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Chapter

Magnetic Skyrmions: Theory and
Applications
Lalla Btissam Drissi, El Hassan Saidi, Mosto Bousmina

and Omar Fassi-Fehri

Abstract

Magnetic skyrmions have been subject of growing interest in recent years for
their very promising applications in spintronics, quantum computation and future
low power information technology devices. In this book chapter, we use the field
theory method and coherent spin state ideas to investigate the properties of mag-
netic solitons in spacetime while focussing on 2D and 3D skyrmions. We also study
the case of a rigid skyrmion dissolved in a magnetic background induced by the
spin-tronics; and derive the effective rigid skyrmion equation of motion. We
examine as well the interaction between electrons and skyrmions; and comment on
the modified Landau-Lifshitz-Gilbert equation. Other issues, including emergent
electrodynamics and hot applications for next-generation high-density efficient
information encoding, are also discussed.

Keywords: Geometric phases, magnetic monopoles and topology, soliton and
holonomy, skyrmion dynamics and interactions, med-term future applications

1. Introduction

During the last two decades, the magnetic skyrmions and antiskyrmions have
been subject to an increasing interest in connection with the topological phase of
matter [1–4], the spin-tronics [5, 6] and quantum computing [7, 8]; as well as in the
search for advanced applications such as racetrack memory, microwave oscillators
and logic nanodevices making skyrmionic states very promising candidates for
future low power information technology devices [9–12]. Initially proposed by T.
Skyrme to describe hadrons in the theory of quantum chromodynamics [13],
skyrmions have however been observed in other fields of physics, including quan-
tum Hall systems [14, 15], Bose-Einstein condensates [16] and liquid crystals [17].
In quantum Hall (QH) ferromagnets for example [18, 19], due to the exchange
interaction; the electron spins spontaneously form a fully polarized ferromagnet
close to the integer filling factor ν≃ 1; slightly away, other electrons organize into an
intricate spin configuration because of a competitive interplay between the Cou-
lomb and Zeeman interactions [18]. Being quasiparticles, the skyrmions of the QH
system condense into a crystalline form leading to the crystallization of the
skyrmions [20–23]; thus opening an important window on promising applications.

In order to overcome the lack of a prototype of a skyrmion-based spintronic
devices for a possible fabrication of nanodevices of data storage and logic technolo-
gies, intense research has been carried out during the last few years [24, 25]. In this
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regard, several alternative nano-objects have been identified to host stable
skyrmions at room temperature. The first experimental observation of crystalline
skyrmionic states was in a three-dimensional metallic ferromagnet MnSi with a B20
structure using small angle neutron scattering [26]. Then, real-space imaging of the
skyrmion has been reported using Lorentz transmission electron microscopy in
non-centrosymmetric magnetic compounds and in thin films with broken inver-
sion symmetry, including monosilicides, monogermanides, and their alloys, like
Fe1–xCoxSi [27], FeGe [28], and MnGe [29].

One of the key parameters in the formation of these topologically protected non-
collinear spin textures is the Dzyaloshinskii-Moriya Interaction (DMI) [30–32].
Originating from the strong spin-orbit coupling (SOC) at the interfaces, the DM
exchange between atomic spins controls the size and stability of the induced
skyrmions. Depending on the symmetry of the crystal structures and the skyrmion
windings number, the internal spins within a single skyrmion envelop a sphere in
different arrangements [33]. The in-plane component of the magnetization, in the
Néel skyrmion, is always pointed in the radial direction [34], while it is oriented
perpendicularly with respect to the position vector in the Bloch skyrmion [26].
Different from these two well-known types of skyrmions are skyrmions with mixed
Bloch-Néel topological spin textures observed in Co/Pd multilayers [35]. Magnetic
antiskyrmions, having a more complex boundary compared to the chiral magnetic
boundaries of skyrmions, exist above room temperature in tetragonal Heusler
materials [36]. Higher-order skyrmions should be stabilized in anisotropic frus-
trated magnet at zero temperature [37] as well as in itinerant magnets with zero
magnetic field [38].

