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Chapter

Time Series Analysis on the
Conformational Change of c-Src
Tyrosine Kinase
Hyun Jung Yoon, Sungmin Lee, Suhyun Park and Sangwook Wu

Abstract

c-Src tyrosine kinase plays an important role in signal transduction pathways, where
its activity is regulated by phosphorylation of the two tyrosine residues. We performed
targeted molecular dynamics simulation to obtain trajectory of conformational change
from inactive to active form. To investigate the conformational change of c-Src tyrosine
kinase, we applied network analysis to time series of correlation among residues. The
time series of correlation between residues during the conformational change generated
by targeted molecular dynamic simulation. With centrality measures such as between-
ness centrality, degree centrality, and closeness centrality, we observed a few important
residues that significantly contribute to the conformational change of c-Src tyrosine
kinase for the different time steps.

Keywords: c-Src tyrosine kinase, targeted molecular dynamics simulation, network
analysis, time-series, clustering

1. Introduction

Tyrosine kinases play a critical role in various biological processes such as migra-
tion, angiogenesis, proliferation, differentiation, survival, and immune function
[1–3]. c-Src (cellular Src), encoded by Src gene, is a non-receptor tyrosine kinase first
isolated as the normal cellular homolog to the potent avian sarcoma viral transforming
oncogene v-Src [4]. c-Src tyrosine kinase consists of the N-terminal unique region, the
Src homology 3 (SH3), SH2, linker, kinase domain, and the regulatory C-terminal tail.
Under normal circumstances, the SH3 domain of the c-Src tyrosine kinase binds to the
proline-rich region in the linker domain. And the SH2 domain binds to Tyr527, which
leads to a closed conformation [5, 6]. However, under certain conditions, the closed,
inactive c-Src tyrosine kinase undergoes a transition to an open and active conforma-
tion. One of the important features of c-Src tyrosine kinase catalytic activation is to
control its phosphorylation status. One of the major phosphorylation sites is Tyr527,
which is located in the C-terminal tail. Dephosphorylation of pTyr527 (phosphory-
lated Tyr527) releases the closed conformation, which leads to the active state.
Another major phosphorylation site is Tyr416, which is located in the activation loop
of the tyrosine kinase domain [7, 8]. c-Src tyrosine kinase activity depends on the
phosphorylation status of the two residues: Tyr527 and the Tyr416.
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Using targeted molecular dynamics (TMD) simulation, we study the conformational
change of c-Src tyrosine kinase by applying an external bias [9]. We generate sequential
and continuous transition between two known conformations: the inactive and the
active conformation for the case of Tyr527-pTyr416 (instead of pTyr527-Tyr416).

Network analysis has been successfully applied to biological problems [10, 11]. For
instance, Goh et al. constructed a network of Mendelian gene-disease associations to
identify unknown important genes causing disease [12]. In a biological network, a
node corresponds to a gene and an edge is an interaction or correlation between genes.
Centrality measures are very effective approaches to determine the ranking or impor-
tance of genes in the gene-disease network. Those centrality measures uncover
important target genes relevant to disease. In this study, using network analysis,
clustering method, and time-series analysis, we attempt to reveal the key residues,
which influence the conformational transition of the c-Src tyrosine kinase between
the inactive and active conformation.

2. Method

2.1 Targeted molecular dynamics (TMD) simulation

To perform the Targeted Molecular Dynamics simulation, an external potential,
UTMD [13], to be defined.

UTMD ¼
k

2N
RMSD tð Þ � RMSD ∗ tð Þ½ �2 (1)

