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Chapter

Kalman Filter Estimation
and Its Implementation

Erick Ulin-Avila and Juan Ponce-Hernandez

Abstract

In this chapter, we use the Kalman filter to estimate the future state of a system.
We present the theory, design, simulation, and implementation of the Kalman
filter. We use as a case example the estimation of temperature using a Resistance
Temperature Detector (RTD), which has not been reported before. After a brief
literature review, the theoretical analysis of a Kalman filter is presented along with
that of the RTD. The dynamics of the RTD system are analytically derived and
identified using Matlab. Then, the design of a time-varying Kalman filter using
Matlab is presented. The solution to the Riccati equation is used to estimate the
future state. Then, we implement the design using C-code for a microprocessor
ATMega328. We show under what conditions the system may be simplified. In our
case, we reduced the order of the system to that of a system having a 1st order
response, that of an RC system, giving us satisfactory results. Furthermore, we can
find two first order systems whose response defines two boundaries inside which
the evolution of a second order system remains.

Keywords: Kalman filter, prediction, Riccati equation

1. Introduction

A deterministic system is a system whose governing physical laws are specified
so that if the state of the system at some time is known, then one can precisely
predict the state at a later time. Nondeterministic systems are divided into two
categories: stochastic and random. A stochastic system has governing physical laws
that even if the state at some point in time is known precisely, it is impossible to
determine the state of the system at a later time precisely. It is possible to determine
the probability of a state, rather than the state itself. A random system is one which
has no apparent governing physical laws. Practically, we treat all unpredictable
systems, stochastic or random as stochastic systems, since we employ the same
methods to study them. While we are unable to predict the state of a random
process, we can evolve a strategy to deal with such processes. Such a strategy is
based on a branch of mathematics dealing with unpredictable systems, called
statistics.

Estimation is the process of extracting information from data which can be used
to predict the behavior of state variables in a system. The estimation uses statistical
criteria to infer the actual value of unknown variables. Estimation models are used
to process noisy measurements, filter them, and detect inaccuracies. When random
signals are passed through a deterministic system, their statistical properties are
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modified. A deterministic system to which random signals are input, so that the
output is a random signal with desired statistical properties is called a filter. Filters
can be linear or nonlinear, time-invariant or time varying. However, for simplicity
we will usually consider linear, time-invariant filters. Linear, time-invariant filters
are commonly employed in control systems to reduce the effect of measurement
noise on the control system. In such systems, the output is usually a superposition of
a deterministic signal and a random measurement noise.

The output of a filter not only has a frequency content different from the input
signal, but also certain other characteristics of the filter, such as a phase-shift or a
change in magnitude. In other words, the signal passing through a filter is also
distorted by the filter, which is undesirable. A filter would produce an output signal
based upon its characteristics, described by the transfer-function, frequency or
impulse response, or a state-space representation of the filter. However, a filter can
be designed to achieve a desired set of performance objectives, i.e. the numerator
and denominator polynomials of the filter’s transfer function, or coefficient matri-
ces of the filter’s state-space model, can be selected by a design process to achieve
the conflicting requirements of maximum noise attenuation and minimum signal
distortion.

There are several prediction models to infer the system state, although, it can be
shown that of all estimation tools Kalman Filter (KF) is the one that minimizes the
variance of the estimation error which enables accurate estimation of the process.

1.1 Literature review

The first application of state estimation was in the aerospace field to solve
problems related to the prediction of position in aerospace vehicles. Nowadays,
estimation has been applied in several fields of engineering and control systems.
One common application is in data acquisition, to solve the problem of predicting
the state of a system that cannot be measured directly due to the characteristics and
complexity of the environment.

KF is an estimator proposed by Rudolph E. Kalman in 1960. It is an algorithm to
estimate the evolution of a dynamic system, especially when data has a lot of noise.
The principle of the filter is to find the probability of the hypothesis of predicted
state and using the data from the measurement to correct it and improve the future
estimation at each time. It is a suitable algorithm to apply in dynamic systems,
linking real-time measurements and predicting the state of system parameters
through time approaches. KF has been implemented in several fields, such as in
navigation systems [1-4], financial models [5-7], tracking vehicles [8, 9] and
image processing [10-12]; only to mention some of them. Nevertheless, this statis-
tical tool is useful for two main purposes: estimation and performance analysis of
estimators.

