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Abstract

Response surface methodology is a tool for the design of experiments, widely 
used today to optimize industrial processes, including agro-industrial ones. Since 
its appearance in the last century’s fifties, hundreds of articles, chapters of books, 
and books attest to this. In this work, a general overview of this tool’s general 
practical aspects is made. This statistical tool’s usefulness and popularity, used in 
the optimization of agro-industrial processes and in making them more efficient 
and sustainable, is described through multiple examples.

Keywords: response surface methodology, agro-industry, central composite design, 
independent variables, uncontrolled variables, response variables, optimization

1. Introduction

The response surfaces methodology (RSM) is a set of statistical tools for the 
design of experiments aimed at finding the value or values of the independent 
variables, which allow developed, improved and optimization (i.e., finding the 
maximum, minimum, or equal to a certain convenient value) one or more dependent 
variables or responses [1, 2].

Since the first works reported by Box and coworkers [3–5], RSM has been 
gaining popularity among researchers, developers, and engineers, and today it has 
become one of the preferred tools for increasing the productivity and efficiency of 
R&D processes and the production of goods and services.

The agro-industry, on the other hand, comprises a set of process industries that 
use agricultural and livestock resources to transform them into products of higher 
added value. Processed and improved foods, nutraceutical foods and beverages, 
chemical products and bioactive substances for the chemical, pharmaceutical and 
cosmetic industries, industrial enzymes and above all, vast and abundant quantities 
of plant and animal biomass, which could be the primary renewable raw materials 
with which that will count the industry of the future, are some of the main “outputs” 
of the agro-Industry.

By their nature, the sources of the raw materials of the agro-industry are renew-
able and could be a strategical industrial sector for the sustainable development 
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of the whole of humankind, given the constant growth of the human population, 
Ambiental deterioration, and the evident depletion of the natural sources of raw 
materials. It is for this reason, that it is required to have well-designed processes that 
generate a minimum negative impact on the already deteriorated ecosystems, and in 
which yields, and productivity are maximized.

The objective of this work is to show, through a group of examples, the utility of 
RSM for the design of efficient, productive agro-industrial processes with a minimum 
negative impact on agro-ecosystems.

2.  Agro-industries: the pillar in sustainable development  
that the world needs

Agroindustry can be defined as the process industries that use agricultural, live-
stock and aquaculture products as raw materials, transforming them into valuable, 
more elaborate products with greater added value. Among the products emerging 
from agroindustries are processed foods and beverages, dry and canned foods with 
greater durability, fermented foods and beverages with nutraceutical properties, as 
well as basic chemicals, precursors of other chemical compounds, biofuels, indus-
trial enzymes, bioactive products, such as antibiotics, probiotics, prebiotics and 
synbiotics substances, vitamins, organic acids, phytohormones, antioxidant agents, 
growth factors, etc. (Figure 1).

Agro-industries can be subdivided into primary, secondary and tertiary trans-
formation agroindustries, depending on the set of predominant operations carried 
out in them and the degree of complexity of their output products (Figure 1).

In primary transformation, the selection, crushing, separation, isolation, con-
centration, or drying of the product or products of interest usually predominate. 
The sugar factories made from sugar cane or sugar beet [6], the traditional dairy 
industry were powdered, evaporated, or condensed milk is produced (whole, defat-
ted or lactose-free) [7], or the slaughter of cattle meat [8] or industries that produce 
concentrated juices or condiments and canned foods are examples of industries 
where these operations of physicochemical transformation of raw materials from 
agriculture, aquaculture and livestock, into products prevail.

On the other hand, in secondary transformation agro-industries, the products, 
by-products and residuals of the first transformation are usually used as starting 

Figure 1. 
Agroindustry: Its source of raw materials and main productions.
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raw materials, and in their transformation performed by microorganisms, perfectly 
adapted to grow and develop using these raw materials, obtaining, as a result of 
their microbial activity, fermented products and beverages, with beneficial nutri-
tional and food properties. Fermented food and beverage production industries 
[9, 10], such as yoghurt [11, 12], kefir [13, 14] and the manufacturing of beer [15] 
and wine [16], fermented sauces and condiments, such as soy sauce, as well as the 
production of bio-ethanol [17, 18], vinegar [19, 20] and some organic acids [21, 22], 
such as citric acid [23] and lactic acid [24], are practical examples of these agro-
industries, where microorganisms and enzymes carry out the transformation of raw 
materials to product.

