will set boundary conditions on them.

3. Weak form

In a bounded domain Ωwith Lipschitz boundary Γ, Green’s formula says for two
regular functions u and v we have

Figure 2.
A 3D domain consists of 3 stacked cylinders (left) and the generated mesh (middle) and the solution of Eq. (21)
in right.

4

Recent Advances in Numerical Simulations

ð

Ω

∇ � �κ∇uð Þv ¼

ð

Ω

κ∇u � ∇v�∮
Γ

ν � κ∇uv (3)

where ν is the (outward) normal vector. Regularity means that u and v have
piecewise continuous (at least) first order partial derivatives to make the above
integrals meaningful. So multiplying both side of (1) by v and applying Green’s
formula we obtain

ð

Ω

κ∇u � ∇v�∮
Γ

ν � κ∇uvþ
ð

Ω

γ � ∇uvþ
ð

Ω

μuv ¼

ð

Ω

f v: (4)

Approximation of functions in FEM is done by means of basis functions. Assume

φ j

n o

j
, j ¼ 1, … ,Nn is a set of basis functions, introduced in Section 4, that we can

write

u ¼
X

Nn

j¼1

u jφ j, (5)

and our goal is to find unknown coefficients u j

� �

j
. Substituting (5) in (4) and

setting v ¼ φi, i ¼ 1,⋯,Nn, which is called standard Galerkin method we obtain

X

Nn

j¼1

u j

ð

Ω

κ∇φ j � ∇φi þ
X

Nn

j¼1

u j

ð

Ω

γ � ∇φ jφi þ
X

Nn

j¼1

u j

ð

Ω

μφ jφi þ∮
Γ

ν � �κ∇uð Þφi ¼

ð

Ω

f φi

(6)

Eq. (6) consists of evaluation of (from left to right) diffusion, advection and
reaction terms, boundary integral and right hand side that we calculate them in

elements and then sum them up
Ð

Ω
¼

P

e

Ð

e

� �

to assemble the linear system (2). u or
its gradient in boundary integral are known, hence we do not write its expansion
form.

4. Shape functions

In practice definite integrals of basis functions and their derivatives in (6) are
evaluated in an element, hence restriction of basis functions over elements, called
shape functions, contribute in computations. With help of affine mapping we map a
typical element into a fixed element, called reference element and evaluate integrals in
it. So only shape functions in reference element determine values of integrals in (6).

We use Lagrange elements which means corresponding to each node of an
element a shape function is defined such that it is a polynomial in the element, takes
value 1 at that specific node and 0 at other nodes of the element. Therefore a basis
function in (5) becomes a continues function with value 1 at a specific node and 0 at
neighboring nodes with trivial (zero) extension in the rest of the domain, as plotted
in Figure 3. Note that the derivatives of Lagrange basis functions are not continues
on the boundary of the elements.

Some examples of reference elements and their shape functions are presented in
Figure 4. We see that in linear triangle element where nodes are the vertices of the
triangle, the first shape function S1 r, sð Þ ¼ 1� r� s corresponding to the first node
n1 ¼ 0, 0ð Þ has value 1 at n1 and 0 at n2 ¼ 1, 0ð Þ and n3 ¼ 0, 1ð Þ. It is called a linear
element since shape functions are combination of first order polynomials 1, r, sf g.

5

A Numerical Simulator Based on Finite Element Method for Diffusion-Advection-Reaction…
DOI: http://dx.doi.org/10.5772/intechopen.98291

Starting from n1 nodes are numbered counterclockwise and we consider it for all
Lagrange elements.

For Lagrange elements it is easy to find shape functions. For example to find S1
for bilinear quadrilateral element where nodes are vertices of the square, it suffices
to consider the line passing n2 and n3 which is 1� rmultiplied by the line passing n3
and n4 which is 1� s. So S1 has to be of the form α 1� rð Þ 1� sð Þwhich gives 0 for all
nodes except n1 ¼ �1,�1ð Þ. Substituting n1 in equation of S1, we can find α such
that it gives 1 for n1. This element is called bilinear since its shape functions are
linear combination of 1, r, s, rsf g.