In the above equation, RMSD(t) is defined as root-mean-square deviation (RMSD) of
the simulated structure from the target structure at time t. RMSD*(t) is theRMSDvalue at
time t assuming a linear decrease from the initial to the target structure. The inactive (PDB
ID: 2SRC) and active form (PDB id: 1Y57) of c-Src tyrosine kinase are defined as initial and
target conformation, respectively [14, 15]. Both the conformations were modified (to
have the same number of atoms) for the TMD simulation. The spring constant ‘k’was set
as 2500 kcal/mol �Å2 for 3,619 atoms (hydrogen atoms excluded). NAMD 2.9 [16] with
the CHARMM 27 force field [17] was used to perform simulation and the protein param-
eters were incorporated with the CMAP corrections [18]. In TMD, the conformational
change from inactive to the active state is guided by the external force within a reasonable
time scale. In our calculation, we have used 10 ns time scale. To undergo the conforma-
tional change within 10 ns time scale and to avoid the bias effect, we employed the
smallest spring constant ‘k’ (2500 kcal/mol �Å2). TIP3P water model [19] was used in the
simulation. The particle mesh Ewald (PME)method was set as 12 Å direct space cut-off
[20]. The damping coefficient was set as 5 ps�1 for the Langevin dynamics simulation. To
maintain the constant pressure (1 atm), Nosé–Hoovermethodwas used (1 atm) [21]. The
NPT ensemble was carried out in 310K for the TMD simulation.

2.2 Network analysis

To analyze the correlation between residues in the trajectories of the TMD
simulations, we have used the dynamical cross-correlation (DCCM) method [22–24].
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Cij ¼
< ri tð Þ � < ri tð Þ>ð Þ rj tð Þ � < rj tð Þ>

� �

>

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

< r2i tð Þ> � < ri tð Þ> 2
� �

< r2j tð Þ> � < rj tð Þ> 2
� �

r (2)

Where, ri(t) and rj(t) = atomic positions of the ith and jth C
α
atoms at time t. The

quantity “ri(t)� <ri(t)>” corresponds to the fluctuation of the “ith” atom and “rj(t)�
<rj(t)>” corresponds to the fluctuation of the “jth” atom. For all the Cα atoms, a 450�
450 (residues 84-533) correlation map was obtained during the 10 ns TMD simulation.
In Eq. (2), the quantity Cij in the DCCM is an adjacency matrix. The weight wij, of the
edge between the nodes, ‘i and j’, defined as [25, 26]

wij ¼ � log Cij

�

�

�

� (3)

DCCM can be used tomeasure the weight, which is the probability of information
transfer across the edge. In the constructed network, every node is a Cα atom and each
edge is an information transfer probability, in the cross-correlation. To identify and quan-
tify the nodes that occupy critical positions in a network, a few centrality measures have
been proposed, including the degree, betweenness, and closeness centralities [27–29].

The degree centrality measures the number of edges incident on a node in a
network, thus expressing the “popularity” of the node.

CD við Þ ¼ di ¼
X

j

Aij (4)

where Aij is the adjacency matrix: if wij = 0 then Aij = 0, otherwise Aij = 1. The
closeness centrality is defined as the average length of the shortest paths between a
node and all the other nodes in a network. It can be used to measure information
spread from a given node to the other nodes. The closeness centrality is defined as

CC við Þ ¼
n� 1

P

j 6¼ig vi, vj
� � (5)

where g(vi, vj) is the shortest path with a weight between two nodes ‘i’ and ‘j’. The
betweenness centrality is to measure the number of information pathways that flow
through a node in a network. The betweenness of node ‘i’ is the fraction of the shortest
paths between pairs of nodes that pass through node ‘i’. The betweenness centrality is
defined as

bi ¼

P

s< tg
st
i =nst

1
2 n n� 1ð Þ

(6)

where gsti is the number of shortest paths from ‘s’ to ‘t’ with a weight that passes
through node ‘i’. nst is the total number of shortest paths from to ‘s’ to ‘t’. We obtained
DCCM and three centralities using Bio3d [30–32].

2.3 Clustering

Clustering is an effective approach to discover interesting patterns of time series
data. It is widely used in diverse fields of research from biology to economy:
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functional clustering of time-series gene expression data [33], identification of func-
tionally related genes [34–36], detecting brain activity [37, 38], identifying patholog-
ical cases from mass spectrometry (MS) clinical samples [39], discovering energy
consumption pattern [40, 41], and pattern finding in stock time series [42, 43].

