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Chapter

Introducing Machine Learning
Models to Response Surface
Methodologies
Yang Zhang and Yue Wu

Abstract

Traditional response surface methodology (RSM) has utilized the ordinary least
squared (OLS) technique to numerically estimate the coefficients for multiple
influence factors to achieve the values of the responsive factor while considering the
intersection and quadratic terms of the influencers if any. With the emergence and
popularization of machine learning (ML), more competitive methods has been
developed which can be adopted to complement or replace the tradition RSM
method, i.e. the OLS with or without the polynomial terms. In this chapter, several
commonly used regression models in the ML including the improved linear models
(the least absolute shrinkage and selection operator model and the generalized
linear model), the decision trees family (decision trees, random forests and gradient
boosting trees), the model of the neural nets, (the multi-layer perceptrons) and the
support vector machine will be introduced. Those ML models will provide a more
flexible way to estimate the response surface function that is difficult to be
represented by a polynomial as deployed in the traditional RSM. The advantage of
the ML models in predicting precise response factor values is then demonstrated by
implementation on an engineering case study. The case study has shown that the
various choices of the ML models can reach a more satisfactory estimation for the
responsive surface function in comparison to the RSM. The GDBT has exhibited to
outperform the RSM with an accuracy improvement for 50% on unseen experi-
mental data.

Keywords: response surface methodology (RSM), machine leaning (ML),
regression, the least absolute shrinkage and selection operator (LASSO),
generalized linear model (GLM), decision trees, random forests, gradient boosting
decision trees (GBDT), multiple-layer perceptrons (MLP), support vector
regression (SVR)

1. Introduction

Response surface methodology (RSM) is an intersection of the experimental
design, the objective optimization and the statistical modeling. RSM aims to identify
the adequate mathematical model with the optimal selection of the influence factors
to predict the responsive factor and to obtain the extremum of the model under the
constrained numerical intervals or categorical levels of the influence factors. The
objectives are achieved through designing and conducting a series of experiments to
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collect the necessary amount of experimental data to approximate the mathematical
model.

RSM was originally proposed and described in [1] and some other papers are
subsequently published to contribute to the development of the RSM [2, 3]. Review
papers began to appear starting from [4] that summarized the utilization of RSM in
the chemical and processing fields. It is followed by a few more recent review
papers in the application of the physical and science area [5, 6] and the biometric
area [7] and some books in the related subjects as well [8, 9]. RSM has quickly
gained popularity in empirical modeling in physical experiments to replace or
complement the traditional presumed approach [10] where the theoretical knowl-
edge of the experimental systems are available since its appearing. It is as well
utilized in modeling the numerical experiments together with the simulation-based
methods such as the finite element analysis in the application of the design optimi-
zation [11]. RSM contains three skeletal concepts including the estimation of the
mathematical model or function, the design of experiments (DoE) and the valida-
tion and representation of the postulated mathematical function. Those three steps
are likely to be insufficient to conduct only once and will require iteration in
practice to achieve a satisfactory result [4].

The most commonly used postulation for the mathematical model is first-order
or higher-order polynomials [12, 13]. Despite the wide implementation in chemistry
and chemical engineering, it is inevitable that under certain circumstances, the
polynomials are inadequate to approximate the underlying RMS functions (e.g.
non-linear systems). Especially with the rapid development of information tech-
nology in the recent few decades, the utilization of RMS has been spreading to cover
many other fields such as civil [14], advanced manufacturing [15, 16], and biomed-
ical engineering [17, 18] and agricultural and food science [19, 20]. Experimental
data has become much easier to collect, process and cache, parallel to which is the
emergence of machine learning.