For quadratic triangle element where vertices and midpoints form nodes, for
shape function S1 corresponding to n1, we need the multiplication of two lines

Figure 3.
Left) a shape function of reference bilinear quadrilateral. Right) 2 basis functions where their restrictions in a
triangle is linear and in a quadrilateral is bilinear.

Figure 4.
Some of reference Lagrange elements and their shape functions.

6

Recent Advances in Numerical Simulations

passing n2 and n6 which is 0:5� r� s and n3, n4 and n5 which is 1� r� s. So S1 has
to be of the form α 0:5� r� sð Þ 1� r� sð Þ. Substituting n1 in equation of S1, we can
find α such that it gives 1 for n1. This element is called quadratic since its shape

functions are linear combination of 1, r, s, rs, r2, s2
� �

. Note that we first numbered
nodes at vertices and then at edge midpoints.

Exercise 1 Find shape functions of linear tetrahedron as presented in Figure 4.
Exercise 2 Quadratic tetrahedron element has nodes at midpoint of edges of

linear tetrahedron element, so it has 6 other nodes (numbered 5 to 10) in addition to
vertices (numbered 1 to 4 similar to linear tetrahedron). Find the 10 shape func-
tions. For example for node at origin we have S1 ¼ 2 1� r� s� tð Þ 0:5� r� s� tð Þ
or for node at 0, 0, 1ð Þ we have S4 ¼ 2 t t� 0:5ð Þ.

4.1 Element integrals

Definite integrals of shape functions and their derivatives in reference elements,
called element integrals, play an important role in assembly of stiffness matrix.
Denoting the reference element by ê which has N ê nodes and partial derivatives of

shape functions by ∂rSwhich means ∂S
∂r we define the matrix Drr (for diffusion term)

such that its ijth entry is

Dij
rr ¼

ð

ê
∂rSi ∂rS j, i, j ¼ 1,⋯,N ê: (7)

Similarly we define Drs and Dss. In 3D space we also have to define Drt, Dst and
Dtt. In Figure 5 we show how to evaluate Drs for linear tetrahedron element. For
example Drs and Dst for linear tetrahedron are

Drs ¼
1

6

1 0 �1 0

�1 0 1 0

0 0 0 0

0 0 0 0

0

B

B

B

@

1

C

C

C

A

, Dst ¼
1

6

1 0 0 �1

0 0 0 0

�1 0 0 1

0 0 0 0

0

B

B

B

@

1

C

C

C

A

:

Exercise 3 For quadratic tetrahedron element find Drs as

Drs ¼
1

30

3 0 1 0 �1 �4 �1 1 0 1

1 0 �1 0 �3 0 1 3 0 �1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

�4 0 0 0 4 4 0 �4 0 0

�1 0 �3 0 4 4 4 �4 0 �4

�1 0 1 0 4 0 8 �4 0 �8

1 0 3 0 �4 �4 �4 4 0 4

1 0 �1 0 �4 0 �8 4 0 8

0 0 0 0 0 0 0 0 0 0

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

Other element integrals such as Dr (for advection term) and D (for reaction or
right hand side terms) can be defined where their ijth entries are

Dij
r ¼

ð

ê

∂rSi S j, Dij ¼

ð

ê

Si S j, i, j ¼ 1,⋯,N ê: (8)

7

A Numerical Simulator Based on Finite Element Method for Diffusion-Advection-Reaction…
DOI: http://dx.doi.org/10.5772/intechopen.98291

Note that Drr and D are symmetric matrices while Dr is not. Moreover, since
Drs ¼ Dsr we calculate only one of them. All element integrals are evaluated once
and saved for future use. In Figure 1 we load element integrals of linear tetrahedron
that we have calculated and saved in LinearTetraElementIntegral.mat.

4.2 Affine mapping on reference elements

So far we introduced shape functions and calculated element integrals, all in
reference element. Now we explain how to map an arbitrary element in physical
space into the reference element and evaluate integrals in (6) only in terms of
element integrals and without any numerical integration. Clearly change of variable
is necessary to evaluate integrals when we use a mapping which is explained in next
subsection.

