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Chapter

Quadrotor Unmanned Aerial
Vehicles: Visual Interface for
Simulation and Control
Development
Manuel A. Rendón

Abstract

Quadrotor control is an exciting research area. Despite last years developments,
some aspects demand a deeper analysis: How a quadrotor operates in challenging
trajectories, how to define trajectory limits, or how changing physical characteris-
tics of the device affects the performance. A visual interface development platform
is a valuable tool to support this effort, and one of these tools is briefly described in
this Chapter. The quadrotor model uses Newton-Euler equations with Euler angles,
and considers the effect of air drag and propellers’ speed dynamics, as well as
measurement noise and limits for propeller speeds. The tool is able to test any
device just by setting a few parameters. A three-dimensional optimal trajectory
defined by a set of waypoints and corresponding times, is calculated with the help
of a Minimum Snap Trajectory planning algorithm. Small Angle Control, Desired
Thrust Vector (DTV) Control and Geometric Tracking Control are the available
strategies in the tool for quadrotor attitude and trajectory following control. The
control gains are calculated using Particle Swarm Optimization. Root Mean Square
(RMS) error and Basin of Attraction are employed for validation. The tool allows to
choose the control strategy by visual evaluation on a graphical user interface (GUI),
or analyzing the numerical results. The tool is modular and open to other control
strategies, and is available in GitHub.

Keywords: Quadrotor, Trajectory Planning, Trajectory Tracking

1. Introduction

Quadrotors are a special type of unmanned aerial vehicles (UAVs), increasingly
employed last years for mapping, surveillance, searching and tracking operations, in
rescue missions, agriculture, traffic management, landscape film making, and
others [1–3].

When quadrotors applications demand large angle attitude control and obstacle
avoidance, the following areas still need to be strengthened: Aggressive maneuver-
ing control, visual-based control, localization in indoor environments, optimizing
the computational cost for complex algorithms, and fault-tolerant disturbance
rejection [4]. Several controllers have been proposed for these tasks: classic tech-
niques as PD [5] and PID [6], optimal techniques as LQR [7] and LQG [8], non-
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linear techniques such as Lyapunov [9] and Backstepping [5, 9] and intelligent and
adaptive control techniques as Fuzzy200 [10] and Reinforcement Learning [11].

Research in quadrotor demand sophisticated equipment and costly laboratory.
However, it can be optimized employing low cost virtual development tools. In
autonomous control the path planning, path tracking and joint operation with other
UAVs, can be supported by optimization techniques with support of software tools
[1, 2, 12]. Published works relate the use of software such as Visual Basic, MatLab,
Panda3D, Gazebo, or more open applications developed in languages as Python and C+
+ [2]. In [1], a UAV 3D flight environment programmed in Python and developed in
Panda3D is presented. A GUI developed in LabVIEWwas published in [2], and other
developed onMatLab-Simulink employs quadratic linear regulator (LQR) control [13].

Gazebo is an important virtual environment for robotics. Its integration with
ROS provides a powerful testbed to analyze control algorithms. In [12] works that
employ Gazebo and ROS for developing simulation of UAVs are described.

Most of the cited simulation tools have a difficult start for users with little program-
ming experience. Even open-sourcemodels can be tricky. An interesting tool depicted
in [14, 15] gives support for quadrotor control development, analyzing and comparing
various control strategies on challenging trajectories. It may be used by beginning users
with notmuchknowledge inROS,Gazebo or in programming languages such as Python
orC++. The tool easies the understanding of quadrotor dynamics and related equations,
as well as the development of control strategies. The present Chapter describes this
user-friendly framework, the employed techniques are described in [14–17].

Section 2 presents a description of the employed model. Section 3 explains the
optimal trajectory planning method. Section 4 describes the controllers available in
the tool. Section 5 presents the graphical user interface developed by the tool.
Section 6 presents the graphical and numerical results. In the end of the Chapter,
the Section 7 emphasizes the main aspects and critical issues related.

2. Quadrotor model

The equations are described in the rigid body model of the quadrotor, and its
displacement is related to an inertial frame, fixed on the Earth surface [18]. Three
main frames are considered for a quadrotor model: Inertial (I), Vehicle (V) and
Rigid Body (B), as illustrated in Figure 1.