In the field of IC technology, it has been implemented for thermal estimation.
Multicore processors use a dynamic thermal management mechanism that use
embedded thermal sensors for monitoring the real-time thermal behavior of the
processor, this kind of sensors are susceptible to a variety of source of noise and this
causes the discrepancies between actual temperatures observed by on-chip thermal
sensors. Therefore, to fix the discrepancies in sensing, Kalman’s prediction is used
to estimate real values from noisy sensor readings [13]. Another novel application of
KF is in the electric vehicle industry, the estimation of the charge state of lithium-
ion battery is an important parameter in order to guarantee a safe operation of
them. The battery performance is influenced by aging; this fact makes difficult
to predict the battery state, to overcome this issue the application of KF in
combination with other methods is a suitable methodology [14-17].
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Recently, KF has been applied in several industrial applications. With the devel-
opment of manufacturing process, welding automation emerges as one important
tool to speed up the production rate in the assembly line in stronger and high-
quality welds. Nevertheless, there are several factors that could influence the
welding quality and the most important is the arc length, which could be influenced
by the irregular surface of the workpiece and the loss of the tungsten electrode. To
enhance the quality during the Gas-Tungsten Arc Welding (GTAW) process, KF is
applied in order to keep the arc length stable and minimize the external noise [18].
In the field of sensorless control, KF have been used in intelligence electrical drives.
To control induction motor drives without mechanical speed sensor at the motor
shaft allows reduced hardware complexity, and low costs. Additionally, the use of
induction motors without position sensor is useful for applications with abrasive
and hard surface. Thereby, the application of an estimation method it’s necessary in
order to predict the position and velocity of the shaft [19-21].

In applications related with radio astronomy, KF has been applied for the anal-
ysis of Very-Long-Baseline Interferometry (VLBI) data, in order to analyze param-
eters such as base line lengths, earth orientation parameters, radio source
coordinates and tropospheric delays. Nowadays, modern antennas are being
constructed and equipped with highly accurate broadband receiving systems.
Besides the accurate observations gotten by astronomic instruments, it is necessary
to implement estimation methods in order to optimize the models applied in data
analysis [22, 23]. In power systems, one of the main difficulties is power quality due
to total harmonics distortion (THD) that is mainly caused by nonlinear loads. THD
effects are strongly correlated with issues as device heating, break down electronic
components, network interference, etc. Several filters have been performed to
decrease the effect of harmonics; nevertheless, the application of KF has shown an
important reduction in the effect of harmonics [24-26]. In the field of biomedicine
KF is widely used over other estimation methodologies to overcome the different
sources of noise. Specifically, KF has been used to smooth and predict signals from
Electroencephalogram and Electrocardiogram signals [27, 28]. Recently in the liter-
ature there are reports on a new methodology to protect the confidentiality of the
transmitted data based on a Kalman filter. This strategy proposes the implementa-
tion of encrypted algorithm using KF, and is suggested to be used in Industrial
cyber—physical systems (ICPSs) to protected data privacy [29, 30].

As it has been mentioned above, KF has been used in diverse fields of science and
technology to predict specific parameters of interest according to the application.
Temperature evolution is an important parameter to measure and predict, in order to
study or control the temperature in an environment [31, 32], device [13, 33, 34] and
process [18]. It is well known that RTDs are commercial devices very useful to
monitor the temperature due their stability and accuracy. However, RTDs are self-
heating causing noisy readings making the RTD a suitable example to implement KF
for temperature estimation. Importantly, we searched in the literature and found no
evidence of previous work reporting the use of a KF to filter the noise and predict the
temperature behavior from RTD readings.

2. Theoretical analysis of a Kalman Filter

The final objective of this study is to obtain the specification of a linear dynamic
system (Wiener filter [35]) which accomplishes the prediction, separation, or
detection of a random signal [36]. With the state-transition method, a single deri-
vation covers a large variety of problems: growing and infinite memory filters,
stationary and non-stationary statistics, etc. Having guessed the “state” of the
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estimation (i.e., filtering or prediction) problem correctly, one is led to a nonlinear
difference (or differential) equation for the covariance matrix of the optimal esti-
mation error. From the solution of the equation for the covariance matrix we obtain
the coefficients characterizing the optimal linear filter [36]. The following is a
simplified derivation described previously in the references [37, 38].