Finally, in the tertiary transformation agro-industries, the products, by-products 
or residues of the primary and secondary transformation agro-industries continue 
to be transformed chemically and/or biochemically into new chemical compounds, 
like bioactive compounds, enzymes, polysaccharides, gums, phytohormones, 
growth factors, etc. These, as a rule, are the products derived from agro-industries 
that have the highest added value. Some industrial enzymes such as cellulases [25], 
lipases [26] amylases [27], fructosyltransferases and invertases [28]; macromol-
ecules like fructo- and galactooligosaccharides (FOS and GOS) [29–31], etc., are 
examples of agro-industries of tertiary transformation.

Currently, the production volumes of tertiary transformation agro-industries are 
significantly lower than the previous two. However, they should increase in the future, 
stimulated by the high prices of these products and the depletion of oil, the main raw 
material from which the traditional chemical industry’s precursors are obtained [32].

An agro-industrial process can be considered as a set of operations that allow the 
gradual transformation of the process inputs (for example, raw materials, material, 
and energy resources) into the outputs (such as the main product (s), by-products, 
disposable materials and waste) (Figure 2).

As a rule, the added value of the product or products is significantly higher than 
the value of the inputs and other elements of the outputs.

An agro-industrial process, like any other, is made up of a series of stages of 
transformation processes. Each stage can be made up of one or more unit operations. 
In each of the stages of the transformation process of raw materials or intermediate 
products, a set of factors or variables can influence the efficiency and speed of said 
transformation. These factors can be subdivided into controllable and non-controlla-
ble factors or variables (Figure 3). The first ones are all those intensive variables of the 
process (such as temperature, pH, the concentration of certain analyte, etc.), whose 
values   must be kept within a certain range on any scale and which, besides, are the 
ones that have the real possibility of being controlled within pre-established ranges in 

Figure 2. 
General scheme of an agro-industrial process.
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the different scales. The second, for their part, are all those variables, including those 
whose existence is still unknown, that may influence the transformation process but 
are not within reach of the processes and technologies to be controlled. By focusing 
attention on the intensive controllable variables, not only will it be possible to find the 
combination of these that allow the development of an optimal transformation pro-
cess, but it will also allow knowing the values   that must be achieved in the productive 
scale of a certain variable or response factor, commonly associated with some quality 
attribute of the final or intermediate product within the process.

An efficient and sustainable agro-industrial process will maximize the efficiency of 
the transformation of raw materials to finished products, minimizing, at the same time, 
the use of energy resources and the generation of by-products disposable and residual 
materials. The latter can be achieved by optimizing each of the stages of the process.

To do this, normally, you can proceed in two ways. If it is intended to optimize an 
already established large-scale non-optimal process, the established process could 
be scale-down to a smaller scale, a pilot-scale for example, or later to a laboratory, 
where all the necessary optimization experiments could be developed (Figure 3).

If it is intended to optimize the design of new processes, these can be optimized 
on a laboratory scale, first and later, these optimized processes would be scaled-up 
to pilot and further to industrial scale.

Due to the wide range of useful products that emerge from the agro-industry, 
ranging from products that improve the durability, texture and nutritional composi-
tion of natural foods, through simple chemical substances, precursors of other more 
complex and elaborated, to complex substances like antibiotics, prebiotics, hormones, 
enzymes, polysaccharides, etc. (Figure 1). There are numerous niches where modern 
techniques of experiment design and process optimization can be used [33, 34].