Consider an arbitrary triangle, say e, in 2D space with vertices vi ¼ xi, yi
� �

, i ¼
1, 2, 3, and the reference linear triangle, ê. Set

T ¼
x2 � x1 x3 � x1

y2 � y1 y3 � y1

� �

, η ¼
x

y

� �

, ξ ¼
r

s

� �

, ηo ¼
x1

y1

� �

(9)

and define the affine (composition of a linear mapping and a translation) map-
ping ê ! e with the rule

ξ ! η ¼ T ξþ ηo: (10)

We see that the affine mapping (10) maps the nodes of reference linear triangle,
nif gi¼1,2,3, to the vertices of the triangle,

vi ¼ Tni þ v1, i ¼ 1, 2, 3: (11)

Exercise 4 Show that the affine mapping in (9) and (10) also maps the reference
quadratic triangle to an arbitrary triangle with 6 nodes (3 at vertices and 3 at edges
midpoint).

Exercise 5 Show that the affine mapping,

ξ ¼
r

s

� �

! η ¼
x

y

� �

¼
1

2

x2 � x1 x4 � x1

y2 � y1 y4 � y1

� �

r

s

� �

þ
1

2

x1 þ x3

y1 þ y3

� �

(12)

maps the reference bilinear quadrilateral to an arbitrary parallelogram. Remem-
ber in a parallelogram where v1 and v3 are opposite vertices, we have x1 þ x3 ¼
x2 þ x4 and y1 þ y3 ¼ y2 þ y4.

Exercise 6 Show that the affine mapping,

Figure 5.
Element integrals Drs for linear tetrahedron.

8

Recent Advances in Numerical Simulations

ξ ¼

r

s

t

0

B

@

1

C

A
! η ¼

x

y

z

0

B

@

1

C

A
¼

x2 � x1 x3 � x1 x4 � x1

y2 � y1 y3 � y1 y4 � y1
z2 � z1 z3 � z1 z4 � z1

0

B

@

1

C

A

r

s

t

0

B

@

1

C

A
þ

x1

y1
z1

0

B

@

1

C

A
(13)

maps the reference linear and quadratic tetrahedron to an arbitrary tetrahedron.

4.3 Change of variables in integrals

Consider a scalar function (a typical basis function) φ ¼ φ ηð Þ, where η ¼ x, yð Þ in

2D space. Gradient of φ is ∇ηφ ¼ ∂xφ, ∂yφ
� �t

, where t denotes the transpose of the
vector. The chain rule and applying the affine mapping (10) on φ give

∇ηφ ¼ T�t ∇ξ φ̂ (14)

where φ̂ ξð Þ ¼ φ ηð Þ and T�t is the transpose of the inverse of T. Note that if φ is
the restriction of a basis function in element e, then φ̂ would be the corresponding
shape function in ê. Recalling dη ¼ ∣T∣dξ, we can write

ð

e
κe∇ηφi � ∇ηφ jdη ¼

ð

e
κe∇ηφi

� �t
∇ηφ jdη ¼

ð

ê
∇ξSið ÞtT�1κteT

�t∇ξ S j ∣T∣dξ: (15)

Setting matrix Me ¼ ∣T∣T�1κteT
�t and dropping subscript e as well as η and ξ

from ∇, then we have

ð

e

κ∇φi � ∇φ jdη ¼ M11

ð

ê

∂rSi ∂rS j dξ

þ M12 þM21ð Þ

ð

ê
∂rSi ∂sS j dξþM22

ð

ê
∂sSi ∂sS j dξ

¼ M11Drr þ M12 þM21ð ÞDrs þM22Dss

(16)

Exercise 7 Show that in 3D space,

ð

e
κ∇φi � ∇φ jdη ¼ M11Drr þ M12 þM21ð ÞDrs þ M13 þM31ð ÞDrt

þM22Dss þ M23 þM32ð ÞDst

þM33Dtt,

(17)

where M ¼ ∣T∣T�1 κtT�t.
Exercise 8 Referring to notation (8) show that

1:

ð

e
φi φ jdη ¼ ∣T∣D (18)

2. for a vector γ, defined for each element e in 3D space

ð

e
γ � ∇φi φ jdη ¼ M1Dr þM2Ds þM3Dt (19)

where vector M ¼ ∣T∣T�1γ:

9

A Numerical Simulator Based on Finite Element Method for Diffusion-Advection-Reaction…
DOI: http://dx.doi.org/10.5772/intechopen.98291

5. Assembly of the linear system

With help of element integrals, affine mapping and Eqs. (17)–(19) we can
accumulate each term of (6) into the stiffness matrix of the linear system (2).