Machine learning (ML) is a process of the model building using experimental
data or past experience in order to solve a given problem [21, 22]. It enhances the
RMS by fitting a rather wide range of approximation models to achieve the respon-
sive surface function. The whole process of ML model construction innately coop-
erates with the model estimation and model validation stages of the RSM [22].
Additionally, many ML models intrinsically select the most significant influence
factors during the model construction process (e.g. the LASSO [23], the GLM and
decision trees based models [24, 25]). This nature of the ML models will help to
reduce the chance for attempting different DoE to identify the most appropriate
influence factor combination and therefore contribute to diminishing the repeti-
tiveness of the three-step cycle and reducing the total experimental runs and cost.
Indeed, in cases where the experimental data is extremely expensive or difficult to
obtain such as those in the biochemistry field [18, 19], the polynomial approxima-
tion and the corresponding DoE methods such as the full or partial factorial design
[26], central composite design [27] and the Taguchi’s experimental designs [26, 28]
are still of utmost importance.

While the ML methods may not be suitable in certain scenarios where expensive
time and financial cost are associated with the physical experiments, some tech-
niques are still worth to be explored and utilized to replace or complement the
traditional polynomial approach. The objective of the chapter is to introduce some
of the linear and non-linear ML models to estimate the responsive surface function
under the fair assumption of a reasonable cost and easiness in obtaining enough
amount of experimental data. The book chapter is divided into 4 sections, the
following section describing the frequently used ML models in detail, Section 3
implementing an engineering example to demonstrate the advantages of those ML
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models in comparison to the traditional polynomial postulation and Section 4 sum-
marizing the content in the chapter and discussing further research direction.

2. The machine learning approach

2.1 The model construction, validation and testing

Before diving into the various ML models to estimate the responsive surface
functions, it is worthy to comprehend the overall model construction and assess-
ment process of the ML approach. Similar to the cyclic three-concept of the RSM,
ML also contains an iterative process to reach a satisfactory estimation result.

ML requires the pre-acquisition of a good amount of experimental data (i.e., the
number of samples should be more than the number of coefficients to be estimated.
The more samples, the better). A model is constructed using part of the data
(training set) and assessed on the remaining data (test set). This technique will help
to eliminate the risk of the overfitting problem (the model predicts superior on the
current data, yet inferior on unseen data), and therefore to ensure the reliability of
the constructed model even when new experimental data becoming available.

In addition to the train-test split technique, ML also employs the cross-validation
technique to further assist in preventing the overfitting issue and simultaneously
help to select the hyper-parameters (parameters that requires pre-definition by the
researcher). When deploying the cross-validation technique, the training set is
divided into multiple folds of smaller sets. One of the fold is held as the validation
set to assess the prediction power of the constructed model and the rest is utilized to
construct the model. The process of model building and validation repeats until
each sub-fold having been used as a validation set. The final goodness-of-fitness of
the model going through the cross-validation technique is computed as the average
of each performance values in the loop.

The following part of the sectionwill introduce a few commonly used regressionML
models (learning a functionmapping from the influence factors to the responsive factor
based on available influence-response pair data) as the responsive surface function:

• the advanced linear regression models (the least absolute shrinkage and
selection operator model and the generalized linear model).

• the tree-based models (decision trees, random forest and the gradient boosting
decision trees).

• a basic type of the Neutral Nets, i.e. the multiple layer perceptrons and

• support vector regression.

2.2 Linear regression methods

2.2.1 Traditional RSM method/the ordinary Least Square (OLS)

RSM favors the low-order polynomial as the postulation of the mathematical
function where the coefficients of the polynomial are estimated by finding the
optimal solution to minimize the sum of squared error of the observed response
values and the predicted response values. In ML term, the traditional RSM approach
to approximate the responsive surface function is referred to as the ordinary least
squared model (OLS).
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Take the first-order polynomial as an example [29], i.e.

ŷ ¼ βX, (1)

where β ¼ β1, β2,⋯, βmð Þ stands for the m coefficients to be estimated, ŷ is the
approximated values of the responsive factor and X is the matrix of the influence
factors. The optimization problem is to find the β that minimizes the sum of the
squared error [29], i.e.

arg min β∥βX� y∥22, (2)

where the lp-norm of a vector u ¼ u1, u2,⋯, uNð Þ is defined as:

∥u∥p ¼
PN

i¼1 uij j
p

� �1=p
[30].