Among the most popular and effective tools to know the optimal parameters of 
a process is the response surface methodology (RSM), frequently associated with 
searching for an extreme value of one or more objective functions. The objective 
function or response is frequently associated with one or more of the product’s 
attributes of a stage or unit operation of the process (for example, the concentra-
tion, the yield, the efficiency, the conversion, the productivity, etc.). Additionally, 
there may be other objective functions or responses, which can also integrate into 
the same optimization process, which may be related to other needs of the unit 
process or stage, such as the reduction of some by-product or residue, the decrease 
in consumption of energy, cleaning agents, shortening of the processing time, etc. 
In such cases, we would be in the presence of multi-objective optimization.

Figure 3. 
The two ways to optimise agro-industrial processes: Scale-down of established processes and the Scale-up of 
new processes.
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3. A short overview of response surface methodology (RSM)

The idea of   the RSM is, through the design of experiments, to find the rela-
tionship between a certain response variable, commonly associated with one of 
the attributes of the experimental unit’s output product with a few controllable 
variables. Strictly speaking, any response variable depends on both controllable and 
non-controllable variables. However, it is necessary to try to find a certain objec-
tive function, dependent only on a few controllable variables (usually from two to 
six), which allows navigating its surface in search of the combination of controlled 
variables with which an extreme value of the objective function is reached.

The response variable, as mentioned before, will also depend on the contribu-
tion of a certain “noise” function that depends on the rest of the controllable 
variables not taken into account in the objective function, as well as on the non-
controllable factors. Still, it is must seek that noise’s influence on the response is 
low enough or not significant. The determining influence on the response can be 
exerted mainly by the contribution of the objective function (Figure 4A).

To find the relationship between the variable response and the independent 
variables or controllable factors requires careful design of the experiments. These 
experiments must be carried out randomly and making the necessary replications 
to have the necessary certainty of their results [35]. In this sense, first of all, there 
must be solid evidence that the independent variables to be evaluated significantly 
influence the response variable or variables under study. This is based on our own 
experiments previously carried out or abundant reports published in the scientific 
literature. And secondly, must choose a suitable range for the independent variable 
analyzed, neither too narrow nor too long, so that the different values obtained 
from the response variable are notable.

The experimental runs must be carried out so that they cover the entire possible 
range of the independent variables that are being evaluated in the best way. Thus, the 
influence that each one, separately and combined with other independent variables, 
exerts on the response variables being analyzed can be evaluated. This can be 
ensured when the total sum of the products of all the coded independent variables of 
each run is equal to zero. The latter is known as the orthogonal design of experiments.

In addition to randomization and to minimize the influence that uncontrolled 
factors or variables may exert on the response variables, the different treatments are 
usually grouped into experimental blocks [36]. The latter can be beneficial, espe-
cially when various factors are evaluated, and the experiments must be performed 
over several days (Figure 4B).

In this way, the experiments must be random, with replications and designed in 
an orthogonal and block-based manner [37].

The most common experiment designs used in response surface methodology 
are the central composite design (CCD) and the Box–Behnken design (BBD). As a 
rule, in the BBDs, there are fewer experimental runs than in the CCDs (three levels 
for each factor in BBD, against five levels in CCD, for example). Therefore, it may 
be the preferred choice when the experiments are costly or when you need to have 
resulted in a shorter time. However, more robust and reliable models are obtained 
in CCDs, and they better support the loss or mismeasured response of the runs. 
The latter makes CCDs the “workhorse” and the first choice of researchers trying to 
optimize agro-industrial processes [37].

Fortunately, statistical packages accurately plan these experiment designs. 
Commercial statistical software such as Design-Expert®, JMP®, and Minitab® 
stand out, which are very useful and popular among scientific researchers and 
engineers communities. Additionally, there are becoming more popular every 
day; some free tools, such as the R and Python languages, are somewhat more 
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complex to use and require greater statistical and programming knowledge for 
their successful use.

Once the experiments have been designed and executed, it is necessary to adjust 
the experimental data to a certain function that represents a close approximation 
to the response variable or variables obtained to each treatment, depending on the 
experiments’ independent variables or factors (Figure 4B).

Figure 4. 
(A) The response variable and its links with objective functions and noise, (B) general workflow for 
implementing response surface methodology.
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Depending on the values   obtained in the response variable’s experiments and 
if the difference between the maximum and minimum values   obtained is huge, it 
will be necessary to transform the response variable before finding the adjustment 
function. Frequently the response variable (s), transformed or not, are adjusted to a 
certain polynomial, depending on the chosen design.