In the quest to miniaturize magnetic storage devices, reduction of material’s
dimensions as well as preservation of the stability of magnetic nano-scale domains
are necessary. One possible route to achieve this goal is the formation of topological
protected skyrmions in certain 2D magnetic materials. To induce magnetic order
and tune DMIs in 2D crystal structures, their centrosymmetric should first be
broken using some efficient ways such a (i) generate one-atom thick hybrids where
atoms are mixed in an alternating manner [39–41], (ii) apply bias voltage or strain
[42–44], (iii) insert adsorbents, impurities and defects [45–47]. In graphene-like
materials, fluorine chemisorption is an exothermic adsorption that gives rise to
stable 2D structures [48] and to long-range magnetism [49, 50]. In semi-fluorinated
graphene, a strong Dzyaloshinskii-Moriya interaction has been predicted with the
presence of ferromagnetic skyrmions [51]. The formation of a nanoskyrmion state
in a Sn monolayer on a SiC(0001) surface has been reported on the basis of a
generalized Hubbard model [52]. Strong DMI between the first nearest magnetic
germanium neighbors in 2D semi-fluorinated germanene results in a potential anti-
ferromagnetic skyrmion [53].

In this bookchapter, we use the coherent spin states approach and the field
theory method (continuous limit of lattice magnetic models with DMI) to revisit
some basic aspects and properties of magnetic solitons in spacetime while focusing
on 1d kinks, 2d and 3d spatial skyrmions/antiskyrmions. We also study the case of a
rigid skyrmion dissolved in a magnetic background induced by the electronic spins
of magnetic atoms like Mn; and derive the effective rigid skyrmion equation of
motion. In this regard, we describe the similarity between, on one hand, electrons in
the electromagnetic background; and, on the other hand, rigid skyrmions bathing in
a texture of magnetic moments. We also investigate the interaction between elec-
trons and skyrmions as well as the effect of the spin transfer effect.

This bookchapter is organized as follows: In Section 2, we introduce some basic
tools on quantum SU(2) spins and review useful aspects of their dynamics. In
Section 3, we investigate the topological properties of kinks and 2d space solitons
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while describing in detail the underside of the topological structure of these low-
dimensional solitons. In Section 4, we extend the construction to approach topo-
logical properties to 3d skyrmions. In Section 5, we study the dynamics of rigid
skyrmions without and with dissipation; and in Section 6, we use emergent gauge
potential fields to describe the effective dynamics of electrons interacting with the
skyrmion in the presence of a spin transfer torque. We end this study by making
comments and describing perspectives in the study of skyrmions.

2. Quantum SU(2) spin dynamics

In this section, we review some useful ingredients on the quantum SU(2) spin
operator, its underlying algebra and its time evolution while focussing on the
interesting spin 1/2 states, concerning electrons in materials; and on coherent spin
states which are at the basis of the study of skyrmions/antiskyrmions. First, we
introduce rapidly the SU(2) spin operator S and the implementation of time depen-
dence. Then, we investigate the non dissipative dynamics of the spin by using semi-
classical theory approach (coherent states). These tools can be also viewed as a first
step towards the topological study of spin induced 1D, 2D and 3D solitons under-
taken in next sections.

2.1 Quantum spin 1/2 operator and beyond

We begin by recalling that in non relativistic 3D quantum mechanics, the spin
states Sz, Sj i of spinfull particles are characterised by two half integers Sz, Sð Þ, a
positive S≥0 and an Sz taking 2Sþ 1 values bounded as �S≤ Sz ≤ S with integral
hoppings. For particles with spin 1/2 like electrons, one distinguishes two basis

vector states � 1
2,

1
2

�

�

�

that are eigenvalues of the scaled Pauli matrix ℏ
2 σz and the

quadratic (Casimir) operator ℏ2

4

P3
a¼1σ

2
a, here the three

ℏ
2 σa with σa ¼ σ

!
: e
!
a are the

three components of the spin 1/2 operator vector1 σ
!
. From these ingredients, we

learn that the average < Sz, S∣ ℏ2 σz∣Sz, S>¼ ℏSz (for short ℏ
2 σz
� �

) is carried by the

z-direction since Sz ¼ S
!
: e
!
z with e

!
z ¼ 0, 0, 1ð ÞT. For generic values of the SU 2ð Þ spin

S, the spin operator reads as ℏJa where the three Ja‘s are 2Sþ 1ð Þ � 2Sþ 1ð Þ
generators of the SU 2ð Þ group satisfying the usual commutation relations Ja, Jb½ � ¼
iεabcJ

c with εabc standing for the completely antisymmetric Levi-Civita tensor with

non zero value ε123 ¼ 1; its inverse is εcba with ε123 ¼ �1. The time evolution of the
spin 1