2.2.2 The least absolute shrinkage and selection operator model (LASSO)

LASSO is an upgraded version of the OLS as it allows influence factors selection
during the coefficients estimation process and generalization (a technique to avoid
overfitting) [23]. LASSO is also a linear regression model yet differs from the OLS
by adding an extra regularization term to the loss function to realize the two
additional functions [31], i.e. the optimization problem then becomes:

argminβ
1

2n
∥βX� y∥22 þ α∥β∥1

|fflffl{zfflffl}

regularization term

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
loss function

, (3)

where α is a constant of the l1-norm regularization term. Other ML models
offering similar functions include the bridge model (where the loss function con-

tains an extra l2-norm term other than a l1-norm term) and the Elastic-Net model

(where the loss function contains both the l1-norm and l2-norm terms).

2.2.3 The generalized linear model

Another useful linear ML model is the generalized linear model (GLM) which
allows estimating the response factor when the residuals of the responses do not
follow a Gaussian distribution, e.g. the response factor is always positive, or con-
stant value changes in the influence factors leads to exponential value varying other
than constant varying of the response factor. In this case, GLM can be utilized to
approximate the responsive surface function. It elevates the OLS by differing in two
aspects, the predicted value of the response factor is linked to an inverse function of
the linear combination of influence factors, i.e. ŷ ¼ h βXð Þ and the residual term in
the loss function is replaced by the unit deviance of a reproductive exponential
dispersion model (EDM) [32], i.e.

arg min β

1

2n

Xn

i¼1

d yi, ŷi
� �

þ
α

2
∥β∥2, (4)

where n is the number of samples in the training set. Since the loss function also
contains a regularization term, the GLM provides feature selection and generaliza-
tion during model construction as LASSO does.
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Examples of the unit deviance of the EDM are given in Table 1 [33].
The 1st-order polynomial assumption is made for purpose of simplifying the

concept to introduce the above linear ML models. The intersection and quadratic
terms of a higher-order polynomial can be easily computed and added to by
performing a transformation on the 1st-order polynomial. The linear regression
models described above are still suitable to estimate the coefficients of the
transformed influence factors to form a higher-order polynomial responsive surface
function.

As mentioned, non-linearity may exist between the influence factors and as
such, the polynomials will become inadequate to approximate the mapping from
the influence factors to the responsive factor. In this case, the non-linear ML models
will become distinctive.

2.3 Tree-based methods

2.3.1 Decision trees

Decision trees (DT), instead of the linear regression models described in Section
2.2, is a non-parametric ML model (models defined without coefficients). The
problem is to build a model to predict the values of the responsive factor by means
of defining a series of decision principles deduced from the training data [29].

A DT model is built in a top-down manner with each split node partitioning the
influence factors into a subgroup and the process eventually reaches a value of the
responsive factor [24]. The more important the split node, the higher the node in
the tree. The common criteria to minimize as to decide the orders for future split
nodes are mean squared error, Poisson deviance and the mean absolute error [34].
Assuming to use the Poisson deviance, suppose the data at the nodem is represented
by Qm with Nm samples, the loss function at the split node is defined as:

H Qmð Þ ¼
1

Nm

X

y∈Qm

yln
y

ym
� yþ ym, (5)

where ym is the mean of the responsive values at the node m and the optimiza-
tion problem is to identify the node m that minimizes H Qmð Þ [25].

In comparison to the linear regression models, DT can fit non-linear systems due
to the nature of how it is constructed. Besides, since the importance of each influ-
ence factor is computed during the tree construction process, it also helps to select
the most significant influencers as a procedure of the feature selection and thus to
improve the prediction accuracy of the resulted model. However, there are hidden
drawbacks when implementing the DT [34]:

Distribution Response domain Unit deviance d y, ŷ
� �

Gaussian y∈ �∞,∞ð Þ y, ŷð Þ2

Poisson y∈ 0,∞½ Þ 2 yln y
ŷ� yþ ŷ

� �

Gamma y∈ 0,∞ð Þ 2 ln ŷ
yþ

ŷ
y� 1

� �

Inverse Gaussian y∈ 0,∞ð Þ y, ŷð Þ2

yŷ2

Table 1.
The unit deviance functions for response factors following various distributions.
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• Overfitting problem, i.e. an over-complex DT is built, resulting in good
prediction in existing data but poor prediction in unseen data.