2.1 Defining statistical quantities of use

The initial state, x(0), of a stochastic system is insufficient to determine its
tuture state, x(t). Thus, based upon a statistical analysis of similar systems, and
taking the average of their future states at a given time, t, we can calculate the mean
state-vector as follows:

N

Xm(t) = (1/N) Y xi(t) (1)

i=1

Thus x,,(t) is the expected state vector after studying N systems. It is also called
the expected value of the state-vector, x,,(t) = E[x(t)]. Another statistical quantity
of use is the correlation matrix of the state-vector:

N

Pi(t,7) = (I/N) Y xi(t)x] (z) (2)

i=1

The correlation matrix, P,(t, T), is a measure of correlation, a statistical property
among the different state variables, and between the same state variable at two
different times. Two scalar variables, x1(¢) and x,(t), are said to be uncorrelated if
the expected value of x1(t)x2(7), i.e. E[x1(t)x2(7)] = 0, where 7 is different from t.

The correlation matrix is the expected value of the matrix x;(t)x! (z), or
P.(t,7) = E[xi(t)x] (r)]. When t = 7, the correlation matrix Py(t, t) = E [x;(¢)x] ()],
is called the covariance matrix. The covariance matrix, P, (t, t), is symmetric. If
P, (t, ) is a diagonal matrix i.e. E[x;(¢)x;(r)] = 0, where i # j, it implies that all the
state variables are uncorrelated.

2.2 Defining the filter in state space - discrete domain

Consider a plant which we cannot model accurately using only a deterministic
model, because of the presence of uncertainties called process noise and
measurement noise:

X1 = Axp + wy (3)
Y, = Cxy, + vy, (4)
In the linear, time-varying state-space representation above, w is the process
noise vector which may arise due to modeling errors such as neglecting nonlinear
dynamics, and v is the measurement noise vector. The random noises, w and v, are

assumed to be stationary white noises. The covariance matrices of stationary white
noises, w and v, can be expressed as follows:

Q = E[wwy | (5)

R = E[v0j | (6)
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Since we cannot predict the state-vector, x of a stochastic plant, an observer is
required for estimating the state-vector, based upon a measurement of the output, y
and a known input, u. We need an observer that calculates the estimated state-
vector, X, optimally, based upon statistical description of the vector output and
plant state. Such an observer is the Kalman Filter, which minimizes a statistical
measure of the estimation error, e, = X}, — X;,. This statistical measure is the covari-
ance of the estimation error:

Pk = E[ekeﬂ == E[(Xk — f(k) (Xk = }A(k)T] (7)

Since the state-vector, X, is a random vector and the estimated state X, is
based on the measurement of the output, y, for a finite time, say T, where t>T
then a true statistical average of x would require measuring the output for an
infinite time.

If T < t, this is a data-smoothing (interpolation) problem. If T = t, this is called
filtering. If T > t, we have a prediction problem. Since the original treatment is
general enough, the collective term estimation is used [36].

Hence, the best estimate to obtain for x is not the true mean, but a conditional
mean, X,,, based on only a finite time record of the output, y:

%m = E[x:y,T <t] (8)

Taking in consideration the deviation of the estimated state- vector, X, from the
conditional mean, x,,, we can write the estimated state- vector as:

X=X, +Ax (9)

Ax is the deviation from the conditional mean. The conditional covariance
matrix of the estimation error based on a finite record of the output is then:

P, =Elere} 19, T<t| = E[wx"| — x,x), + AxAx” (10)

The best estimate of state-vector happens if Ax = 0, or x = x,,, and would result
in a minimization of the conditional covariance matrix, or error covariance matrix,
P... In other words, minimization of Py, yields the optimal observer, which is the
Kalman filter.

2.3 Defining the Kalman gain

The state-equation of the Kalman filter is that of a time-varying observer, and
can be written as follows:

Xp11 = AXy, + Buy, + K, [yk - Cfik] (11)

K}, is the gain matrix of the Kalman filter. Assuming the prior estimate of x;,
is called %), gained by knowledge of the system. We write an update equation
for the new estimate, combing the old estimate with measurement data,

%, = A, + Buy, and:

X, = X, + K[y, — Cx;,] (12)

If we substitute Eq. (4) into Eq. (12) we get:
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X, = X, + Kk[ Cxyp, + v — Cf{,;] (13)

Substituting Eq. (13) into Eq. (7)
P = E| (I — KiC) (xi — %) — Kuww) ((T - KiC) (3¢ — %) — Kyon)' | (14)

Here (x, — X},) is the error of the prior estimate. Since there is no correlation
among the input, process noise and measurement noise, then the expectation may
be re-written as;

P = (I - KuO)E | (% — %) (x4 — %4) | 1 - KuC)" + KiE[owni"IKE (1)
Using Egs. (6) and (7), we obtain:
P, = (I - K,C)P,(I - K;C)" + K3RKY (16)
Eq. (16) is the error covariance update equation, where P;, is the prior estimate
of P,.
The trace of the error covariance matrix is the sum of the mean squared errors.
The mean squared error may be reduced by minimizing the trace of Py. This
requires to differentiate the trace of P, with respect to Kp, then the result set to zero

to find K}, that minimizes the trace of Py,.
We rewrite Eq. (16);