The quadrotor owns 4 propellers in cross configuration. Each pair of propellers
(1,3) and (2,4) rotates in opposite directions (Figure 1). Setting different rotor
speeds to each pair (ω2 6¼ ω4) or (ω1 6¼ ω3) produces roll or pitch rotations with
corresponding lateral motion. Yaw rotation results from rolling moments difference
(M1 þM3 �M2 �M4) between propellers [9]. Maximum and minimum motor
speeds are some of the parameters to be set in the model.

Newton-Euler equations describe quadrotor dynamics and kinematics [9, 18].
The Rotation Matrix represents the rotation around the three axes in the sequence
Z � X � Y (1), and is described in (2).

RI
BZ�X�Y

¼ RI
A2 ψð ÞRA2

A1 ϕð ÞRA1
B θð Þ (1)

RI
BZ�X�Y

¼
Δ

cψcθ � sϕsψ sθ �cϕsψ cψ sθ þ cθsϕsψ

cθsψ þ cψ sϕsθ cϕcψ sψ sθ � cθsϕcψ

�cϕsθ sϕ cϕcθ

2

6

4

3

7

5
(2)

The angle ϕ around the x axis is the roll angle, the angle θ around the y axis is
pitch angle, and the ψ angle around the z axis is yaw angle.
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The orientation vector is defined by η and the position of quadrotor’s center of
mass is defined in the reference frame I by r. Angular velocities in the body frame B
(p, q and r) are defined by ν (3).

η ¼

ϕ

θ

ψ

2

6

4

3

7

5
r ¼

x

y

z

2

6

4

3

7

5
ν ¼

p

q

r

2

6

4

3

7

5
(3)

The derivative of the angles ϕ, θ and ψ and the angular velocities measured by a
sensor fixed to the Frame of the Rigid Body are not the same. p, q and r are the
angular velocities around the x, y and z axes of the Rigid Body Frame. The
relationship with the angular rates _ϕ, _θ and _ψ in the same frame B is in (4).

p

q

r

2

6

4

3

7

5
¼ T

_ϕ

_θ

_ψ

2

6

4

3

7

5
¼

cθ 0 �cϕsθ

0 1 sϕ

sθ 0 cϕcθ

2

6

4

3

7

5

_ϕ

_θ

_ψ

2

6

4

3

7

5
(4)

Considering that the body is symmetrical with respect to the x-z and y-z planes
of the frame B,and that the only forces acting on it are the weight and the four
thrusts, its resulting linear acceleration with respect to the inertial Frame can be
described using Newton’s Second Law. Air drag forces are represented by a matrix
in (5), and the values of Ax, Ay and Az, are inputs on the parameters set.

m €rf gI ¼

0

0

�mg

2

6

4

3

7

5

8

>

<

>

:

9

>

=

>

;

I

þ RI
B

0

0
P

Fi

2

6

4

3

7

5
�

Ax 0 0

0 Ay 0

0 0 Az

2

6

4

3

7

5

8

>

<

>

:

9

>

=

>

;

B

(5)

Figure 1.
Main frames in a quadrotor.
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Besides the force each rotor produces a moment in the rigid body perpendicular
to the plane of rotation of the propeller (Mi), contrary to the direction of rotation of
the propellers. L is the size of the quadrotor arm (Figure 1) and J the inertia matrix
presented in (6).

J ¼

Jxx 0 0

0 Jyy 0

0 0 Jzz

2

6

4

3

7

5
(6)

Due to the forces produced by the rotors, moments are produced in the rigid
body (L � Fi), causing the system to rotate around the x and y axes. The rotation
around the z axis is due to the torque created by the rotation of the motors, which
are fixed to the plant. Based on the Coriolis Equation, the equation that describes
the angular acceleration in the Frame B is in (7).

J
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(7)

For simulating the measurement noise, the tool allows to add a random signal to
position and orientation variables and their derivatives. A first order delay between
the comands u1 and u2 and rotor speed variations, with a time constant τ seconds,
was included in the tool to simulate the rotor dynamics.

3. Trajectory planning for a set of waypoints

Due to the low inertia of quadrotor it is necessary to calculate a smooth trajec-
tory to minimize the risk of collapse. Euler–Lagrange equations are used to find the
minimum snap trajectory [15, 19]. For a two waypoints trajectory, the boundary
conditions of position, velocity, acceleration, and jerk are defined in Table 1.