Using the targeted molecular simulation (TMD), we generated a dynamical corre-
lation matrix between two residues, Cij, for each time step during the conformational
change from the inactive to active state. Then, the time-series of Cij are grouped into a
set of time series in such a way that their temporal profiles in the same group (cluster)
are more similar to each other than those in other groups (clusters). We applied a
hierarchical clustering algorithm and repeated clustering runs with a different number
of clusters from 4 to 10 until getting clear clustering. The function ‘tsclust [44]’ of
‘DTWclust [45]’ in the R statistical package is used for clustering of time series data.

3. Results and discussion

3.1 Conformational change of c-Src tyrosine kinase

The electrostatic interaction between the Tyr527 and the positively charged
Arg175/Lys203 becomes weaker in the inactive conformation at the early stage of the
transition from the inactive to the active conformation by TMD simulation. The
C-terminal tail, including Tyr527, is completely detached from the SH2 domain (the
period of 0-3 ns) in the TMD simulation. The detachment of Tyr527 from the SH2
domain triggers the conformational change. The detached Tyr527 moves toward the
kinase domain (4-6 ns period: Figure 1b and c). At this stage, the most prominent

Figure 1.
Four snapshots of TMD simulation of c-Src tyrosine kinase between 0 and 10 ns. (a) 0 ns: inactive conformation (b) 4
ns: Detachment of Tyr527 in the C-terminal tail from the SH2 domain (c) 6 ns: Large-scale conformational change of
c-Src tyrosine kinase (d) 10 ns: active conformation. Color code: SH3 (resid 84-142, Orange), SH2 (resid 143-245,
Green), linker (resid 246-266, Magenta), and tyrosine kinase domains (resid 267-520, Blue), the regulatory
C-terminal tail (resid 521-533, Yellow). The two residues, pTyr416 and Tyr527, are represented as licorice [9].
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conformational change occurs in the kinase domain. The secondary structures,
including the αC-helix in the kinase domain, rotate significantly. During this time,
Tyr416 remains buried beneath the activation loop. At the final stage of transition,
Tyr527 has reached the far side of the kinase domain relative to the SH2 domain. The
activation loop has also moved from its original position. pTyr416 is now exposed to
the surface.

The activation processes from the inactive state (0 ns: Figure 1a) to the active state
(10 ns: Figure 1d) in the TMD simulation are shown in Figure 1. The conformational
transition of c-Src tyrosine kinase from the inactive to the active state generated by
TMD simulation is shown in the supplementary video material [9].

3.2 Centrality measures

The degree, closeness, and betweenness centralities are measured for the
conformational change that occurred during the 10 ns TMD simulation (Figure 2).
The residues with high values of the degree, closeness, and betweenness
centralities are not located in the activation loop, linker, αC-helix. The residues with
high centrality measures are mainly confined to the helix region adjacent to the
αC-helix. The residues with the top 5 values of each centrality measure are listed in
Table 1.

3.3 Clustering

We investigate correlation patterns between specific residues (Trp260,
Tyr416, Tyr527, Lys321) and all the other residues using the clustering method.
The clustering of residues provides us with information on not only the pattern of the
time series but also the correlation values, Cij, between residues at each time step.

Figure 2.
Centrality measures during the 10 ns TMD simulation. (a) Degree centrality (b) Closeness centrality
(c) Betweenness centrality. We mapped centrality measures onto the active conformation of c-Src tyrosine
kinase [9].

Betweenness Closeness Degree

1 Glu320 Val377 Val323

2 Lys321 Arg379 Val402

3 Ala368 Glu378 Lys321

4 Leu322 Met380 Ile370

5 Met380 Thr508 Thr301

Table 1.
Top 5 residues of each centrality measure [9].
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3.3.1 Trp260

Trp260 has an important role in the conformational change of c-Src tyrosine kinase
[46]. Figure 3 shows a time series of correlation, Cij (t), for Trp260. It shows distinctive
patterns among clustering groups. Residues in both group 6 (Figure 3a) and group 11
(Figure 3b) are positively correlated to Trp260 for the entire time window (0-10 ns).
The residues in clustering group 9 (Figure 3c), however, are negatively correlated to
Trp260. Figure 1a shows no correlation in early time (0-4 ns). The correlation increases
positively (4-7 ns), and reaches the highest correlation value (�7 ns). Eventually, the
correlation decreases (8-10 ns). The location of residues in clustering group 6 (orchid),
clustering group 9 (cyan), and clustering group 11 (pink) are shown (Figure 3d). The
positively correlated (blue) and negatively correlated residues (red) are shown
(Figure 3e). The positively correlated residues are mainly located near residue Trp260
in the inactive form of c-Src tyrosine kinase. The negatively correlated residues are
spread around a relatively far from Trp260 in the inactive form. The time series analysis
based on the clustering method and network analysis indicates that Trp260 is rapidly
changing its position after the second half of the conformational transition.