P, = P, — P,C"K{ — K;CP,, + K,.CP;,C"K} + K;RK} (17)
Taking the trace of this expression gives:

T[Py] = T[P},] — 2T [K\CP,] + T (Ky(CP,C" + R)K}) (18)
Then, we differentiate with respect to Ky;

dT[Pg]

%0\ 7 —2T[CP,] + 2T (K& (CP,C" +R)) (19)

Setting to zero and solving for K}, we obtain the Kalman gain equation:
K, = P,C"(CP,CT +R) " (20)
Substitution of Eq. (20) into [17], gives:
P, = (I - K,C)P, (21)
Eq. (21) is the update equation for the error covariance matrix with optimal
gain.

State projection is derived using;

f({@rl = Af(i{ + Wk (22)
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To project the error covariance matrix into the next time interval, k + 1 we first
find an expression for the error based on the prior error;

/ o ~/
ki1 = Xk+1 — X g

= Axy + Wy — Af(i( (23)
= Aey + Wi
Eq. (7) intime k + 11is;
P,..=E [e;Hle;HlT} = E[(Aek +wy)(Aey, + wk)T] (24)

Assuming that e, and w;, have zero cross-correlation.

T

ki1 = E[e;e—i-le;z—i-l ]
= E[(AekekTAT + wkwkT)} (25)

= APAT + Q

This completes the description of the filter.

2.4 Algorithm loop

An algorithm loop is required to make the program in MATLAB and in C-code
for the microprocessor. The loop is summarized in the Figure 1.

The KF assumes that the system model is linear and known, the system and
measurement noises are white, and the states have initial conditions with known
means and variances. The power spectral densities used can be treated as tuning
parameters to design an observer with excellent performance and robustness. The
linear Kalman filter can also be used to design observers for nonlinear plants, by
treating nonlinearities as process noise with appropriate power spectral density
matrix.

Initial estimates
K = PiCT(CPCT +R) ™

Measurement Updated estimates

Py = (I - KxO)P;

Projected estimates

Xir1 = AX), ——
P = AP AT +Q

Figure 1.
Recursive algorithm for the Kalman filter.
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2.5 Derivation of the Riccati equation

Since the Kalman filter is an optimal observer the appearance of matrix Riccati
equation is not surprising. We are interested in a steady Kalman filter, i.e. the
Kalman filter for which the covariance matrix converges to a constant in the limit
t — oo. This happens when the plant is time invariant. The derivation goes as
follows [39, 40]:

From the projections into oo we get:

%, = Ax. (26)
P..1=AP,AT+Q (27)
P, = (I - K.,C)P, (28)
Xoo = X, + K[y, — CX_] (29)
K., =P.CT(CP.C" +R)" (30)
Using the Egs. 26-29 we get:
x, . =Ax, +AK.[y, — Cx. ] (31)
P, =A(I-K.CP_AT +Q (32)

Using Eq. 30 in Egs. 31 and 32 we get:
&, ., =A% +AP.CT(CP.C" +R) [y, — C%.] (33)
Poi—A (1 ~ P.CT(CP.C" +R) _1C>P;,AT +Q (34)
Rewriting Eq. 34 we get:
P..,; = AP_AT — AP, CT(CP.C" +R) 'CP. AT + Q (35)
When in steady state:
P.,,=P_=P, (36)
Then we arrive at the Riccati equation:
AP. AT — AP..C"(CP..C" +R) 'CP,AT - P, +Q =0 (37)
The iterative solution of the Riccati equation is not required in real time. The
observer gain is calculated off-line for predictive control applications [40]. Riccati

equations are mainly used to control large scale systems, estimation, and, detection
processes.