• Unstable model, i.e. slight variation in the data can lead to a completely
different DT.

2.3.2 Random forests and gradient boosting decision trees (GBDT)

In order to address the disadvantages of the DT and to estimate a satisfactory
model, ensemble techniques are explored. The ensemble technique combines the
prediction of multiple base estimators to achieve reduced variance and enhanced
robustness over a single meta-estimator. DT is a common model used as a type of
base estimator to form the final meta-estimator. The DT used in an ensemble model
is usually simple-structured by limiting the maximum depth of the trees or the
maximum leaf nodes of the trees and as a consequence to ease the overfitting issue
of using a single DT model.

Two types of ensemble trees, the random forests and the GBDT are introduced
here.

Random forest constructs multiple DT with each DT built from a subset drawn
with replacement from the training dataset and uses the averaged prediction of the
individual DT as the final prediction for the meta-estimator [29]. GBDT builds a
sequence of DT with each preceding DT attempting to eliminate the error of the
current sequential DT model and uses a weighted sum of the predictions generated
by the sequentially built DT to produce the final prediction [29]. More details
regarding the two models can be found in [35, 36].

2.4 The neural-nets method

Neutral-nets models are a group of models originally inspired by the biological
neural networks and are able to learn a complex function mapping from the influ-
ence factors to the responsive factor. Neural-nets models have popularized since
their development due to their accuracy in predicting without knowing the under-
lying relationship between the influencers and the responders and therefore mas-
sive descendent models have been published recently. In this section, the first
generation and the most fundamental neural-nest model, the multiple layer
perceptrons (MLP) is presented [37].

MLP builds a non-linear function approximation to map the set of influence
factors to the responsive factor using the training data. Between the influence
factors and the final response factor, there may exist one or multiple non-linear
layers, as illustrated in Figure 1 [29].

Each circle in Figure 1 is a neuron. The leftmost layer is the input layer that
consists of the neurons representing the influence factors. Each neuron in the
hidden layer is a weighted linear summation of the neurons in the previous layer
followed by a non-linear transformation by applying an activation function. The
value of the response factor is given by the neuron in the output layer after receiv-
ing the values from the last hidden layer and transforming the values using the
linear summation and an appropriate activation function. For the MLP regression
model, the activation function in the last step is an identity function, i.e. no activa-
tion function is applied in the last step. Similar to the advanced linear models, MLP

employs the sum of the squared error loss and an additional l2-norm regularization
term as the loss function [38], the optimization problem is thus to identify the β that
minimizes:
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argminβ
1

2
∥βX� y∥22 þ

α

2
∥β∥22
|fflffl{zfflffl}

regulization term

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
loss function

, (6)

MLP utilizes the stochastic gradient descent (SGD) to update the coefficients
based on the gradient of the regularization term and the loss function at each
iteration in order to obtain the optimal values of the coefficients [38], i.e.

β β� γ α
∂R βð Þ

∂β
þ

∂cost

∂β

� �

, (7)

where γ is a pre-defined learning rate that controls the step-size in the iteration
to reach a local extreme minimum, R βð Þ is the regularization term and loss is the loss
function in Eq. (7) respectively.

2.5 Support vector regression

Support Vector Regression (SVR) was developed in the 1990s [39], a decade late
than the surge of the neutral-nets [40]. Unlike the Neutral-nets, which are result-
oriented ‘black-box’ models, the SVR has well-defined underpinned theoretical
properties.