3.3.2 pTyr416

Figure 4 shows the time series of correlation, Cij (t), for pTyr416. The residues in
the clustering group 12 are positively correlated to Tyr416 for the entire time window

Figure 3.
Some distinctive clusters on the time series of correlation between Trp260 and other residues. (a) Clustering group
6 (b) Clustering group 11 (c) Clustering group 9 (d) Each cluster is mapped on the inactive conformation. Color
code: orchid, pink and cyan for clustering 6, 11, and 9 respectively. (e) The positive correlation clusters (blue) and
negative correlation clusters (red) on the inactive conformation.
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(0-10 ns) (Figure 4a). The residues in the clustering group 5, however, are negatively
correlated to pTyr416 (Figure 4b). Interestingly, the residues in the clustering group
16 show correlation change in the two different time regimes (Figure 4c). As shown
in Figure 4a, Cij (t) has a large value (> 0.5) even in early time and increases to 0.9.
During the 7-8 ns period, Cij (t) reaches a plateau with the highest correlation value.
After 8 ns, Cij (t) returns to 0.5. The residues in the clustering group 12, shown in
orchid in Figure 4d, are mainly located close to pTyr416. The positive correlation
between the clustering group 12 and pTyr416 is due to “physical distance”.

Most of the residues in the clustering group 5 are negatively correlated to pTyr416
during the conformational transition (Figure 4b). Cij (t) decreases to a minimum
value of -0.7 around 7 ns and returns to -0.3. The residues in group 5, shown as cyan in
Figure 4d, are located far away from pTyr416. The negative value of Cij (t) indicates
that the movement of pTyr416 and the residues in the clustering group 5 are in a
reverse direction.

The residues in the clustering group 16 show the correlation pattern change to
pTyr416 during the conformational transition. During 0-4 ns period, residues in
group 16 (shown as yellow in Figure 4d) shows negatively correlated to pTyr416 with
a minimum value of -0.3 in Cij (t). And after 4 ns, the correlation pattern shows
positively correlated to pTyr416. Cij (t) reaches 0.7 around 7 ns in the conformational
transition process.

Figure 4.
Some distinctive clusters on the time series of correlation between pTyr416 and other residues. (a) Clustering group
12 (b) Clustering group 5 (c) Clustering group 16 (d) Each cluster is mapped on the inactive conformation. Color
code: orchid, cyan, and yellow for clustering 12, 5, and 16 respectively. (e) The positive correlation clusters (blue)
and negative correlation clusters (red) on the inactive conformation.
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The positively correlated (blue) and negatively correlated residues (red) to
pTyr416 are mapped into the inactive conformation (Figure 4e).

3.3.3 Tyr527

Figure 5 shows the time series of correlation, Cij (t), for Tyr527. The residues in the
clustering group 14 are positively correlated to Tyr527 for the entire time window
(0-10 ns) (Figure 5a). The residues in the clustering group 9, however, are negatively
correlated to Tyr527 during the most time of conformational transition (Figure 4b).
As with the case of pTyr416, the residues in the clustering group 2 show correlation
pattern change in the two different time regimes (Figure 5c). As shown in Figure 5a,
Cij (t) increases to 0.6 during 0-4 ns period. After an abrupt decrease, Cij (t) increases
again to reach a plateau with the value of 0.6 during 6-10 ns. The residues in the
clustering group 14 (shown as orchid in Figure 5d) are located close to Tyr527.
Similarly, the positive correlation between the clustering group 14 and Tyr527 is due
to a strong coupled through “physical distance”.