With this boundary conditions the equations’ coefficients for the two-points
optimal desired trajectory are calculated for each coordinate of position (xdes, ydes
and zdes) and orientation (ψdes) (8).

xdes
ydes
zdes
ψdes

2

6

6

6

4

3

7

7

7

5

¼

c1,7 c1,6 c1,5 c1,4 c1,3 c1,2 c1,1 c1,0
c2,7 c2,6 c2,5 c2,4 c2,3 c2,2 c2,1 c2,0
c3,7 c3,6 c3,5 c3,4 c3,3 c3,2 c3,1 c3,0
c4,7 c4,6 c4,5 c4,4 c4,3 c4,2 c4,1 c4,0

2

6

6

6

4

3

7

7

7

5

t7

t6

t5

t4

t3

t2

t

1

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

(8)

Time t Position xdes tð Þ Velocity _xdes tð Þ Acceleration €xdes tð Þ Jerk €xdes tð Þ

0 xdes 0ð Þ 0 0 0

T xdes Tð Þ 0 0 0

Table 1.
Boundary conditions.
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Desired angles for roll (ϕdes) and pitch (θdes) are calculated from ψdes, the
equations depend on which control strategy is employed.

This procedure yields a minimum snap trajectory for two points. For additional
waypoints it is necessary to considermore equations and intermediary restrictions [15].

The tool calculates the complete optimized trajectory for any set of waypoints.
Desired trajectory rdes, orientation ψdes, and their derivatives are calculated for being
used in the control algorithms.

4. Attitude and trajectory following control strategies

Some of the challenges to be overcome in quadrotor operation are: attitude
stability for large angles, trajectory following, collision avoidance through aggres-
sive maneuvers, monitoring, and others [2, 4].

The control architecture employed in the following control strategies uses two cas-
caded loops. The inner loop (attitude control) runs in a fast time-scale and is assumed
exponentially stable. The outer loop (position control) runs in a slow time-scale, with a
higher bandwidth [4]. All of them employ a feed-forward with proportional plus deriv-
ative structure (FF-PD). The tool is open to easily addmore control strategies.

4.1 Small angle control

Small Angle control assumes an operation not too far from the hovering condi-
tion. A simple heuristic method with FF-PD control calculates the required acceler-
ations for the desired trajectory (9).

€xc
€yc
€zc

2

6

4

3

7

5
¼ rdes þ Kp er þ Kd er (9)

It is assumed small deviations from zero in roll and pitch angles, small deviations
in the yaw angle from the desired value, and angular velocities close to zero. The
algorithm assumes all upward-pointing thrust vectors (control signal u1 in (10)).

u1 ¼ m g þ €zcð Þ (10)

After linear simplifications the equations for attitude control are defined in (11)
and (12) [16].

ηc ¼

ϕc

θc

ψ c

2

6

4

3

7

5
¼

1

g
€xc sin ψdesð Þ � €yc cos ψdesð Þ
� �

1

g
€xc cos ψdesð Þ þ €yc sin ψdesð Þ
� �

ψdes

2

6

6

6

6

4

3

7

7

7

7

5

(11)

νc ¼

pc
qc
rc

2

6

4

3

7

5
¼ Tηc (12)

A PD control law is used for attitude control and to calculate u2 (13) [16].

u2 ¼ KR ηc � ηð Þ þ Kν νc � νð Þ (13)
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4.2 Desired thrust vector control

At high speeds and roll and pitch angles far away from zero, a more robust
strategy is necessary. A FF-PD control law calculates the control signal u1 for the
trajectory following and compensates the gravity. Vector t is calculated with the
attitude for the desired effect (14). As u1 acts along the z direction in frame B (axis
bz), it must be referred to frame I (15).

t ¼ m rdes þ Kp er þ Kd er
� �

þmgaz (14)

u1 ¼ tTRbz (15)

The axis bz is desired to be aligned with t. The desired rotation matrix Rdes is
calculated from the equation of rotation of bz in the direction of t (16).

Rdesbz ¼
t

tk k
(16)

As we know ψdes we use (16) to calculate ϕdes and θdes. Rdes is constructed with
these three angles with the same structure of (2). The error in rotation ΔR is
calculated from (17).

ΔR ¼ RI
B

� �T
Rdes (17)

With the Rodrigues formula [20], the axis of rotation v and the rotation angle β
are calculated (18). I3�3 is the identity matrix and v̂ is the skew-symmetric matrix of
v (19). The related error is calculated with (20).