2 operator ℏ
σa
2 with dynamics governed by a stationary Hamiltonian operator

(dH=dt ¼ 0) is given by the Heisenberg representation of quantum mechanics. In

this non dissipative description, the time dependence of the spin 1
2 operator Ŝa tð Þ

(the hat is to distinguish the operator Ŝa from classical Sa) is given by

Ŝa ¼ e
i
ℏ
Ht ℏ

σa

2

� �

e�
i
ℏ
Ht (1)

where the Pauli matrices σa obey the usual commutation relations σa, σb½ � ¼
2iεabcσ

c. For a generic value of the SU 2ð Þ spin S, the above relation extends as Ŝa ¼
e
i
ℏ
Ht ℏJað Þe� i

ℏ
Ht. So, many relations for the spin 1=2 may be straightforwardly gener-

alised for generic values S of the SU 2ð Þ spin. For example, for a spin value S0, the
2S0 þ 1ð Þ states are given by m, S0j if g and are labeled by �S0 ≤m≤ S0; one of these

1 For convenience, we often refer to σ
!
, e

!
i, σ

!
: e
!
i ¼ σi respectively by bold symbols as σ, ei, σ:ei ¼ σi.
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states namely S0, S0j i is very special; it is commonly known as the highest weight
state (HWS) as it corresponds to the biggest value m ¼ S0; from this state one can
generate all other spin states m, S0j i; this feature will be used when describing

coherent spin states. Because of the property σ2a ¼ I, the square Ŝ
2

a ¼ ℏ2

4 I is time

independent; and then the time dynamics of Ŝa tð Þ is rotational in the sense that dŜa
dt is

given by a commutator as follows dŜa
dt ¼ i

ℏ
HŜa � ŜaH
� �

: For the example where H is

a linearly dependent function of Ŝa like for the Zeeman coupling, the Hamiltonian

reads as HZ ¼Paω
aŜa (for short ωaŜa) with the ωa’s are constants referring to the

external source2; then the time evolution of Ŝa reads, after using the commutation

relation Ŝa, Ŝb
h i

¼ iℏεabcŜ
c
, as follows

dŜa
dt

¼ εabcω
bŜ

c
⇔

dŜ

dt
¼ ω∧ Ŝ (2)

where appears the Levi-Civita εabc which, as we will see throughout this study,
turns out to play an important role in the study of topological field theory [54, 55]
including solitons and skyrmions we are interested in here [56–59]. In this regards,
notice that, along with this εabc, we will encounter another completely antisymmet-
ric Levi-Civita tensor namely εμ1 … μD

; it is also due to DM interaction which in lattice

description is given by S
!
rμ2

∧ S
!
rμ1

� �

:d
!
μ3 … μD�2

εμ1 … μD; and in continuous limit reads as

εabcS
bScμ1μ2d

a
μ3 … μD�2

εμ1 … μD where, for convenience, we have set Scμ1μ2 ¼ eμ1μ2 :∇S
c with

eμ1μ2 ¼ eμ2 � eμ1 : To distinguish these two Levi-Civita tensors, we refer to εabc as the
target space Levi-Civita with SO 3ð Þtarget symmetry; and to εμ1 … μD

as the spacetime

Levi-Civita with SO 1,D� 1ð Þ Lorentz symmetry containing as subsymmetry the
usual space rotation group SO D� 1ð Þspace. Notice also that for the case where the

Hamiltonian H Ŝ
� �

is a general function of the spin, the vector ωa is spin dependent

and is given by the gradient ∂H
∂Ŝa

:

2.2 Coherent spin states and semi-classical analysis

To deal with the semi-classical dynamics of Ŝ tð Þ evolved by a Hamiltonian

H Ŝ
� �

, we use the algebra Ŝa, Ŝb
h i

¼ iℏεabcŜ
c
to think of the quantum spin in terms

of a coherent spin state [60] described by a (semi) classical vector S
!
¼ ℏSn

!
(no hat)

of the Euclidean 
3; see the Figure 1(a). This “classical” 3-vector has an amplitude

ℏS and a direction n
!
related to a given unit vector n

!
0 as n

! ¼ R α, β, γð Þn!0; and

parameterised by α, β, γ. In the above relation, the n
!
0 is thought of as the north

direction of a 2-sphere 2nð Þ given by the canonical vector 0, 0, 1ð ÞT; it is invariant
under the proper rotation; i.e. Rz γð Þn!0 ¼ n