Subsequently, the polynomial that best fits the experimental data will be chosen. 
An analysis of variance will be carried out to the chosen polynomial. Those coef-
ficients that are not significant for the model will be discarded as long as they do not 
sacrifice different runs’ orthogonality. The quality of the model is evidenced through 
different statistical parameters, such as the adjusted quadratic coefficient of regres-
sion, adequate precision, the graphs of the predicted value versus the real value or 
through the graphs of the distribution of the residuals; the model may or may not be 
used, to find, within the design space of the independent variables, the optimal values   
of the function that adjusts the response variable(s) with the independent variables.

Once the appropriate model has been chosen, it is proceeding to explore the 
extreme or optimal values of the response function within the design space, that is, to 
find the combination of independent variables or factors that make the response objec-
tive function reach its maximum value, minimum value or equal to a specific value, 
depending on the response function. During the response function’s optimisation 
process, and depending on the model’s precision and variance, one or more extreme 
values may appear. If the extreme values found are related to variables or independent 
factors that are not related or are very far from each other, new experiments may be 
necessary around these points to improve the model’s precision (Figure 4B).

On the contrary, if within the explored design space there is a single extreme 
value or only a few within a close region of the independent variables, can choose 
this solitary extreme value or can select one representative of the set of comparable 
response values   can be chosen to proceed with a group of model confirmation or 
validation experiments.

There is no hard and fast rule about how many of these validation experiments 
are necessary, but they are usually between three and five. The model is validated 
when all the response function values are located within the range predicted by the 
model. The average weight of these does not differ significantly (p < 0.05) from 
the value predicted by the model. Otherwise, it would be suggesting that the model 
does not have the necessary accuracy. It is essential to continue exploring the search 
for extreme values   within or outside of the original design space. In the latter case, 
an additional set of RSM-experiments would need to achieve (Figure 4B).

4.  Agroindustry: a suitable receptor for the use of the response surface 
methodology (RSM)

Since Box and Wilson in 1951 [3] proposed this methodology, hundreds of 
scientific articles have been published [38–41].

Due to the wide range of useful products that emerge from the agro-industry, 
ranging from products that improve the durability, texture and nutritional composi-
tion of natural foods, through simple chemical substances, precursors of other more 
complex and elaborated, to complex substances like antibiotics, hormones, enzymes, 
polysaccharides, etc. (Figure 2). There are numerous niches where modern techniques 
of experiment design and process optimization can be used [42, 43].

Among the most popular and effective tools to know the optimal parameters 
of a process is the response surface methodology, frequently associated with 
development of new products [44–46] and processes [47, 48], the maximization 
of the productivity or yield of the process products [49–52], the reduction of their 



R
esp

on
se Surfa

ce M
eth

od
ology in

 E
n

gin
eerin

g S
cien

ce

8

Title Clase1 Source/Product RSM 

DOE

Optimal values Ref.

Control of selected fermentation indices by statistically designed 
experiments in industrial scale beer fermentation.

AI PT Optimization of beer 
fermentation

Box–
Behnken

Pitching rate 6·106 cells/mL; fermentation temp. 11.2 °C; 
aeration level 10.5 mg/L; and CCTs filling time 13.5 h.

[57]

Effect of ohmic heating on quality and storability of sugarcane 
juice.

AI PT Sugarcane juice/
sugarcane juice

Box–
Behnken

Ohmic heating of sugarcane juice at 70°C for 3 min 
holding time.

[58]

Extraction of steviol glycosides from dried Stevia rebaudiana by 
pressurized hot water extraction.

AI PT Stevia rebaudiana Bertoni 
leaves/Stevioside

CCD 2 bars of pressure, 20 min reaction time, and 20% dry 
leaves to water ratio

[59]

Optimization of spray-drying parameters for the production of 
‘Cempedak’ (Artocarpus integer) fruit powder.