ΔR ¼ I3�3 cos β þ vvT 1� cos βð Þ þ v̂ sin β (18)

v̂ ¼

0 �v3 v2
v3 0 �v1
�v2 v1 0

2

6

4

3

7

5
(19)

eR ¼ βv (20)

A PD control law is used to calculated u2 (22).

eν ¼ νc � ν (21)

u2 ¼ ν� Jνþ J �KR eR � Kν eνð Þ (22)

Basin of attraction Ψ limits the set of rotations from which the quadrotor is
able to converge to the hovering state. It is a dimension of the set of angular and
linear velocities for a stable performance. For this control strategy it must be lower
than 2 (23).

Ψ ¼ tr I3�3 � RT
desR

I
B

� �

< 2 (23)

4.3 Geometric tracking control

Geometric Tracking Control exhibits almost global exponential attractiveness to
the zero equilibrium of tracking errors [17]. t and u1 are calculated as in (14) and
(15). bx is the desired direction vector in the first body-fixed axis (24).
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bx ¼

cosψdes

sinψdes

0

2

6

4

3

7

5
(24)

With t and bx is possible to calculate Rdes with (25) to (27) [17].

bz ¼
t

tk k
(25)

by ¼
bz � bx

bz � bxk k
(26)

Rdes ¼ by � bz by bz
� �

(27)

(27) calculates the desired attitude for the quadrotor given t and ψdes. The basin
of attraction Ψ (28) is bigger than in the previous strategy (23) as this is a more
robust approach [17].

Ψ ¼
1

2
tr I3�3 � RT

desR
I
B

� �

< 2 (28)

Attitude tracking error and angular velocity error are calculated from (29, 30).
The control vector u2 is calculated in (31) [17].

eR ¼
1

2
RT

desR
I
B � RI

B
T
Rdes

� �

∨

(29)

eν ¼ ν� RI
B
T
Rdes νdes (30)

u2 ¼ ν� Jνþ J �KReR � Kνeνð Þ � J ν̂RI
B
T
Rdes νdes � RI

B
T
Rdes _νdes

� �

(31)

4.4 Particle swarm optimization for control gains tuning

A PSO algorithm is employed to tune the control gains. Some adjustments were
performed to reduce the processing [14, 15], s. Each particle αi is a vector with the
proportional and derivative gains (32).

αi ¼ Kp Kd KR Kν

� �

(32)

Using a predefined set of waypoints chosen by the user, the code calculates the
desired trajectory and tests each particle, calculating the RMS error. The PSO
algorithm evolves in the direction of the best validated solution in each iteration,
until achieving a minimum error tolerance. For faster convergence, every time a
particle is evaluated, the evaluation is interrupted in the middle of the trajectory if
the error increases above a predefined limit.

5. The graphical user interface

A user-friendly 3D animated GUI was developed in MatLab. It is able to evaluate
and compare the performance of various quadrotor control strategies for any user-
chosen trajectory. A few of quadrotor parameters are easily set in this interface [15].

A red vertical line indicates the upper side of the device, and a red circle the
front rotor. Waypoints are represented by red markers, the desired trajectory is on
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dashed blue line, and the 3D interface axis limits are automatically adjusted from
the waypoints (Figure 2).

Waypoints, quadrotor parameters and simulation comands are set in th buttons
on the left side of the GUI.

The user may test its own control strategy just by creating the corresponding
code like the following example:

function New_Controller

% declare global variables

global quad;

% holds the quadrotor in the last waypoint

if(quad.iteracao > length(quad.rdes(1,:)))

Controlador_Position_Hold()

end

% start the controller code and calculate the global control commands

quad.u1=...

quad.u2=...

The code New_Controller.mmust be stored in the folder Controllers, and will
be recognized in the dropdown menu in the lower left side of Figure 2.

6. Results

The tool developed in MatLab and is available in GitHub [21]. The values
employed for these results are in Table 2 [3].

For simulating the measurement noise, a random signal was added to position
(�0:01 m) and orientation (�0:5∘) variables and their derivatives. Maximum and
minimum motor speeds make the simulation more reliable. A time constant τ of 0.1
s for dynamic rotor speed variation was considered.

Two sets of waypoints of challenging trajectories were tested, each one was
simulated in three different initial conditions: Case 1 starting with an orientation

Figure 2.
Graphical user interface.
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angle of ϕ 0ð Þ ¼ 0∘, Case 2 with ϕ 0ð Þ ¼ 88∘, and Case 3 with ϕ 0ð Þ ¼ 178∘. The three
control strategies available in the tool were graphically and numerically validated.