!
0; and consequently the generic n

!
is

independent of γ; i.e.: n
! ¼ R α, βð Þn!0: Recall that the 3�3 matrix R α, β, γð Þ is an

SO 3ð Þ rotation [SO 3ð Þ � SU 2ð Þ] generating all other points of 2nð Þ parameterised by

α, βð Þ. In this regards, it is interesting to recall some useful properties that we list
here after as three points: 1ð Þ the rotation matrix R α, β, γð Þ can be factorised like

2 For an electron with Zeeman field Ba, we have ωa ¼ �g
qe
2me

Ba with g ¼ 2 and qe ¼ �e:
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Rz αð ÞRy βð ÞRz γð Þ where each Ra ψað Þ is a rotation e�iψaJa around the a- axis with an

angle ψa and generator Ja. 2ð Þ As the unit n!0 is an eigen vector of e�iγJz ; it follows

that n
!
reduces to e�iαJze�iβJy n

!
0; this generic vector obeys as well the constraint

n
!
�

�

�

�

�

� � nj j ¼ 1 and is solved as follows.

n ¼ sin β cos α, sin β sin α, cos βð Þ (3)

with 0≤ α≤ 2π and 0≤ β≤ π; they parameterise the unit 2-sphere 2nð Þ which is

isomorphic to SU 2ð Þ=U 1ð Þ; the missing angle γ parameterises a circle 1nð Þ, isomor-

phic to U 1ð Þ, that is fibred over 2nð Þ. 3ð Þ the coherent spin state representation

gives a bridge between quantum spin operator and its classical description; it relies

on thinking of the average < Ŝ> in terms of the classical vector S
!
0 ¼ ℏSn

!
0

considered above (S
!
0 $ HWS S0, S0j i). In this regards, recall that the Ŝa acts on

classical 3-vectors Vb through its 3�3 matrix representation like Ŝa,Vb

h i

¼
�ℏ Jcð ÞabVc with Jcð Þab given by �iεabc; these Jc‘s are precisely the generators of the

SU 2ð Þ matrix representation R α, β, γð Þ; by replacing Vb by the operator Ŝb, one

discovers the SU 2ð Þ spin algebra Ŝa, Ŝb
h i

¼ iℏεabcŜ
c
. Notice also that the classical

spin vector S
!
¼ ℏSn

!
can be also put in correspondence with the usual magnetic

moment μ
! ¼ �γS

!
(with γ ¼ ge

2m the gyromagnetic ratio); thus leading to μ
! ¼ μj jn!.

So, the magnetization vector describes (up to a sign) a coherent spin state with

amplitude ℏSγ; and a (opposite) time dependent direction n
!

tð Þ parameterizing the

2-sphere 2nð Þ.

n2x tð Þ þ n2y tð Þ þ n2z tð Þ ¼ 1 ⇔ n
!

tð Þ
�

�

�

�

�

� ¼ 1 (4)

For explicit calculations, this unit 2-sphere equation will be often expressed like

nana ¼ 1; this relation leads in turns to the property nadna ¼ 0 (indicating that n
!

and dn
!
are normal vectors); by implementing time, the variation n:dn gets mapped

into n: _n ¼ 0 teaching us that the velocity _n is carried by u and v; two normal
directions to n with components;

ua ¼ cos β cos α, cos β sin α,� sin βð Þ, va ¼ � sin α, cos α, 0ð Þ (5)

Figure 1.
(a) Components of the spin orientation n; its time dynamics in presence of a magnetic field is given by Larmor
precession. (b) A configuration of several spins in spacetime.
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and from which we learn that dna ¼ uadβ þ va sin βdα, [(u,v,n) form an

orthogonal vector triad). So, the dynamics of μa (and that of �S
!
) is brought to the

dynamics of the unit na governed by a classical Hamiltonian H na α, βð Þ½ �. The
resulting time evolution is given by the so called Landau-Lifshitz (LL) equation