Most of the residues in the clustering group 9 are negatively correlated to Tyr527
during the conformational transition (Figure 5b). The residues in the clustering
group 9 (shown as cyan in Figure 5d) are located away from Tyr527 in the inactive
conformation.

Figure 5.
Some distinctive clusters on the time series of correlation between pTyr416 and other residues. (a) Clustering group
14 (b) Clustering group 9 (c) Clustering group 2 (d) Each cluster is mapped on the inactive conformation. Color
code: orchid, cyan, and yellow for clustering 14, 9, and 2 respectively. (e) The positive correlation clusters (blue)
and negative correlation clusters (red) on the inactive conformation.
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The residues in the clustering group 2 show the correlation pattern change to
Tyr527 during the conformational transition, which is observed in the case of
pTyr416. During 0-4 ns period, the residues in the clustering group 2 (shown as
yellow in Figure 5d) shows negatively correlated to Tyr527 with a minimum value of
-0.3 in Cij (t). And after 4 ns, the correlation pattern shows positively correlated to
Tyr527. In the last, Cij (t) reaches 0.45 around 7 ns in the conformational transition
process.

The positively correlated (blue) and negatively correlated residues (red) to
pTyr416 are mapped into the inactive conformation (Figure 5e).

3.3.4 Lys321

According to network analysis, Lys321 has high centralities both in betweenness
and degree centralities (Table 1). Within the framework of network theory, it implies
that Lys321 would play an essential role in the conformational change of c-Src tyrosine
kinase. The residues in the clustering group 13 are positively correlated to Lys321 for
the entire time window (0-10 ns) (Figure 6a). The residues in the clustering group 1
are negatively correlated to Lys321 (Figure 6b). As with the cases of pTyr416 and
Tyr527, the residues in the clustering group 16 show correlation pattern change in the
two different time regimes (Figure 6c).

Figure 6.
Some distinctive clusters on the time series of correlation between Lys321and other residues. (a) Clustering group
13 (b) Clustering group 1 (c) Clustering group 16 (d) Each cluster is mapped on the inactive conformation. Color
code: orchid, cyan, and yellow for clustering 13, 1, and 16 respectively. (e) The positive correlation clusters (blue)
and negative correlation clusters (red) on the inactive conformation.
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As shown in Figure 6a, Cij (t) values fluctuate around 0.5 during the 0-5 ns period.
After that, it increases to 0.7 around 7 ns. Finally, it decreases to around 0.55. The
residues in the clustering group 13 (shown as an orchid in Figure 6d) are located close
to Lys 321. Similarly, the positive correlation between the clustering group 14 and
Lys321 is due to a strong coupled through “physical distance”.

Most of the residues in the clustering group 1 are negatively correlated to Lys321
during the conformational transition (Figure 6b). The residues in the clustering group 1
(shown as cyan in Figure 5d) are located away from Lys321 in the inactive conforma-
tion. Figure 6b shows that Cij decreases to -0.5 until 6 ns and increases and reaches -0.3
at the end of the conformational transition. The residues in the clustering group 1,
shown in purple in Figure 6d, are located quite away from Lys321.

The residues in the clustering group 16 show the correlation pattern change to
Lys321 during the conformational transition, which is observed in the cases of
pTyr416 and Tyr527. During 0-2 ns period, the residues in the clustering group 16

TRP260 Positive
correlation

Cluster 6 93, 94, 95, 96, 97, 98, 99

Positive
correlation

Cluster 11 253, 254, 255, 256, 257, 263, 264, 265, 266, 267, 303, 304, 305, 306,
307, 308, 309, 310, 311, 312, 313, 314, 315, 325, 326, 330, 331, 332,
333, 334, 335, 336, 337

Negative
correlation

Cluster 9 176, 177, 180, 181, 182, 183, 184, 185, 203, 204, 205, 206, 207, 208,
209, 210, 211, 212, 213, 355, 356, 357, 358, 359, 360, 361, 362, 363,
364, 365, 366, 367, 452, 453, 454, 455, 456, 457, 458, 483, 484, 485,
486, 487, 488, 489, 490, 491, 492, 493, 494, 495