Support vectors are the data points from the training set that have a direct
determining impact on the optimum location of the decision surface (a hyperplane
separating one class of data points from anther) [41]. The SVR outstands when
there is a limited number of experimental data, in particular, when the number of

Figure 1.
Structure of a multiple layer perceptrons (MLP) model.
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samples in the training set is less than the number of influence factors, as the SVR
fit a mathematical model by utilizing a subset of the training samples to decide the
decision surface. It enhances the linear approximation models by means of fitting
non-linear properties in the data as during the model construction process, the
influence factors can go through a pre-define non-linear kernel function and as such
to realize a non-linear transformation to obtain the response [29].

The procedure to obtain the predicted response values using SVR is similar to the
MLP and is illustrated in Figure 2. The support vectors are first transformed using
and a map φ and then conduct the dot product to evaluate the kernel function

k x∙xið Þ (for examples, the Gaussian kernel function is given k x, y
� �

¼ e�
∥x�y∥2

2σ2 ). The
values of the kernel functions are then added up using certain weights to achieve
the predicted value of the response factor.

Assuming for the 1st-order polynomial approximation (as represented in
Eq. (1)), SVR searches for the coefficients by minimizing the inner product of the
coefficients, i.e.

1

2
∥β∥2 ¼ < β∙β> , (8)

subjected to the condition of limiting the prediction error into a certain thresh-

old, i.e. βX� y
	
	

	
	
< ε, where ε is a pre-defined threshold value. However, it is

inevitable that not all data points will fall into the threshold and as such, the
equation needs to consider the possibility of errors larger than ε [41]. Therefore, the
equation is completed with an inclusion of the slack variable ξ as the deviation from
the error threshold ε. The optimization problem then becomes:

argminβ
1

2
∥β∥2 þ C

Xn

i¼1

ξi

 !

, (9)

with constrains ∣yi � βxi∣ ≤ εþ ξi for each i ¼ 1, 2,⋯, n, and ξi ≥0 [41].
This minimization problem can be resolved by finding the solution of an

equivalent Langrangian Dual problem, i.e. finding the ξ that maximize:

Figure 2.
The architecture of the support vector regression (SVR) to obtain a prediction.
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argmaxξ
Xn

i¼1

ξi �
1

2

Xn

i¼1

ξiξ jyiy jk xixj

� �
,

 

(10)

subjected to the conditions
Pn

i¼1ξiyi ¼ 0 and ε≥ ξi ≥0. [41]

3. A mechanical engineering case study

The traditional RSM method and the introduced ML models above will be
employed to approximate the underlying mathematical model for a set of mechan-
ical engineering data used in [42].

3.1 Description of the experiment data

In the manufacturing processes process, the machine vibration severity level is a
critical index to indicate the status of the machine tool and the finish of the cutting
material. If a high severity level occurs, the manufacturing process is likely going
wrong such as the occurrence of chatter or breakage of a machine tool. However, it
is not always loss-effective to have the corresponding devices installed and human
technicians in-place to monitor the vibration severity continuously. Instead, a
numerical approximation can be explored by collecting machining data, which is
easier and less expensive to access.

The experimental dataset contains 56519 samples and 74 variables collected from
the sensors installed on the shop floor machine and the central controller computer
[42]. To simplify the case to a single response factor problem, the severity variables
along different directions measured on various ranges are compacted together using

their standardized l2-norm values, i.e., the 8 severity columns are first standardized
by removing their column mean and scaling to the unit variance. The unified

columns are then used to compute the l2-norm in the horizontal direction to get the
target response variable column. After removing the two time-related columns, the
repeated program number column, finally, the processed data provides 63 influence
factors and one response factor.

3.2 Implementation of the traditional RSM and the ML methods

A piece of program code is written in Python language and utilizes a package
named Scikit-learn [29] to realize the discussed MLmodels. The main objective here
is to demonstrate the advantages of ML in estimating the response surface function
to predict the values of the response factor with higher accuracy compared with the
traditional RSM polynomial approximation.

First of all, the dataset is standardized to its unit variance form in the same
manner as to compute the single severity column in Section 3.1, i.e., using the

formula: z ¼ x�mean xð Þ
std xð Þ . This is due to that many models to be implemented later

require the standardization of the data to avoid the multiple issues (obscuring the
conclusion of the statistical significance of the model terms, producing imprecise
coefficients or incorrect model structure) caused by the collinearity.