5.1 Diffusion term

Equation

ð

Ω

κ∇φ j � ∇φi ¼
X

e

ð

e

κe∇φ j � ∇φi (20)

suggests how to accumulate
Ð

Ω
κ∇u � ∇v into the stiffness matrix:

1. traverse elements and in each element map
Ð

eκe∇φi � ∇φ j into the reference

element

2.with help of element integrals and Eq. (17) evaluate the desired term

3.map the local matrix into the stiffness matrix.

Exercise 9 Follow the above steps to accumulate advection and reaction terms
into the stiffness matrix.

In Figure 6 we implemented accumulation of diffusion and reaction terms for
linear or quadratic tetrahedron. Note that other elements only have a different
affine mapping T and dimension, if we had elements in 2D space. We assume that κ
is a diagonal matrix for each element, so a matrix storage of size 3�Nc can store κ
of all elements. We also assume that reaction coefficient μ is constant, otherwise a
vector of size Nc can store μ for all elements and should be an input argument. The
evaluated integrals are saved such that the indices of row and column and value of
the integral are set in IM, JM and DDvec (for diffusion term), respectively. So Line
33 of Figure 1 is to assembly the stiffness matrix of the equation

ð

Ω

κ∇u � ∇vþ 0:1

ð

Ω

uv ¼ 0 (21)

where κ is set in Lines 25–26. We also set boundary conditions at bottom and top
faces of the boundary (with values 1 and 10, respectively) and explain how to
implement it in next subsection to obtain the solution of the problem, plotted in
Figure 2.

5.2 Boundary integral

Probably correct implementation of boundary integrals is the most important
part of the FEM, since boundary conditions mainly determine the situation of
physical problem. Neumann, Robin and Dirichlet are 3 types of boundary condi-
tions that might be considered on different parts of the boundary. Although
boundary conditions are set on the boundary, they only affect on boundary nodes.

Neumann boundary condition. ν � �κ∇uð Þ ¼ g is a Neumann boundary condi-

tion, so boundary integral in (6) becomes g∮ φi. If g is zero, then nothing has to be

done for the boundary integrals. In fact incorporating only diffusion–advection-

10

Recent Advances in Numerical Simulations

reaction terms and right hand side function means that we have considered a pure
Neumann problem and this is exactly what we do in practice. After that we add
requested boundary conditions to the linear system of (2). For example if g is non-

zero on part of the boundary, say ΓN, then �g∮ φi is known for indices that lie on

ΓN and should be added to the ith entry of b in (2).

Figure 6.
Assembly of diffusion–reaction terms for (linear or quadratic) tetrahedron.

11

A Numerical Simulator Based on Finite Element Method for Diffusion-Advection-Reaction…
DOI: http://dx.doi.org/10.5772/intechopen.98291

Dirichlet boundary condition. u ¼ g is a Dirichlet boundary condition, which
means value of u at some nodes is known. So if we decompose node indices into 2
sets, say U and K, then we can write

u ¼
X

j∈U

u jφ j þ
X

j∈K

u jφ j, (22)

where U and K include indices of unknown and known values of u, respectively.
If with permutation vector U,K½ �we reorder rows and columns of the linear system
in (2), then we can write

Au ¼
A11 A12

A21 A22

� �

uU

uK

� �

¼
bU

bK

� �

(23)

The first line gives a smaller linear system

A11uU ¼ bU �A12uK (24)

which preserves the symmetry or positive definiteness of the original problem.
In Lines 35–42 of Figure 1 we showed how to implement it in Matlab. Setting values
1 and 10 for bottom and top faces, we expect a smooth solution starting from 1 at
the bottom and reaching to 10 at the top as shown in Figure 2.