2.6 Solution to the Riccati equation using MATLAB

In this work the discrete-time algebraic Riccati equation (DARE) was solved to
obtain the covariance matrix P of the Kalman gain. The discrete-time algebraic
Riccati equation is represented by the next form [41]:
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X = ATXA +Q — (ATXB) (R + B'XB) ' (B"XA) (38)

Where A,X,Q = AT eR”", BEeR"™ Re R™ " (m <n), and R = BT > 0.
Eq. (38) can be written in the short form:

ATX1+SX)'TA-X+Q =0 (39)
Where:
S = BR BT (40)

The application of the Kalman filter implies solving the DARE, which can be
solved by several solution methods. Computational methods to solve Riccati equa-
tions can be categorized into three classes: invariant subspace methods, deflating
subspace methods, and Newton’s methods. The generalized Schur method that is
classified as a deflating subspace method is used to solve DARE. The generalized
Schur algorithm is a strong algebraic tool that allows computing classical decompo-
sitions of matrices, such as the QR and LU factorizations [42]. The next algorithm
was used to solve DARE [43]:

Input arguments:

A — An n X n matrix
B — An n X m matrix
Q — Ann X n symetric matrix

R — An m X m symetrix matrix
Output arguments: X — DARE solution

1.Form the pencil Pparg — ANpare, where

Pparg = A0 , (41)
Q1

Npare = e (42)
(0 AT)

2. Transform the pencil Pparg — ANpagg to the generalized real Schur form apply
QZ algorithm, that is, find orthogonal matrices Q; and Z; such that:

Py Py
Q1PpareZ1 = P1 = , (43)
0 Pp
N1 Np
Q1 NpagreZ1 = N; = ( ) (44)
0 Np

3.Using an orthogonal transformation and reorder the generalized real Schur
form. So that all the pencil P1; — AN; has all the eigenvalues with moduli less
than 1. Find Q, and Z, orthogonal matrices, such that:
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Q,Q+PpareZ1Zy = quasi — upper triangular (45)

Q,Q1NpareZ1Z, = upper triangular (46)

4.Form the matrix;

(47)

Z Z
Z:Z]_ZZZ( 1 12)

7y Zpn

5.Compute X = 221Z1_11

3. Application example: resistive temperature detectors (RTD)

Resistive temperature detectors (RTD) have attracted attention to be employed
as thermal health monitors. As clinical thermometers they are stable and reliable
presenting high accuracy and resolution [44]. One of the most widely used RTD is
the emerging thin-film resistor which has minimal impact on complex circuits due
to its small size and due to their negligible mass.

The basic function of the sensor is determined by a proportional increment of
resistance when temperature is applied. RTDs can be employed on a rigid or flexible
substrate [45-47], the metal combination with a flexible o rigid substrate can cover
conformal applications. RTD fabrication can be done by metals like Pt [48-50], Cu
[51], Ag [52], and Ni [53], among other materials. Nickel presents a suitable option
for RTD fabrication due to its wide temperature linear range of operation and its
relatively low price.

Clinical thermometers require a high definition and reliability because less than
1°C difference can indicate a health problem. The thermometer signal can be
amplified by electronic means, but it is desirable to filter such readings. This work is
focused to the filtering and prediction of an highly sensitive Nickel based thin film
RTD (range, 273-325 K), to be incorporated to complex circuits [54], we present the
theoretical analysis about the relation sensibility-resistance that matches with
experimental results.

3.1 Theoretical analysis of an RTD

All metals produce an increase in its resistance to an increase in specific tem-
perature, which means that resistance is linearly proportional to temperature
change. This dependence between electrical resistance and temperature is the prin-
ciple of operation used by a resistance temperature detector (RTD). The relation
between temperature-resistance for Pt wire (RTD), is described by the equation
known as the Calendar-Van Dusen, Eq. 41) [50].

R(r) = Roc(1+ aT + BT?) (48)

Where Roec is the resistance at 0°C, o and p are temperature coefficients and T is
temperature, the temperature coefficients depend only on material properties. In
addition, the RTD resistance depends on its geometrical design, according to Eq. 42.

cxL oxL
R: P—
A Wkt

(49)

10
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Where “c” is the resistivity, “L” length, “A” lateral area, “w” channel width, and
“t” channel height. Only by increasing the length “L” or decreasing the area “A”
that means reducing the “t” film thickness or the “w” channel wide, the resistance
can increase.

3.1.1 State-space description of an RTD

The estimation of the thermal system is represented by the linear stochastic
state-space description xj, = Axp_1 + Bup_1 + wp—1 and y, = Cxp, + v,. Where A is
an nxn state transition matrix applied to the previous state vector xj_1, B is the
control-input matrix applied to the control vector u;,_1, and w;_1 is the process noise
vector. The linear combination of the measurement noise and the signal value is
represented by y,, where C is the measurement matrix, and v, is the measurement
noise vector with covariances matrices represented by Q and R. The covariances are
assumed to be independent and are given by Q = E [wkw,ﬂ and = E [vkv,ﬂ .