The standardized dataset (containing the 56512 samples data) is divided into a
training set and a held-out test set with a 7/3 ratio. The training dataset is further
split into three subfolders with each subfolder utilized as a validation set to estimate
the prediction power of the model constructed using the remainder two subfolders
to adopt the cross-validation technique described in Section 2.1. Employment of the

9

Introducing Machine Learning Models to Response Surface Methodologies
DOI: http://dx.doi.org/10.5772/intechopen.98191



cross-validation technique will further prevent the over-fitting problem and as such
to reassure the robustness of the estimated model and better prediction on unseen
data. The training set is used to estimate and select the optimal responsive function
and the held-out test set is used to exam the prediction accuracy and the reliability
of the fitted RSM function on unseen data. The goodness-of-fitness of the estimated
function on the training set and the prediction accuracy of the function on unseen
data is measured using three different measuring metrics and the outcomes are
shown in the cross-validation results and the held-out test set results sections
respectively in Table 2.

The three measuring metrics evaluate the model performance from different
statistical perspectives to ensure a solid conclusion to be reached. The statistical
meanings and the computation equations for the three measuring metrics are given
below [43]:

• The explained variance (EV) measures the proportion to which a mathematical
model accounts for the variance of a given data set and is computed as

EV y, ŷ
� �

¼ 1�
var y� ŷ
� �

var y
� � , (11)

where var stands for the variance. The optimal possible of an EV value is 1. The
lower the value, the worse the model performs.

• The mean absolute percentage error (MAPE) measures the percentage
difference between the actual and the predicted response factor values and is
defined as:

MAPE y, ŷ
� �

¼
1

n

Xn

i¼1

∣
yi � ŷi

yi
∣, (12)

The best possible MAPE value is 0% when every single predicted value matching
the actual one. The greater the score, the worse the model performs.

Metric name/model

type

Linear models Non-linear models

Model name OLS/RSM LASSO GLM RF GBDT MLP SVR

Polynomial order 1st 2nd 1st 2nd 1st 2nd N/A

Cross-validation Results

EV 0.697 0.841 0.700 0.877 0.700 0.865 0.923 0.924 0.905 0.901

MAPE 31.4% 88.4% 31.4% 19.7% 30.2% 17.8% 13.5% 13.0% 15.3% 14.9%

RMSE 0.660 1.62 0.656 0.630 0.656 0.660 0.333 0.331 0.372 0.352

Held-out Test Set Results

EV 0.699 �1.08 0.699 0.878 0.699 0.865 0.925 0.926 0.908 0.900

MAPE 31.4% 160% 31.5% 19.7% 30.3% 18.0% 13.2% 12.9% 14.6% 14.3%

RMSE 0.657 7.74 0.658 0.609 0.657 0.639 0.328 0.325 0.367 0.348

Table 2.
Experimental results of applying the traditional RSM method and the ML methods on a set of engineering data.
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• The rooted mean squared error (RMSE) measures the actual differences between
the actual value and the predicted value from the model and is defined by:

RMSE y, ŷ
� �

¼
1

n

Xn

i¼1

yi � ŷi
� �2

 !1=2

(13)

The smaller the value, the better the model performs.
The functions that realize the traditional RSM linear model (i.e. OLS), and the

six ML models, including the LASSO, the GLM, the random forests (RF), the
GBDT, the MLP and the SVR) in the Sciket-Learn package [29] are implemented
and utilized to estimate the underlying mathematical function that maps the 63
influence factors to the target responsive factor for the case study dataset. The
technique that generates the 2nd order polynomial terms is also deployed to obtain
the polynomial estimation of the traditional RSM function. The goodness-of-fitness
and the prediction accuracy of the estimated responsive function using the RSM
model or each of the ML models are displayed in the corresponding column labeled
with the name of the model in Table 2. Particularly, for linear models, both 1st-
order and 2nd-order polynomial terms have been attempted.