The second approach to set Dirichlet condition that does not use permutation of
the linear system is setting A21 and A22 in (23) to zero and identity matrices,
receptively and solving the modified linear system. Although this approach gives
the correct solution theoretically, it is very error-prone numerically as shown in a
test case in Figure 7 and explained as follows.

A domain with cuboid elements is refined in the middle and along the x-axis to
simulate a fracture in the domain. We solve ∇ � �κ∇uð Þ ¼ 0 where κ in fracture is

100 times larger than rest of the domain. Setting 106 and 5� 106 as Dirichlet
boundary condition on left and right faces (along x-axis) of the domain, respec-

tively, a correct solution should be started from 106 and monotonically reached to

5� 106. The linear system is symmetric positive definite and preconditioned con-
jugate gradient method is employed to solve it. The correct solution shown in left
image of Figure 7 is obtained by (24). However, the second approach gives the
nonphysical (wrong) solution along the fracture as shown in right. Moreover, the
correct solution is obtained 3 times faster than the wrong one, mainly because the
second approach violates the symmetry (but preserves the positive definiteness) of
the linear system, due to setting A21 ¼ 0.

Figure 7.
Left) Result of correct implementation of Dirchlet BC by using Eq. (24). Right) nonphysical (wrong) result due
to using the modified linear system (the second approach to implement Dirchlet BC).

12

Recent Advances in Numerical Simulations

On the other hand reduction in size of the linear system by using (24), has great
advantage in applications that large number of nodes have Dirichlet (more precisely
essential) boundary condition. For example, in pore scale modeling and to approx-
imate the permeability of a sandstone model, we had to set Dirichlet boundary
condition for 75% of the nodes. Since the model included almost 10 million ele-
ments, solving a linear system with 2.5 million unknowns gave a significant speed
up in computational time, in addition to significant improvement in accuracy.

Exercise 10 Robin boundary condition is a combination of Neumann and
Dirichlet conditions which states u� βν � κ∇u ¼ g on ΓR. β is a non-zero function
(normally a constant number) on ΓR. Considering �ν � κ∇u ¼ g � uð Þ=β, explain
how to implement it.

5.3 Right hand side term

Function f in (1) is the source or sink term and hence normally is defined on a
very small part of the domain. It can be defined as a constant number over an
element or can be approximated by its nodal values in the form f ¼

P

f jφ j and

therefore right hand side term becomes
PNn

j¼1 f j

Ð

φ jφi with possibly too many

f j ¼ 0. We prefer nodal value approximation of f , since in applications that need to

solve parabolic equation, f has a value in all elements; see q k½ � in Eqs. (27) and (28).

6. Generalization to parabolic equation

In applications such as simulation of compressible flows we need to solve the
time dependent equation

∂ρ uð Þ

∂t
þ ∇ � �ρ uð Þκ∇uð Þ ¼ f uð Þ, in Ω (25)

where ρ and f are nonlinear functions of u and boundary condition and initial
value are provided. A fully implicit time discretization of (25) gives

ρnþ1 � ρn

Δt
þ ∇ � �ρnþ1κ∇unþ1

� �

¼ f nþ1

which simplifies to

G uð Þ ¼
1

Δt
ρþ ∇ � �ρκ∇uð Þ � f uð Þ �

1

Δt
ρn ¼ 0: (26)

In Eq. (26), the unknown u-dependent variables ρ and f should be evaluated at

the current time tnþ1, while ρn is known from the previous time step.
Newton–Raphson linearization is the most common method to solve the

nonlinear Eq. (26) which generates a sequence u k½ �
� �

, k ¼ 0, 1, 2, … by solving the

following equation

∇ � �ρ k½ �κ∇u
� 	

þ μ k½ �u ¼ q k½ �, (27)

where

13

A Numerical Simulator Based on Finite Element Method for Diffusion-Advection-Reaction…
DOI: http://dx.doi.org/10.5772/intechopen.98291

μ k½ � ¼
1

Δt

dρ

du

u k½ �

�
df

du

u k½ �

, q k½ � ¼ μ k½ �u k½ � þ f k½ � �
1

Δt
ρn: (28)

Having bounded derivatives and a good starting point u 0½ � (which is normally

chosen un), the resulted sequence u k½ � in Eq. (27) converges quadratically to unþ1,
the solution of Eq. (26). Note that (26) is a diffusion–reaction equation which is
completely explained how to solve and (core) codes were provided, as well.