TYR416 Positive
correlation

Cluster 12 413, 414, 418, 419, 420, 424

Negative
correlation

Cluster 5 162, 163, 169, 170, 171, 172, 173, 174, 184, 185, 186, 187, 188, 189,
190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203,
204, 205, 214, 215, 236, 237, 238, 239

Switch Cluster 16 527, 528, 529, 530, 531, 532, 533

TYR527 Positive
correlation

Cluster 14 524, 525, 530, 531, 532

Negative
correlation

Cluster 9 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276,
277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290,
291, 292, 293, 294, 295, 296, 325, 326, 337, 338, 339, 340

Switch Cluster 2 93, 94, 95, 96, 97, 98, 99, 100, 101, 255, 256, 257, 258, 259, 260, 261,
262, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309,
310, 311, 312, 313, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336,
386, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417,
418, 419, 420, 421, 422, 423, 424

LYS321 Positive
correlation

Cluster 13 319, 323, 368, 369, 370, 371, 372, 374, 375, 376, 399, 400, 402

Negative
correlation

Cluster 1 84, 85, 86, 87, 88, 89, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108,
109, 110, 111, 112, 113, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
128, 129, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 420, 421,
422, 423, 424, 466, 467, 468, 469, 470, 471, 472, 473, 474

Switch Cluster 16 528, 529, 530, 531, 532, 533

Table 2.
The residues in the clustering group (Figures 3d, 4d, 5d, and 6d).
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TRP260 Negative
correlation

Cluster 1 84, 85, 86, 138, 139, 140, 141, 142, 143, 144, 145, 146, 149, 150, 151,
152, 153, 154, 174, 175, 178, 179, 186, 202, 214, 215, 216, 217, 218, 219,
220, 221, 222, 223, 224, 225, 226, 227, 346, 347, 348, 349, 350, 351, 352,
353, 354, 389, 448, 449, 450, 451, 459, 460, 461, 462, 463, 464, 465,
479, 480, 481, 482, 496, 497, 498, 499

Cluster 9 176, 177, 180, 181, 182, 183, 184, 185, 203, 204, 205, 206, 207, 208,
209, 210, 211, 212, 213, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364,
365, 366, 367, 452, 453, 454, 455, 456, 457, 458, 483, 484, 485, 486,
487, 488, 489, 490, 491, 492, 493, 494, 495

Positive
correlation

Cluster 6 93, 94, 95, 96, 97, 98, 99

Cluster 10 :251, 252, 268, 284, 285, 286, 287, 288, 292, 293, 294, 295, 296, 297, 298,
299, 300, 301, 302, 316, 317, 318, 324, 338, 339, 406, 407, 408, 409,
410, 411, 412

Cluster 11 253, 254, 255, 256, 257, 263, 264, 265, 266, 267, 303, 304, 305, 306,
307, 308, 309, 310, 311, 312, 313, 314, 315, 325, 326, 330, 331, 332, 333,
334, 335, 336, 337

Cluster 12 258, 262, 327, 328, 329

Cluster 13 259, 261

TYR416 Negative
correlation

Cluster 4 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 175, 176,
177, 178, 179, 180, 181, 182, 183, 208, 209, 210, 289, 290, 291, 320, 321,
339, 340, 341, 342, 343, 344, 346, 349, 350, 351, 352, 353, 367, 368,
369, 370, 372, 393, 394, 401, 452, 455, 456, 457, 458, 485, 486, 487,
488, 489, 490, 491, 492, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522,
523

Cluster 10 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 395, 396,
397, 398, 399, 400

Positive
correlation

Cluster 6 261, 277, 278, 279, 296, 297, 298, 314, 328, 329, 330, 331, 332, 333, 334,
335, 336, 388, 404, 463, 466, 467

Cluster 7 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 385, 386,
406, 407, 427, 428, 429, 430, 431, 432, 438, 439, 440, 443, 468, 469,
470, 471, 472, 473

Cluster 8 311, 312, 313, 377, 378, 380, 381, 382, 383, 384, 387, 405, 441, 442,
444, 445, 446, 447, 474, 475, 476, 477, 478, 479, 499, 500, 501, 502,
503, 504, 505, 506