Generally, the RTD system is modeled as an RLC circuit, which consists of a
resistor a capacitor and an inductor in series with an input voltage. The output that
we analyzed is the voltage across the resistor which is related to temperature
change. The RLC circuit is represented by a second-order differential equation

e +R—-+ al(t) = 0. To solve the above equation we implement the next

t2 dt
matrix system:
e ) 2lwd) @
- \-1/L-C -R/L - \1/L-C
C=(10) D=0

Also, we may simplify the response of the system to that of a first-order RC

circuit. This implies to solve a first-order ordinary differential equation: RC fi—? +
g = VC . The dynamic model is defined by the following system:

1 1
A= (— R—C> B= (R—C) (1)

C=1 D=0

4. Design and simulations
4.1 Kalman filter in resistance thermal detectors (RTD)

In this work, a Kalman Filter is proposed to decrease the time response to
improve the speed feedback and filtering of the perturbations by signal noise from
physical signals as thermal detectors. In some instances, a reduced model is advis-
able to use in an embedded system due to easy implementation and low computa-
tional complexity [2].

Kalman filter can be embedded in a temperature system made by Resistance
Thermal Detectors (RTD).RTD’s are robust elements that require relatively easy
measurement, as a consequence are a useful thermal sensor for industry and med-
ical applications. Nevertheless, these devices are exposing to vibration, electrical
noise, and measurement errors generated by the thermoelectric effect caused by the
temperature difference between electrical contacts, which affects the response time
of the sensor. The implementation of the Kalman filter in a temperature system

11
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produces an optimal estimative of thermal behavior and decreases the uncertainties
about the prediction of the temperature.
In order to describe the system in the state space, it is necessary to apply system
identification methods using MATLAB. Then, after obtaining the system’s state
space model we are able to use the Kalman filter algorithm to estimate the future
output of the system.
To study the dynamics of our system, we used MATLAB functions etfe and spa
to firstly estimate the empirical transfer functions and then estimate the frequency
response with fixed frequency resolution using spectral analysis. The continuous
time-identified transfer function obtained is:

2.278 s + 0.1711
s? 4+ 2.488 s + 0.1695

(52)

Using MATLAB we are able to acquire the Discrete-time identified state-space

model:

with:

_ [0.8342
~10.0942

x(t+Ts) = Ax(t) + Bu(t) + Ke(t)

y(t) = Cx(t) + Du(t) +e(t)

—0.08908 5 0.01966

—09716 |° | -0.03341]’

0.006289

C =[7.966 O.3OOS],D:O,K:[ }
—0.2834

(53)

(54)

Estimated using N4SID on time domain data. Fit to estimation data: 90.27%
(prediction focus) with FPE: 0.4532 and MSE: 0.2292. Figure 2 shows the
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Input-output model for which the input was set to a constant value of 38°C. The
output, the step response, is that of the second order system as can be seen in the
bode plot shown in Figure 3. Figure 4 shows the evolution of the measured versus
the modeled step responses.

Bode Diagram
From: Temp forehead To: Temperature RTD
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o
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T

Figure 3.
Bode diagram indicating the system is a second ovder system as described by the system transfer function.
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4.2 Kalman filter

We modify the MATLAB example for the time-varying case found in [55] and
we code our own function to solve the Discrete Algebraic Riccati Equation.
MATLAB functions like predict or forecast were found useful to understand the
problem at hand, however they were not used in the code we present here.

4.2.1 Time-varying Kalman filter using MATLAB

w(L:n) = sqrt(Q)*randn(n,1);

v(1:n) = sqrt(R)*randn(n,1);

systv = ss(A,B,C,0,Ts);

ytv(ln) = Isim(systv,U(1n) + w(Ln)).
yvtv(ln) = ytv(Ll:n) + v(1n);

Ptv(::) = B(;,:)*Q*B(:,2)’; % Initial error covariance.
x = zeros(order,1); % Initial condition on the state.
order = 2;