AI PT Fruit juice/fruit powder CCD Air temperature of 160°C and maltodextrin conc. of 
15% (w/w)

[60]

Optimizing the extraction of bioactive compounds from pu-erh 
tea (Camellia sinensis var. assamica) and evaluation of antioxidant, 
cytotoxic, antimicrobial, antihemolytic, and inhibition of 
α-amylase and α-glucosidase activities.

AI PT Pu-erh tea/Antioxidants CCD Temperature of 85.4°C and time of 3 min [61]

Maize stover as a feedstock for enhanced laccase production by 
two gammaproteobacteria: A solution to agroindustrial waste 
stockpiling.

AI PT Maize stover/laccase Box–
Behnken

pH 5, 0.50 g biomaterial, 100 rpm and 0.10 NaNO3 [62]

Evaluation of textural properties of corn based extruded 
products.

AI PT Three corn varieties/
Extruded product

Box–
Behnken

Temperature: 127.66°C, 18.96% feed moisture and 92:4:4 
feed composition

[63]

Response Surface Methodology approach for optimization of 
endoglucanase from alkaliphilic Fusarium oxysporum VSTPDK 
and its potential application in pulp and paper industry.

AI PT Rice straw/CMCase CCD pH 8.5, temperature 45°C, ammonium sulphate 
concentration 3% and 8 day incubation.

[64]

Antioxidant and prebiotic effects of a beverage composed by 
tropical fruits and yacon in alloxan-induced diabetic rats.

AI PT Yacon extract 
+ fruit juice/
fructo-oligosaccharides

CCD Yacon extract: 50% and sweetener: 0.07% [65]

Optimization of concentrating process using rotary vacuum 
evaporation for pineapple juice.

AI PT Pineapple juice/
concentrated juice

CCD Temp. 60°C and pressure 200 mBar for 75 min. [66]
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Title Clase1 Source/Product RSM 

DOE

Optimal values Ref.

Pre-treatment optimization of barley straw as agro-industrial 
waste via alkaline peroxide and ultrasound for soluble sugar 
production and degradation.

AI PT Barley straw/Sugars Box–
Behnken

US Power: 20 kj/kg DM
Particle size: 0.6 mm

[67]

Techno-economic feasibility of bioethanol production via 
biorefinery of olive tree prunings (OTP): Optimization of the 
pretreatment stage.

AI PT OTP/bioethanol Box–
Behnken

Minimum of Total Capital Cost: Temp. 199.98°C, 8 g 
H2SO4/100 g; 35% (w/v)

[68]

Design of experiments for enhanced production of bioactive 
exopolysaccharides from indigenous probiotic lactic acid bacteria.

AI ST Lactose/
Exo-polysacharides

Box–
Behnken

Enterococcus faecium K1: Lactose: 10.07g/L, Ammonium 
citrate 2.48 g/L, pH 5.4

[69]

Response surface methodology to optimize a bioprocess for 
kefiran production.

AI ST WP/kefiran CCD Temp.: 25°C and 44.1% (w/w) of WP [70]

Microwave-assisted extraction of pectin from “Saba” banana peel 
waste: Optimization, characterization, and rheology study.

AI ST Banana peel waste/pectin CCD 195° C, 8% solid–liquid ratio, and pH 3 HCl [71]

Hydrolysis of orange peel with cellulase and pectinase to produce 
bacterial cellulose using Gluconacetobacter xylinus.

AI ST Orange peel/cellulose Box–
Behnken

cellulase of 1589.41 U/g, pectinase of 31.75 U/g and a 
reaction time of 5.28 h

[72]

Valorization of sugarcane bagasse to high value-added 
xylooligosaccharides and evaluation of their prebiotic function in 
a synbiotic pomegranate juice

AI ST Sugarcane bagasse/xylan CCD 5.63% H2O2, 12.91% NaOH, and extraction time of 
17.51 h

[50]

Playing with the senses: application of Box–Behnken design to 
optimize the bukayo formulation.

AI ST Coconut meat and 
juice+sugar/bukayo 
acceptability

Box–
Behnken

430 g young coconut meat, 400 g sinakob, and 340 g 
coconut juice

[73]

Utilization of Atlantic salmon by-product oil for omega-3 fatty 
acids rich 2-monoacylglycerol production: Optimization of 
enzymatic reaction parameters.