7. Conclusion and future works

In this introductory chapter we presented the framework of FEM in brief (but
effective) and implemented a numerical solver for diffusion–advection-reaction
equation. Accumulation of different terms and setting boundary conditions cor-
rectly as well as evaluating of definite integrals without numerical integration were
explained and their codes were also given. Finally we showed that nonlinear para-
bolic equations can be solved by combining of Newton method and diffusion–
reaction equation where the latter was explained in this chapter.

However, to have a reliable and efficient simulator several topics and challenges
should be addressed. Assuming correct mathematical model, mesh generation and
assigning (measured or suggested) values to the coefficients of the problem are very
important to make close the numerical model and its solution to the real problem
[4, 5]. In a real problem, 2D and 3D elements appear together. For example 2D
elements are employed to model faults in a 3D reservoir. Moreover, the generated
mesh is normally unstructured and different types of elements are included in the
mesh. Hence to assembly the linear system, traversing elements and nodes should
have been implemented very efficiently.

Solving linear systems is normally the most time consuming part of the simula-
tion and efficient implementation of linear solvers particularly in parallel machines,
are of great interest [6]. Multigrid and multiscale methods, particularly their alge-
braic form, have attracted interest to solve large scale linear systems since they have
shown good scalability in addition to resolving low frequency parts of the error in
solving linear systems [7, 8]. Standard Galerkin method that we used in this chapter
is not a conservative scheme hence modifications or other methods such as
discontinues Galerkin method would be necessary to solve problems in computa-
tional fluid dynamics [9, 10]. Proposing and implementing of advanced numerical
algorithms to linearize and solve a system of nonlinear coupled initial-boundary
value problem in a large scale domain become necessary. At last comparison with
real data (if available) and quantifying uncertainties might force us to revisit all
steps of the simulation again.

Acknowledgements

Hani Akbari would like to thank Prof. Lars K. Nielsen, scientific director at
Novo Nordisk Foundation Center for Bio-Sustainability. Hani Akbari is grateful to
DTU-Biosustain since this work was completed when he was a postdoc at
DTU-Biosustain.

14

Recent Advances in Numerical Simulations

Author details

Hani Akbari
Shamim Institute of HPC, Scientific Visualization and Machine Learning,
Mashhad, Iran

*Address all correspondence to: hani.akbari@shamimhpc.ir

© 2021 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

15

A Numerical Simulator Based on Finite Element Method for Diffusion-Advection-Reaction…
DOI: http://dx.doi.org/10.5772/intechopen.98291

References

[1] Trangenstein J. Numerical Solution
of Elliptic and Parabolic Partial
Differential Equations. Cambridge
University Press; 2013

[2]M. Larson, F. Bengzon, The Finite
Element Method: Theory,
Implementation, and Applications,
Springer, 2013

[3] Ern A, Guermond J. Theory and
Practice of Finite Elements. Springer;
2004

[4] Frey P, George PL. Mesh Generation:
Application to Finite Elements. second
ed. John Wiley & Sons; 2013

[5] Edelsbrunner H. Geometry and
Topology for Mesh Generation.
Cambridge University Press; 2001

[6] Saad Y. Iterative methods for sparse
linear systems. Second ed. SIAM; 2000

[7]Notay Y. Aggregation-based
algebraic multigrid for convection-
diffusion equations. SIAM J. Sci.
Comput. 2012;34:A2288-A2316

[8] Akbari H, Pereira F. An algebraic
multiscale solver with local Robin
boundary value problems for flows in
high-contrast media. Journal of
Engineering Mathematics. 2020;123:
109-128

[9] Zienkiewicz OC, Taylor RL,
Nithiarasu P. The Finite Element
Method for Fluid Dynamics. 7th ed.
Butterworth-Heinemann; 2013

[10]Hesthaven J, Warburton T. Nodal
Discontinuous Galerkin Methods.
Analysis, and Applications, Springer:
Algorithms; 2008

16

Recent Advances in Numerical Simulations