[61]; it reads as dna
dt ¼ � γ

μj j εabc ∂
bH

� �

nc with ∂
bH ¼ ∂H

∂nb
: By using the relations dβ ¼

uadna and sin βdα ¼ vadna with ua ¼ ∂na
∂β
; and va sin β ¼ ∂na

∂α
; as well as the expres-

sions εabcu
anc ¼ vb and εabcv

anc ¼ �ub, the above LL equation splits into two time

evolution equations dβ
dt ¼ �γvb ∂

bH
� �

and sin β dα
dt ¼ γub ∂

bH
� �

. These time evolutions

can be also put into the form

sin β
dβ

dt
þ γ

∂H

∂α
¼ 0, sin β

dα

dt
� γ

∂H

∂β
¼ 0 (6)

and can be identified with the Euler- Lagrange equations following from the
variation δS ¼ 0 of an action S ¼

Ð

Ldt. Here, the Lagrangian is related to the
Hamiltonian like L ¼ LB �H na α, βð Þ½ � where LB is the Berry term [62] known to
have the form <n| _n>; this relation can be compared with the well known Legendre
transform p _q‐H q, pð Þ. For later interpretation, we scale this hamiltonian as ℏSγH
such that the spin lagrangian takes the form Lspin ¼ LB � ℏSγH. To determine LB, we
identify the Eq. (6) with the extremal variation δS=δβ ¼ 0 and δS=δα ¼ 0.
Straightforward calculations leads to

LB ¼ �ℏS 1� cos βð Þ dα
dt

(7)

showing that α and β form a conjugate pair. By substituting sin β dα
dt ¼ va dna

dt back

into above LB, we find that the Berry term has the form of Aharonov-Bohm

coupling LAB ¼ qeA
a dna

dt with magnetic potential vector Aa given by Aa ¼
ℏS
qe

1� cos βð Þ
sin β va: However, this potential vector is suggestive as it has the same form as

the potential vector A monopoleð Þ ¼ ℏS
qer

1� cos βð Þ
sin β v of a magnetic monopole. The curl of

this potential is given by B
!
¼ qm

r
!

r3 with magnetic charge qm ¼ � ℏS
qe
located at the

centre of the 2-sphere; the flux Φ of this field through the unit sphere is then equal

to �4π ℏS
qe
; and reads as �2SΦ0 with a unit flux quanta Φ0 ¼ h

qe
as indicated by the

value S ¼ 1=2. So, because 2S ¼ �n is an integer, it results that the flux is quantized
as Φ ¼ nΦ0:

3. Magnetic solitons in lower dimensions

In previous section, we have considered the time dynamics of coherent spin

states with amplitude ℏS and direction described by n
!

tð Þ as depicted by the
Figure 1(a); this is a 3-vector having with no space coordinate dependence,

gradn
! ¼ 0; and as such it can be interpreted as a 1þ 0ð ÞD vector field; that is a

vector belonging to 
1,d with d ¼ 0 (no space direction). In this section, we first

turn on 1d space coordinate x and promotes the old unit- direction n
!

tð Þ to a 1þ 1ð ÞD
field n

!
t, xð Þ. After that, we turn on two space directions x, yð Þ; thus leading to

1þ 2ð ÞD field n
!

t, x, yð Þ; a picture is depicted by the Figure 1(b). To deal with the
dynamics of these local fields and their topological properties, we use the field

6
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theory method while focussing on particular solitons; namely the 1d kinks and the
2d skyrmions. In this extension, one encounters two types of spaces: 1ð Þ the target
space 3

n parameterised by na ¼ n1, n2, n3ð Þ with Euclidian metric δab and topolog-

ical Levi-Civita εabc. 2ð Þ the spacetime 1,1
ξ parameterised by ξμ ¼ t, xð Þ, concerning

the 1d kink evolution; and the spacetime 1,2
ξ parameterised by ξμ ¼ t, x, yð Þ,

regarding the 2d skyrmions dynamics. As we have two kinds of evolutions; time and

space; we denote the time variable by ξ0 ¼ t; and the space coordinates by ξi ¼
x, yð Þ. Moreover, the homologue of the tensors δab and εabc are respectively given by

the usual Lorentzian spacetime metric gμν, with signature like gμνξ
μξν ¼ x2 þ y2 � t2,

and the spacetime Levi-Civita εμνρ with ε012 ¼ 1.