AI ST Salmon By-product Oil/
Omega-3

Box–
Behnken

Reaction temp. 42.5°C, time 4.15 h, enzyme load 42.81%, 
& ethanol: oil mol. Ratio 49.82

[74]

Bioconversion of cheese whey permeate into fungal oil by Mucor 

circinelloides.
AI ST Whey permeate/fungal 

oil
CCD Fermentation temp. 33.6°C and pH 4.5 [75]

Olive mill and winery wastes as viable sources of bioactive 
compounds: A study on polyphenols recovery.

AI ST olive pomace residues/
polyphenols

Box–
Behnken

Olive pomace microwave-extraction: ethanol:water 
50:50 (v/v), 90°C, 5 min

[76]
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Title Clase1 Source/Product RSM 

DOE

Optimal values Ref.

Development of a low-temperature and high-performance 
green extraction process for the recovery of polyphenolic 
phytochemicals from waste potato peels using hydroxypropyl 
β-cyclodextrin.

AI ST Potato peel/polyphenols Box–
Behnken

pH 5.0, ratio solvent-to-dry weigth 80 mL g−1 and 
agitation speed 800 rpm

[77]

Optimized preparation of activated carbon from coconut shell 
and municipal sludge.

AI ST Coconut shell/activated 
carbon

Box–
Behnken

Temp.: 800°C, activation time: 60 min, activator 
concentration: 2.5 mol/L, a 50% coconut shell.

[78]

Response surface methodology as a tool for modeling galacto-
oligosaccharide (GOS) production.

AI ST DWP/GOS CCD DWP: 18 g/ml, 0.20 g/L of β-galactosidase [79]

Optimization of β-galactosidase production by batch cultures of 
Lactobacillus leichmannii 313 (ATCC 7830™).

AI ST Lactose/β-galactosidase CCD pH 7.06 and 15.3 g/L lactose [80]

An eco-friendly pressure liquid extraction method to recover 
anthocyanins from broken black bean hulls.

AI ST Broken black bean hulls/
anthocyanins

Box–
Behnken

Ratio ethanol and citric acid sol.n 0.1 mol/L of 30:70 
(v/v), flow rate: 4 mL/min, 60°C.

[81]

Canola meal as a promising source of fermentable sugars: 
Potential of the Penicillium glabrum crude extract for biomass 
hydrolysis.

AI ST Canola 
meal/β-glucosidase

CCD Fermentation time: 6.5 days, pH adjusted to 6.0, and 
substrate concentration of 2%

[82]

Optimization of galacto-oligosacharides (GOS) synthesis using 
response surface methodology.

AI ST Lactose/GOS CCD Lactose conc. of 400 g/l, enzyme conc. of 13.5 g/l and 
reaction time of 13 min

[83]

Pre-treatment of sugarcane bagasse with aqueous ammonia–
glycerol mixtures to enhance enzymatic saccharification and 
recovery of ammonia.

AI ST Sugarcane bagasse/
Sugars

Box–
Behnken

Conc. of ammonia: 9.25%, pre-treatment time: 1.86 h, 
pre-treatment temp.: 180°C

[84]

Low-cost production of PHA using cashew apple (Anacardium 

occidentale L.) juice as potential substrate: optimization and 
characterization.

AI ST Cashew apple juice/PHA CCD Conc. of total reducing sugar of 50 g/L, inoculum of 
50 mL/L, and urea of 3 g/L.

[85]

A facile noncatalytic methyl ester production from waste 
chicken tallow (WCT) using single step subcritical methanol: 
Optimization study.

AI ST WCT/biodiesel (FAME) CCD 167°C, 36.8 min., and 42.7:1 (methanol/WCT, mol/mol) [86]
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Title Clase1 Source/Product RSM 

DOE

Optimal values Ref.

Recovery and bio-potentialities of astaxanthin-rich oil from 
shrimp (Peneanus monodon) waste and mackerel (Scomberomous 

niphonius) skin using concurrent supercritical CO2 extraction.