yetv(1l:n) = zeros(n,1);
ycov(Lln) = zeros(n,1);
fori=1n.
% Measurement update.
Mn(:,:) = Ptv(:,:)*C(:,:)’/(C(:,:) *Ptv (5,:) *C(:,2) " + R);
X = X + Mn(:,:)*(yvtv(i)-C(:,:)*x); % x[n|n].
Ptv(:,:) = (eye(order)-Mn(:,:)*C(:,:) ) *Ptv (:,); % P[n|n].
yetv(i) = C(:,:)*x;
errcov(i) = C(:,:)*Ptv(:,:)*C(:0) s
% Time update.
x = A(,)*x + B(:,)*U(>1); % x[n + 1|n].
Ptv(:,:) = AG:)*Ptv(5,:)*A(:,:)” + B(;,:)*Q"B(:,:) s P[n + 1|n].
end
%% DARE. We coded our own dare function [X,L,G] = sdare(A,B,Q,R).
[P_inf,L,M_inf] = sdare(atv,ctv’,Q,R);
fori=1p
% Measurement update.
x = X + M_inf*(yvtv(i)-ctv*x); % x[n|n].
yetv_inf(i) = ctv*x;
errcov_inf(i) = ctv*P_inf*ctv’;
% Time update.
X = atv*x + btv*U(i); % x[n + 1|n].
P_inf = atv*P_inf*atv’ + btv*Q*btv’; % P[n + 1|n].
end

function [SD] = sdare(A,B,Q,R).
At = transpose(A);

Bt = transpose(B);

S1 = size(A);

E = eye(S1);
Z = zeros(S1);
Ri = inv.(R);
S = B*Ri*Bt;

Pdare = [AZ; —QE];
Ndare = [E S; Z At];
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[AA,BB,L,Z] = qz(Pdare,Ndare);
[AAS1,BBS1,Q81,ZS1] = ordqz(AA,BB,L,Z,‘udi’);
0 = ZS1(1:2,1:2);

P = 7ZS51(3:4,1:2);

H = inv.(O);
SD = P*H;
end

5. Simulations

Matlab was used to simulate the response of an RTD modelled as a second order
system. In Figure 5(A) we show the plot of the true response y (cyan line) and the
filtered response (red line). In Figure 5(B) the plot compares the measurement
error with the estimation error. As can be seen in Figure 5(C) the time-varying
filter also estimates the covariance errcov of the estimation error at each sample
which shows when the filter reached steady state. As it can be seen, we have the
possibility to predict the state after approximately 8 seconds. Also, we show the
evolution of the estimated temperature response showing an error of —0.0948°C in
the best of the cases and less than 1°C in the worst of the cases after 45 seconds.

6. Implementation

The unit step response depends on the roots of the characteristic equation. If
both roots are real-valued, the second-order system behaves like a chain of two
first-order systems, and the step response has two exponential components. If the
roots are complex, the step response is a harmonic oscillation with an exponentially
decaying amplitude [56]. In our case, the roots of the characteristic polynomial:

s? +2.488 s + 0.1695 are —2.4179 and — 0.0701. Thus our system behaves like two
first order systems in series.

The state description for an RC system is described above. From there, we know
that the dynamics are dependent only on the RC constant. In addition, there is an
amplificator in the system electronics that has a gain of 260. To solve for the RC
constant of the system we use the least-squares method (Chi square minimization).
The system has a solution of the form y = ¢%* and we take n data points to
form the vectors x; and Y;. The problem is to minimize the error function,

err = S, (Y; — AeP*)?. The trick on the algorithm goes as follows:
Yn,=InY;=In (AeBx") =InA+ In (eBx") = C + Bx; (55)
Which is a linear equation. Using a linear fitting program:

B:nZXiYi_ZXiZYi _ZXiZZYi_ZXiZXiYi (56)

and c =

nY %2 — (Yx) nYy %2 — (Xx)

We obtain B and A = exp (¢). We coded two Kalman filters with different
calibration parameters (Q and R) as is written below. The KF was implemented in
an ATMEGA328 microprocessor. Code for an Arduino was generated using C lan-
guage which is available in the following section. Only the relevant portion is
written.
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Figure 5.

(A) Evolution of the estimated temperature response showing an ervor of —0.0948°C in the best of the cases and
less than 1°C in the worst of the cases. (B) Evolution of the measurement and estimation ervors. (C) Evolution of

the covariance of the error showing the possibility to predict the state after approximately 8 seconds.