3.1 One space dimensional solitons

In 1þ 1ð ÞD spacetime, the local coordinates parameterising 
1,1
ξð Þ are given by

ξμ ¼ t, xð Þ; so the metric is restricted to gμνξ
μξν ¼ x2 � t2. The field variable na ξð Þ has

in general three components n1, n2, n3ð Þ as described previously; but in what fol-
lows, we will simplify a little bit the picture by setting n3 ¼ 0; thus leading to a
magnetic 1d soliton with two component field variable n ¼ n1, n2ð Þ satisfying the
constraint equation n:n ¼ 1 at each point of spacetime. As this constraint relation
plays an important role in the construction, it is interesting to express it as nana ¼ 1.
Before describing the topological properties of one space dimensional solitons
(kinks), we think it interesting to begin by giving first some useful features; in

particular the three following ones. 1ð Þ The constraint n1ð Þ2 þ n2ð Þ2 ¼ 1 is invariant

SO 2ð Þn rotations acting as n0a ¼ Ra
bn

b with orthogonal rotation matrix

Ra
b ¼

cosψ sinψ

� sinψ cosψ

	 


, RTR ¼ I (8)

The constraint nana ¼ 1 can be also presented like NN ¼ 1 with N standing for
the complex field n1 þ in2 that reads also like eiα. In this complex notation, the
symmetry of the constraint is given by the phase change acting as N ! UN with
U ¼ eiψ and corresponding to the shift α ! αþ ψ . Moreover the correspondence

n1, n2ð Þ $ n1 þ in2 describes precisely the well known isomorphisms SO 2ð Þ �
U 1ð Þ � 

1
nð Þ where 1nð Þ is a circle; it is precisely the equatorial circle of the 2-sphere


2
nð Þ considered in previous section. 2ð Þ As for Eq. (5), the constraint nana ¼ 1 leads

to nadn
a ¼ 0; and so describes a rotational movement encoded in the relation

dna ¼ εabnb where εab is the standard 2D antisymmetric tensor with ε21 ¼ ε12 ¼ 1;
this εab is related to the previous 3D Levi-Civita like εzab. Notice also that the
constraint nana ¼ 1 implies moreover that dn2 ¼ � nn

n2
dn1; and consequently the

area dn1 ∧ dn2, to be encountered later on, vanishes identically. In this regards, recall
that we have the following transformation

dn1 ∧ dn2 ¼ Jdt∧ dx, J ¼ εμν∂μn1∂νn2 (9)

where εμν is the antisymmetric tensor in 1+1 spacetime, and J is the Jacobian of
the transformation t, xð Þ ! n1, n2ð Þ. 3ð Þ The condition nan

a ¼ 1 can be dealt in two
manners; either by inserting it by help of a Lagrange multiplier; or by solving it in
term of a free angular variable like na ¼ cos α, sin αð Þ from which we deduce the

normal direction ua ¼ dna

dα reading as ua ¼ � sin α, cos αð Þ. In term of the complex

7
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field; we have N ¼ eiα and NdN ¼ idα. Though interesting, the second way of doing
hides an important property in which we are interested in here namely the non
linear dynamics and the topological symmetry.

3.1.1 Constrained dynamics

The classical spacetime dynamics of na ξð Þ is described by a field action S ¼
Ð

dtL

with Lagrangian L ¼
Ð

dxL and density L; this field density is given by

� 1
2 ∂μna
� �

∂
μnað Þ � V nð Þ � Λ nana � 1ð Þ with ∂μ ¼ ∂

∂ξμ
; it reads in terms of the

Hamiltonian density as follows

L ¼ πa _na �H (10)

where πa ¼ ∂L
∂ _na

. In the above Lagrangian density, the auxiliary field Λ ξð Þ (no
Kinetic term) is a Lagrange multiplier carrying the constraint relation nan

a ¼ 1. The
V nð Þ is a potential energy density which play an important role for describing 1d

kinks with finite size. Notice also that the variation δS
δΛ

¼ 0 gives precisely the

constraint nana ¼ 1 while the δS
δna ¼ 0 gives the spacetime dynamics of na described

by the spacetime equation ∂μ∂
μna � ∂V

∂na � Λna ¼ 0. By substituting na ¼
cos α, sin αð Þ, we obtain L ¼ � 1

2 ∂μα
� �

∂
μαð Þ � V αð Þ. If setting V αð Þ ¼ 0, we end up

with the free field equation ∂μ∂
μα ¼ 0 that expands like ∂

2
x � ∂

2
t

� �

α ¼ 0; it is invari-
ant under spacetime translations with conserved current symmetry ∂

μTμν ¼ 0 with
Tμν standing for the energy momentum tensor given by the 2�2 symmetric matrix