AI ST Astaxanthin-rich 
oil/shrimp waste & fish 
skin

CCD Extraction temp. 45.7°C; pressure 264.09 bar, and 
shrimp waste-to-fish skin mixing ratio 79.63:20.37.

[87]

Zero-waste biorefinery of oleaginous microalgae as promising 
sources of biofuels and biochemicals through direct 
transesterification and acid hydrolysis.

AI ST/
TT

Microalgae (marine 
Chlorella sp.)/biofuels 
(FAME) & sugars.

Box–
Behnken

FAME yield: Temp. 70 °C, ratio of chloroform:methanol 
1.35:1 and reaction time 120 min. Sugar yield: 7.5% 
H2SO4, 60 min hydrolysis time, 3% biomass loading, and 
100°C hydrolysis temp.

[88]

Sequential production of lignin, fatty acid methyl esters and 
biogas from spent coffee grounds (SCG) via an integrated 
physicochemical and biological process.

AI TT SCG/Lignin/FAME & 
biogas

CCD Temp. 161.0°C, sulfuric acid: 3.6% and methanol:SCG 
ratio: 4.7 mL/g

[89]

Heterogeneous catalytic conversion of rapeseed oil to methyl 
esters: Optimization and kinetic study.

AI TT Rapeseed oil/FAME CCD Catalyst ratio (bentonite/NaOH): 1:20; catalyst amount: 
6%wt.; reaction time: 3.5 h.

[90]

Abbreviations: DWP: demineralised whey powder; WP: whey powder; CMCase: carboxy-methyl-celulase; PHA: poly-hydroxy-alkanoate; FAME: fatty-acid methyl-ester.
1AI PT, ST, TT: Agro-industry (AI) of primary, secondary, or tertiary transformations.

Table 1. 
Some of the recent work on the response surface methodology related to the agro-industry.
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production costs [53], the minimization of risks for the human health [54] or its 
negative impacts on ecosystems [55, 56].

A summarized sample of some of the recent work in agro-industry related to the 
response surface methodology is shown in Table 1.

Table 1 shows more than thirty selected examples chosen from the last five 
years (2017–2021) from the multiple reports in the specialized bibliography, using 
RSM in all areas of agro-industry. In the selected cases, it is confirmed that the BBD 
and CCD designs are the most widely used and the utility that these experimental 
design and optimisation tools provide to researchers and engineers working in the 
agro-industry is demonstrated.

On the other hand, RSM is conveniently intertwined with the concepts of the 
“circular economy” [91] applied to agro-industry toward a broader framework of 
a sustainable bioeconomy [92, 93], where it is intended to maximize the efficiency 
and productivity of the transformation processes of raw materials into products, 
with a minimal negative impact on the environment and to minimize generation 
of by-products, wastes, and residuals of the agro-industrial processes, and, at the 
same time, reuse the latter as sources of raw materials for other products, valu-
ing them.

On some occasions the by-products and wastes of some agro-industrial processes 
become sources of raw materials for obtaining other valuable products through 
chemical, enzymatic or biological transformation. Some examples such as whey, a 
by-product of the cheese industry [94–96], and molasses and bagasse by-products of 
the sugar cane industry, from which some valuable products are obtained [97–100].

This fact gives rise to the concept of biorefineries and circular economies 
[91, 93], applicable in certain economic agricultural crops exploited on a large 
scale, where a group of valuable products could be obtained from abundant 
and renewable raw materials, in addition to those that have traditionally been 
obtained previously.

5. Conclusion

Despite an appreciable decrease in publications related to the response surface 
methodology in agro-industry, in 2020 and so far in 2021, due to the effects of the 
impact of the SARS-CoV-2 pandemic in the world, everything indicates that RSM 
is a prevalent tool among researchers and engineers to improve agro-industrial 
processes, as demonstrated in this work, and that it will continue to be very use-
ful and necessary to achieve efficient, sustainable and friendly agro-industrial 
processes with the environment. For this reason, once the effects of the pandemic 
have passed, new reports of applications of the use of this statistical tool will surely 
continue to appear.
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