6.1 Arduino code

readings[readIndex] = analogRead (inputPin); // read from the sensor.
total = total + readings[readIndex]; // add the reading to the total.
readIndex = readIndex +1; // advance to the next position in the array.
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time_equis_readings[time_equis_readIndex] = time_equis_readIndex;
time_equis_readIndex = time_equis_readIndex +1;
if (readIndex > = numReadings) // if we’re at the end of the array.
{
for(i = 0;i < =numReadings-1;i++).
{
Y[i] = log(readingsl[i]);
timel[i] = time_equis_readings[i];
sumx = (sumx +time_equis_readings[i]);
sumx?2 = (sumx2 + time_equis_readings[i] *time_equis_readings[i]);
sumy = (sumy +Y[i]);
sumxy = (sumxy +time_equis_readings[i]*Y[i]);
}
den = (numReadings*sumx2-sumx*sumx);
a = (sumx2*sumy -sumx*sumxy)/den;
Bc = (n"sumxy-sumx*sumy)/den;
/1 State description.
A = -Bc;B=Bc;C = 260;D = 0;
/Iwrap around to the beginning:
readIndex = O;time_equis_readIndex = 0;
}
/! KALMAN.
errcov = C*P*C;
for(i = 0;i < =numReadings-1;i++).
{
Mn = P*C/((C*P*C + R)); // initial estimate.
X = X + Mn*(readings[i]-C*X); // update estimate Average_readings[i].
P = (1-Mn*C)*P; // update covariance.
y_e[i] = C*X;
errcov = C*P*C;
X = A*X + B*U; // project into k + 1.
P = A*P*A + B*Q"B; // project into k + 1.
}

timerO_millis = millis();
/1 Solution to the Riccati equation.

F = -Bc;H = 260;
SQ = sqrt((H*H*Q*R) + (F*F*R*R));
SR=F*R;

P_inf = (SQ + SR)/(H*H);

M_inf = P_inf*C/(C*P_inf*C + R);

for(i = 0;i < =numReadings-1;i++).
{

/I Measurement update.

// M_inf;

x_inf = x_inf + M_inf*(readings[i]-C*x_inf); // % x[n|n].
//P_inf; % P[n|n].

y_e_inf = C*x_inf;
errcov_inf = C*P_inf*C;

/I Time update.

x_inf = A*x_inf + B*U;

P_inf = A*P_inf*A + B*Q*B;

}

}
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7. Results

The experiments were performed in a thermal bath giving step responses to the
desired setup temperature. Figure 6 depicts the upward and downward evolution
of the temperature, the Kalman filter and the two predictors (using two different Q
and R settings). As can be seen the predictors follow the Temperature of the sensor
closely, especially for the upward way, while the Kalman filter lags behind.
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Figure 6.

Implemented system. Step response for the upwards and downwards evolution. Two different Kalman filters
were used to predict (by solving the DARE equation) the evolution of the future state with different Q and R to
calibrate the desived response. In blue the evolution of the RTD sensor analog input, in Yellow and ved the two
Kalman predictors and the Kalman estimation in cyan color.

8. Boundary layer

Sliding control [57] is an additional tool to predict the behavior of a second order
system basically smoothing the system by boundary layers. The prediction of the
system state trajectory is given using an uncertain model of the system. The sub-
space which represents the quantity of uncertainties in the prediction process,
forces the estimate state trajectory to switching gain to converge the estimates to
within a boundary of the real state values. To predict the state trajectory of our RLC
system it’s possible to switch its gain by the subspace represented by a first-order
RC model. The estimated state trajectory is forced to keep a switch back and forth
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Figure 7.

Ascending and descending step responses of the Kalman filter and two Predictors which function in real time. In
blue the RTD sensor vesponse, in cyan the estimator response, in yellow and in red the two differently calibrated
Kalman predictors.
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within the boundary layer represented in our case by a RC model. By creating a
boundary layer, the system is further constrained to have a solution existing in
between two RC model solutions.

In Figure 7 it can be clearly seen that the use of two estimators may help predict
the behavior of the RTD in a much better way. The system needs to be calibrated
first in order to have the two Kalman filters enveloping the required solution. As can
be seen in the upward direction, both predictors (yellow and red) envelope the
desired response (blue), that of the RTD sensor improving the response of the
Kalman filter without boundaries (cyan). Unfortunately, this is not the case in the
downward evolution. From the nonlinear control systems point of view these two
evolutions demark a region where the RTD stands thus making possible to program
a better estimator. It is left as an outlook to program a third estimator using this
boundary layer in order to have a better predictor, especially for the downward
evolution.

9. Conclusions

As it can be shown the implementation of the Kalman filter brings the opportu-
nity to estimate the forecast in real time of a second order system using first,
MATLAB and second that of two first order systems using a simple RC system
coded in C-language for a microprocessor. It has been shown that the program is
able to predict the evolution of temperature for a RTD system. Even if the system is
implemented using a first order system we can find evolving solutions for our
estimation and prediction to be good enough. We predict the state after approxi-
mately 8 seconds showing an error of —0.0948°C in the best of the cases. In
addition, a boundary layer may be programmed using two first order Kalman pre-
dictors which may be tuned by setting Q and R properly. We believe this is the first
report on the use of a Kalman filter to predict the evolution of temperature from
a RTD.
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