Furthermore, in order to investigate whether the existing experimental data is
enough to achieve a robust and accurate responsive surface function, the learning
curve, which determines the cross-validation training and validation accuracy
scores under different training sample sizes, is also drawn for each of the models
and shown in Figure 3. More specifically, using a proportion of the training data to
perform the cross-validation technique described in Section 2.1. The mean, the
minimum and the maximum of the cross-validation results will be shown on the
learning curve for each of the subset used.

3.3 Experimental results and discussion

3.3.1 Accuracy of the estimated responsive surface function

The scores in Table 2 display the cross-validation accuracy and the prediction
accuracy on a held-out test set of the RSM and the ML models assessed under three
different measuring metrics, the explained variance (EV), the mean absolute per-
centage error (MAPE) and the rooted mean squared error (RMSE).

Results in Table 2 has demonstrated that assuming for 1st-order polynomial, the
performance of the tradition RSM method, i.e. OLS, is equally mediocre with the
other two linear ML models, LASSO and GLM, as all of them produce similar testing
results under each of the measuring metrics. This indicates that a 1st-order polyno-
mial assumption may be not enough to include all information between and within
the influence factors, which has been validated by the improved model perfor-
mance for 2nd-order polynomial approximation using a corresponding ML linear
model and using the non-linear approximation models.

Under the 2nd-order polynomial postulation, the two linear ML learning models,
LASSO and GLM greatly surpass the RSMmethod as the two models allow influencer
selection during model construction and as such to eliminate the influence factors
that interferes with estimating precise coefficients. Therefore, more accurate polyno-
mial coefficients are estimated; Besides, both LASSO and GLM perform better under
the 2nd-order polynomial assumption than under the 1st-order assumption. The two
points imply that some intersection terms of the 2nd-polynomials are redundant and
intrusive while the others are necessary to be taken into account. Estimating the
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Figure 3.
The learning curves obtained using the traditional RSM method (OLS) and the ML models (LASSO, GLM,
RF, GBDT, MLP, and SVR).
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coefficients of the intrusive influencers can be a bottleneck for the traditional RSM
approximation method as the 2nd-order polynomial approximation using OLS has
seen obvious chaos with unreasonably large prediction error.

The table has also demonstrated that the non-linear ML models (RF, GBDT,
MLP and SVR) outperform the linear models with or without the intersection and
quadratic terms as the measuring metrics have leapt when switching from the linear
models to the non-linear ones. Within all the non-linear ML models, the GBDT has
exceeded all the others though the performance advantage is relatively small
(<10%). In comparison with the traditional RSM method (1st-order polynomial),
GBDT has seen a significant improvement (about 50%) on prediction accuracy
measured using each of the metrics.

The scores obtained on the held-out test set are almost equal with those achieved
through the cross-validation stage for all experimented ML models. The consistency
in the metric values reassures the reliability of the constructed model and the
prediction accuracy of the model on future unseen data.

3.3.2 Size of experimental data

Figure 3 depicted the learning curve for each of the model described above

trained using a proportion of 10�4, 10�3, 10�2, 10�1 and 100 of the original training
set (which contains 39563 samples).

Diving into the detail of an individual subplot in Figure 3, the red points
represent the mean of the training scores while the green ones represent the mean
of the validation scores of the cross-validation stage under the training sets with 5
different sizes. The shadowed interval shows the distance between the minimum
and maximum of either the training scores (red shadow) or the validation scores
(green shadow) under each subset. In cases where the scores are close, the interval
can be invisible. The x-axis represents the proportion of the original training set
used and the y–axis represents the prediction scores of the trained model. Here, the
explained variance is used. The model used to produce the scores is shown on the
top of each subplot.

Looking at OLS approximation with the 1st order polynomial terms (the 1st plot
on the left), the model is apparently over-fitted when the training set is small. With
the increase of the training data size, the validation scores improve but the training
scores decrease and the two come to parallel with each other when all training data
is used. For the OLS approximation with the 2nd order polynomial terms (the 1st
plot on the right), the model is always over-fitted, increasing the training samples
does not seem to improve the problem.