6.1 Elliptical helix trajectory

The first trajectory waypoints (Table 3) describe an elliptical helix in a forward
trajectory along with the x axis of inertial frame ix.

Parameter Value Units

Jxx 4:856� 10�3 kg:m2

Jyy 4:856� 10�3 kg:m2

Jzz 8:801� 10�3 kg:m2

k 2:980� 10�6 N:s2=rad2

g 9:81 m=s2

m 0:468 kg

Ax 0:25 kg=s

Ay 0:25 kg=s

Az 0:25 kg=s

b 1:100� 10�7 N:m:s2=rad2

L 0:225 m

Ni max 8500 rpm

Ni min 1300 rpm

τ 0:1 s

Table 2.
Quadrotor parameters [3].

t sð Þ xdes mð Þ y
des

mð Þ zdes mð Þ ψdes radð Þ

0.00 �0.40 0.00 2.00 0.00

1.20 0.00 0.00 2.00 0.00

1.80 0.20 0.00 2.60 0.00

2.40 0.40 0.40 2.00 1.57

3.00 0.60 0.00 1.40 3.14

3.60 0.80 �0.40 2.00 4.71

4.20 1.00 0.00 2.60 6.28

4.80 1.20 0.40 2.00 7.85

5.40 1.40 0.00 1.40 9.42

6.00 1.60 �0.40 2.00 11.00

6.60 1.80 0.00 2.60 12.57

7.20 1.80 0.00 2.60 12.57

Table 3.
Waypoints test 1.
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With this set it was calculated the desired optimal trajectory. Using this trajec-
tory the PSO algorithm calculates the optimal gains for each of the three evaluated
control algorithms.

With this gains the simulation was performed and validation errors in each of
the four coordinates were registered. Tables 4–6 present the gains used in each
case, and corresponding validation errors.

When calculating the gains using PSO it was observed that the processing time
increases substantially with the initial orientation angle (ϕ 0ð Þ). It was also observed
in cases 2 and 3 that once a set of optimal gains is calculated, later results do not
reduce substantially the validation error.

Small angle control is more sensible to variations in rotational positions as
observed in the results. Optimal small angle control gains are bigger than rotational
(Tables 4–6). The opposite occurs for DTV and geometric tracking.

Case 3 is the most challenging since the quadrotor starts almost upside down.
Geometric tracking controller is more sensitive to noise error, PSO did not succeed
in finding a set of gains in Case 3.

A visual validation is possible using the tool. Graphics in Figure 3 show the
performance of small angle control in Case 3. The quadrotor drops and recoverers
the vertical position, and continues along with the desired trajectory. Graphics on
the right supports a visual validation of position and orientation variables.

In the graphics of propellers’ speeds of Figure 4, dashed red lines indicate the
speed extremes. In extreme situations, the controller attains the propellers’ limits.

Figure 5 presents the performance of DTV Control on Case 3. It is observed a
faster reaction and a more accurate trajectory following.

Near the third point the trajectory leads the quadrotor to its limits. Propellers’
speeds in Figure 6 show a more stable performance than the previous strategy.

Control Strategy Kp Kd KR Kν xv % yv % zv % ψv %

Small Angle 17.96 7.11 0.231 0.16 1.373 7.763 6.301 1.0300

DTV 18.91 10.77 44.920 23.43 2.112 4.907 5.300 0.6455

Geometric Tracking 7.34 7.35 90.590 20.75 3.172 8.807 26.680 0.3973

Table 4.
Elliptical helix trajectory case 1, ϕ 0ð Þ ¼ 0∘.

Control Strategy Kp Kd KR Kν xv % yv % zv % ψv %

Small Angle 22.76 2.00 0.765 0.197 2.01 32.69 26.22 0.6344

DTV 19.70 4.85 155.400 26.710 1.58 22.03 27.65 0.4949

Geometric Tracking 8.24 5.62 220.200 27.670 3.17 35.94 51.57 0.4027

Table 5.
Elliptical helix trajectory case 2, ϕ 0ð Þ ¼ 88∘.