Cluster 11 408, 409, 410, 411, 412, 421, 422, 423, 425, 426, 433, 434, 435, 436,
437

Cluster 12 413, 414, 418, 419, 420, 424

Cluster 13 415, 417

TYR527 Negative
correlation

Cluster 9 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275,
276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288,
289, 290, 291, 292, 293, 294, 295, 296, 325, 326, 337, 338,
339, 340

Positive
correlation

Cluster 13 516, 517, 518, 519, 520, 521, 522, 523, 533

Cluster 14 524, 525, 530, 531, 532

Cluster 15 526, 528, 529

LYS321 Negative
correlation

Cluster 1 84, 85, 86, 87, 88, 89, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108,
109, 110, 111, 112, 113, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
128, 129, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 420, 421, 422,
423, 424, 466, 467, 468, 469, 470, 471, 472, 473, 474
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(shown as yellow in Figure 6d) shows negatively correlated to Lys321 with the
minimum value of -0.25 in Cij (t). And for 2-4 ns, the correlation pattern shows
positively correlated to Lys321. After 4 ns, it sharply decreases to the minimum value
of -0.25. Subsequently, it reaches the maximum positive value of 0.3 in Cij (t). Even-
tually, it decreases to zero. The Cij (t) for Lys321 shows more correlation pattern
changes compared to the cases of pTyr416 and Tyr527.

The positively correlated (blue) and negatively correlated residues (red) to Lys321
are mapped into the inactive conformation (Figure 6e).

The residues in the clustering group (Figures 3d, 4d, 5d, and 6d) are listed in
Table 2 positively and negatively correlated residues in the clustering group
(Figures 3e, 4e, 5e, and 6e) are listed in Table 3.

4. Conclusions

In this study, we investigated the conformational transition of c-Src tyrosine
kinase from the inactive to the active state using TMD simulation and network theory.
Tyr416 and Tyr527 are known to be significant residues in the conformational transi-
tion by controlling the phosphorylation status. They play as a switch for the conversion
of the inactive/active conformation. The time-dependent correlation matrices, Cij (t),
between all the residues and pTyr416 and Tyr527 show very similar patterns (posi-
tively correlated, negatively correlated, negatively/positively correlated) during the
conformational transition process. The time-series analysis supports that pTrp416 and
Tyr527 act as a switch in a very concerted manner for completion of conformational
transition of c-Src tyrosine kinase. Based on the analysis of the three centrality
measures (betweenness, closeness, and degree), we observed that Lys321 plays an
essential role in the conformational transition of c-Src tyrosine kinase. The time-series
analysis shows that Cij (t), between all the residues and Lys321 show positively
correlated, negatively correlated, and pattern change from negatively to positively
correlated one during the conformational transition process. Combining the network
analysis with time-series analysis, Lys321 may be another candidate for a switch for the
conformational transition of c-Src tyrosine kinase.

Cluster 3 141, 142, 143, 144, 145, 146, 147, 298, 299, 300, 301, 413, 414, 415,
416, 417, 418, 419, 425, 426, 427, 428, 429, 431, 434, 435, 436, 460,
461, 462, 463, 464, 465, 475, 476, 477, 478, 479, 480, 481, 482

Positive
correlation

Cluster 9 290, 291, 292, 293, 311, 312, 313, 327, 337, 345, 349, 358, 359, 360, 383,
384, 387, 389, 391, 404, 405, 441, 444, 445, 448, 490, 491, 494, 507

Cluster 10 314, 315, 325, 326, 338, 340, 343, 344, 346, 381, 382

Cluster 11 316, 339, 341, 342, 361, 362, 363, 380, 396, 397, 508, 515, 516, 517, 518,
519, 520, 521, 522

Cluster 12 317, 318, 324, 364, 365, 366, 367, 377, 378, 379, 392, 393, 394, 395, 398,
403, 509, 510, 511, 512, 513, 514

Cluster 13 319, 323, 368, 369, 370, 371, 372, 374, 375, 376, 399, 400, 402

Cluster 14 320, 322, 373, 401

Table 3.
Positively/negatively correlated residues in the clustering group (Figures 3e, 4e, 5e, 6e).
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