For the LASSO approximation with the 1st order polynomial terms (the 2nd plot
on the left) and with the 2nd order polynomial terms (the 2nd plot on the right),
both of the models improve on predicting the validation set when the overall
training set is up-scaled. However, the training scores decrease at the same time.

The same trend applies to the GLM approximations (as shown in the two plots
on the 3rd line).

The RF model and the GBDT model have displayed a more satisfying pattern. As
shown in the two plots on the 4th line, the validation scores increase or remain as a
constant together with the increase of the validation scores when the training
samples grow. Even when all training samples are used, the validation score is still
lower than the training score. This indicates that there is a chance for a better-fitted
model if more experimental data is to be used.

For the MLP model and the SVR model (as shown in two plots on the last line),
the training scores are climbing after experienced an inflection point when 0.01
proportion of the training data is used and the validation scores continue to rise
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with more data involved. Though the training and the validation scores are neck
and neck when the whole training set is used, both of training and the validation
scores still get space for improvement.

Considering the general law that the testing scores will not exceed the training
scores and the actual scores shown in the plots, we can conclude that all of the RF,
GBDT, MLP and SVR models have the potential to train a more accurate responsive
surface function if more experimental data becoming available in the future. The
other models have already reached their limitations using the current training set
and will see little improvement with larger training data.

3.3.3 Embedding the simulation technique

A finite element method such as the Monte Carlo simulation can be applied in two
ways to complement the RSM study, either to assist in obtaining a better responsive
surface function estimation or to achieve the extremums of the existing function.

Instead of collecting more experimental data, synthetic data can be generated
using the known knowledge of value intervals, categorical levels or distributions of
the influence factors obtained from the existing data. These synthetic data can be
populated in pairs of inputs and responses and then be used as a supplement of the
current training set aiming to train a more accurate responsive surface function
(i.e., to train new RF, GBDT, MLP and SVR models using the up-scaled data).
Alternatively, generating the inputs data solely to feed into the obtained mathe-
matical model to attain a corresponding response. Then, picking the pair of influ-
ence factors and responsive factor values leading to the global minimum or
maximum as the extremums. The simulation technique will not be further discussed
here in this book chapter.

4. Conclusion

In summary, this book chapter has introduced and discussed

1.two linear ML models (LASSO, GLM) and four non-linear ML models
(random forests, GBDT, MLP, and SVR) as alternatives to estimate the
responsive surface function.

2.The two linear models use the same optimization function as the traditional
RSM method (i.e., OLS in the ML term) to estimate the optimal coefficients of
the assumed polynomial yet exceed the OLS by adding an extra regularization
term to help to eliminate the redundant and intrusive influencer factors. The
improvement can greatly save the efforts on attempting different
combinations of influence factors (especially with the higher-order polynomial
terms) and solving the optimization function repetitively.

3.The non-linear ML models can pick up the non-linearity across the influence
factors that cannot be modeled by the linear models and therefore lead to more
precise prediction accuracy.

The advantages of using the ML approached models have been demonstrated by
the mechanical engineering case study in Section 3.

1.Results in Table 2 has shown that all the MLmodels outperform the traditional
RSM polynomial approach. The non-linear models have produced dramatically
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improved prediction accuracy. In particular, the GDBT model has shown to
exceed the OLS for about 50% on prediction accuracy under each of the
measuring metrics.

2.The investigation on the size of the experimental data, i.e. the learning curves
in Figure 3, has shown that the four non-linear ML models are capable to
produce a model with higher accuracy if more training data becoming
available.

3.Last yet not least, the simulation technique has been introduced. This
technique is essential in either the physical-based or the computer-based
experiments to assist in further improving the estimation of the responsive
surface function or obtaining the extremums of the current function.

Despite the case study is to predict the vibration severity of the manufacturing
machine, the utilization of the ML methods in the RSM can be extended to solve
many other engineering problems such as (but not limited) to predict the machine
tool life, to estimate the reliability of a structural material or to optimize a bioengi-
neering process where appropriate.
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