Control Strategy Kp Kd KR Kν xv % yv % zv % ψv %

Small Angle 8.180 2.349 2.45 0.4371 5.988 64.98 146.1 1.223

DTV 7.268 3.434 236.40 31.4300 4.709 33.71 105.4 1.351

Geometric Tracking — — — — — — — —

Table 6.
Elliptical helix trajectory case 3, ϕ 0ð Þ ¼ 178∘.
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Compared with small angle, this strategy seems to be more robust and accurate.
Figure 7 presents the performance of geometric tracking control in Case 2.

This strategy reacts faster to challenging situations, since it recovers in a shorter

Figure 3.
Elliptical helix trajectory case 3 small angle control, ϕ 0ð Þ ¼ 178∘.

Figure 4.
Propellers’ speeds in rpm with small angle control.

Figure 5.
Elliptical Helix Trajectory Case 3 DTV Control, ϕ 0ð Þ ¼ 178∘.
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time its hovering orientation. This fast reaction makes it more sensitive to
measuring noise.

Propellers’ speeds in Figure 8 confirm the faster command reaction of the con-
troller compared with Figures 4 and 6. This strategy is also sensitive to nonlinear
behaviour. When it reaches the propeller limits, it is highly prone to instability.

The gains calculated for the more challenging Cases were later tested on Cases 1
and 2. Despite being less optimal they displayed a stable behaviour. The perfor-
mance is presented in Table 7.

Graphical results of small angle control performance on Case 1, when using the
optimal gains compared with the performance with the gains calculated for Case 3.
The system holds the attitude performance. The same comparison was performed
for DTV control. The decrease in performance is lower than with the small angle
controller [15].

Figure 6.
Propellers’ speeds in rpm with DTV control.

Figure 7.
Elliptical helix trajectory case 2 geometric tracking, ϕ 0ð Þ ¼ 88∘.

Figure 8.
Propellers’ speeds in rpm with geometric tracking.
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6.2 Lemniscate Shape Trajectory

A second set of waypoints presented in Table 8, depicts a lemniscate shape
trajectory varying the position in Z, orienting the front of quadrotor (yaw angle ϕ)
in the direction of displacement.

Figure 9 depicts the second trajectory.

Control Strategy ϕ 0ð Þ∘ xv % yv % zv % ψv %

Small Angle 0° 1.373 7.763 6.301 1.0300

Small Angle1 0° 3.111 21.960 28.390 0.2430

Small Angle 88° 2.010 32.690 26.220 0.6344

Small Angle1 88° 3.242 51.760 49.580 0.3378

DTV 0° 2.112 4.907 5.300 0.6455

DTV1 0° 4.625 15.650 13.310 0.2350

DTV 88° 1.584 22.030 27.650 0.4949

DTV1 88° 4.886 41.580 44.530 0.3509

Geometric Tracking 0° 3.172 8.807 26.680 0.3973

Geometric Tracking2 0° 3.338 5.917 28.660 0.2615

1 Calculated with Gains of Case 3.
2 Calculated with Gains of Case 2.

Table 7.
Validation comparison for cases 1 and 2.

t sð Þ xdes mð Þ y
des

mð Þ zdes mð Þ ψdes radð Þ

0.00 0.00 0.00 2.00 �1.57

0.40 0.12 �0.28 1.58 �0.79

0.80 0.40 �0.40 1.40 0.00

1.20 0.68 �0.28 1.58 0.79

1.60 0.97 0.00 2.00 0.79

2.00 1.25 0.28 2.42 0.79

2.40 1.53 0.40 2.60 0.00

2.80 1.81 0.28 2.42 �0.79

3.20 1.93 0.00 2.00 �1.57

3.60 1.81 �0.28 1.58 �2.36

4.00 1.53 �0.40 1.40 �3.14

4.40 1.25 �0.28 1.58 �3.93

4.80 0.97 0.00 2.00 �3.93

5.20 0.68 0.28 2.42 �3.93

6.60 0.40 0.40 2.60 �3.14

6.00 0.12 0.28 2.42 �2.36

6.40 0.00 0.00 2.00 �1.57

Table 8.
Waypoints test 2.
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As with the to previous trajectory, the small angle control compensates its
limitations with lower gains to guarantee stability, gains are bigger for position
control than for attitude.

DTV Control is again the best validated strategy. Geometric tracking presents a
lower performance due to its sensitivity to noise and nonlinear operation condi-
tions. The DTV control had presented the best validation even in the most chal-
lenging conditions.

Detailed results and analysis of this trajectory are available in [15].
Using the tool the graphical and numerical analysis was easier. Not much pro-

gramming knowledge was necessary for using and configuration, just basic MatLab
programming. Access to quadrotor parameters of the analyzed device, analyzing the
influence of measurements noise, and comparing and simulating different control
strategies is easier than with other visual platforms. Graphical and numerical simu-
lation results are easily available with the interface buttons.

7. Summary

Quadrotor control is a fascinating research area, but the equations involved and
programming skills requirements can be arduous for initiating students. It is a
worth to develop motivational appliances for beginners. This was the motivation to
present a beginner-friendly visual interface tool for the development of quadrotor
control strategies. It is easy to understand, device characteristics are simple to
configure, and control algorithms can be implemented and analyzed with not much
effort. It is not necessary to have a deep knowledge in programming languages, and
may be an introduction to this field of research.

This tool uses RMS and basin of attraction for numerical validation, and the GUI
may help to evaluate stability, robustness, and accuracy. It integrates these criteria
in a unique interface and helps to measure and visualize details and requirements
that may not be so clear using other visual tools.

Figure 9.
Lemniscate shape trajectory.
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Baseline controllers are offered so students may compare performance, and is
open to easily introduce other strategies for comparison. A trajectory planning
based on minimum snap give support to trajectory following control, and GUI
allows the evaluation in dimensions of position and time.

The tool makes easier and faster to realize critical quadrotor requirements and
limitations for challenging applications. These requirements may be related with
the complexity of a defined trajectory, the weakness of a control strategy, or the
improvements that may be carried out in the quadrotor (size, weight, propeller
power, etc.) to accomplish the desired results.

Other controllers can be studied and compared using this tool, such as
Backstepping and intelligent strategies. In the trajectory planning stage, applications
with obstacles may be simulated. Support for multiple quadrotors, communication
with the controller via Robotics Operating System (ROS) and implementation of
obstacles are some of the future improvements planned for this tool.

Abbreviations

ROS Robot Operating System
PSO Particle Swarm Optimization
DTV Desired Thrust Vector
RMS Root Mean Square
GUI Graphical User Interface
UAV Unmanned Aerial Vehicles
PD Proportional plus Derivative Control
PID Proportional Integral Derivative Control
LQR Linear Quadratic Regulator
LQG Linear Quadratic Gaussian
FF-PD Feed-forward Proportional Derivative Control

Nomenclature

I Inertial frame
V Vehicle frame
B Rigid Body frame
ωi Speed of the rotor i
Mi Moment produced by the rotor i
Fi Propulsion force produced by the rotor i
ϕ Roll
θ Pitch
ψ Yaw
_ϕ Rate of change of Roll
_θ Rate of change of Pitch
_ψ Rate of change of Yaw
sϕ,sθ,sψ Sine of angles ϕ, θ and ψ

cϕ,cθ,cψ Cosine of angles ϕ, θ and ψ

RY
X

Rotation matrix of a vector represented in an arbitrary frame X for an
arbitrary Y frame

p Angular speed related to the x axis in the Frame B
q Angular speed related to the y axis in the Frame B
r Angular speed related to the z axis in the Frame B
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_p Angular acceleration related to the x axis in the Frame B
_q Angular acceleration related to the y axis in the Frame B
_r Angular acceleration related to the z axis in the Frame B
η Angular position vector in the Frame I
r Linear position vector in the Frame I
€r Linear acceleration vector in the Frame I
ν Angular speed vector in the Frame B
T Rotation matrix for angular velocity
L Size of the quadrotor arm
J Inertia matrix
x Linear position of quadrotor in the x axis of frame I
y Linear position of quadrotor in the y axis of frame I
z Linear position of quadrotor in the z axis of frame I
er Linear position error vector
er Linear velocity error vector
Kp Linear control gain
Kd Derivative control gain
m Quadrotor mass
g Gravity constant
KR Angular position control gain
Kν Angular velocity control gain
t Desired orientation vector
bi Desired direction vector on axis i of frame B
I3x3 Identity matrix
v Axis of rotation of Rodriguez formula
β Angle of rotation of Rodriguez formula
eR Angular position error vector
eν Angular velocity error vector
Ψ Basin of attraction
α Particle of the PSO algorithm
k Constant of the rotor force
b Constant of the rotor moment
τ Time constant for rotor delay dynamics
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