∂μα∂ναþ gμνL. The energy density T00 is given by 1
2 ∂tαð Þ2 þ 1

2 ∂xαð Þ2 and the

momentum density T10 reads as ∂xφ∂xφ. Focussing on T00, the conserved energy E
reads then as follows

E ¼ 1

2

ðþ∞

�∞
dx ∂tαð Þ2 þ ∂xαð Þ2
h i

≥0 (11)

with minimum corresponding to constant field (α ¼ cte). Notice that general
solutions of ∂μ∂

μα ¼ 0 are given by arbitrary functions f x� tð Þ; they include oscil-
lating and non oscillating functions. A typical non vibrating solution that is inter-
esting for the present study is the solitonic solution given (up to a constant c) by the
following expression

φ t, xð Þ ¼ π tanh
xþ t

λ

� �

(12)

where λ is a positive parameter representing the width where the soliton α t, xð Þ
acquires a significant variation. Notice that for a given t, the field varies from
α t,�∞ð Þ ¼ �π to α t,þ∞ð Þ ¼ π regardless the value of λ. These limits are related to
each other by a period 2π.

3.1.2 Topological current and charge

To start, notice that as far as conserved symmetries of (10) are concerned, there
exists an exotic invariance generated by a conserved Jμ t, xð Þ going beyond the

spacetime translations generated by the energy momentum tensor Tμν. The con-
served spacetime current Jμ ¼ J0, J1ð Þ of this exotic symmetry can be introduced

in two different, but equivalent, manners; either by using the free degree of
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freedom α; or by working with the constrained field na: In the first way, we think of
the charge density J0 like 1

2π ∂1α and of the current density as J1 ¼ � 1
2π ∂0α. This

conserved current is a topological 1þ 1ð ÞD spacetime vector Jμ that is manifestly

conserved; this feature follows from the relation between Jμ and the antisymmetric

εμν as follows [57],

Jμ ¼
1

2π
εμν∂

να (13)

Because of the εμν; the continuity relation ∂
μJμ ¼ 1

2π εμν∂
μ
∂
να vanishes identically

due to the antisymmetry property of εμν. The particularity of the above conserved Jμ
is its topological nature; it is due to the constraint nana ¼ 1 without recourse to the
solution na ¼ cos α, sin αð Þ. Indeed, Eq. (13) can be derived by computing the

Jacobian J ¼ det ∂na

∂ξμ

� �

of the mapping from the 2d spacetime coordinates t, xð Þ to the
target space fields (n1, n2). Recall that the spacetime area dt∧ dx can be written in
terms of εμν like 1

2 εμνdξ
μ ∧ dξν and, similarly, the target space area dn1 ∧ dn2 can be

expressed in terms of as εab follows 1
2 εabdn

a
∧ dnb. The Jacobian J is precisely given

by (9); and can be presented into a covariant form like J ¼ 1
2 ε

μν
∂μn

a
∂νn

bεab. This
expression of the Jacobian J captures important informations; in particular the
three following ones. 1ð Þ It can be expressed as a total divergence like ∂μ πJμð Þ with
spacetime vector

Jμ ¼ 1

2π
εμνna∂νn

bεab (14)

and where 1
π
is a normalisation; it is introduced for the interpretation of the

topological charged as just the usual winding number of the circle [encoded in the

homotopy group relation π1 
1

� �

¼ ℤ]. 2ð Þ Because of the constraint dn2 ¼ � nn
n2
dn1

following from nan
a ¼ 1, the Jacobian J vanishes identically; thus leading to the

conservation law ∂μJ
μ ¼ 0; i.e. J ¼ 0 and then ∂μJ

μ ¼ 0. 3ð Þ The conserved charge Q

associated with the topological current is given by
Ðþ∞
�∞ dxJ0 t, xð Þ; it is time indepen-

dent despite the apparent t- variable in the integral (dQ=dt ¼ 0). By using (13), this

charge reads also as 1
2π

Ðþ∞
�∞ dx∂xα t, xð Þ and after integration leads to

Q ¼ 1

2π
α t,∞ð Þ � α t,�∞ð Þ½ � (15)

Moreover, seen that α t,∞ð Þ is an angular variable parameterising 
1
n; it may be

subject to a boundary condition like for instance the periodic α t,∞ð Þ ¼ α t,�∞ð Þ þ
2πN with N an integer; this leads to an integral topological charge Q ¼ N
interpreted as the winding number of the circle. In this regards, notice that: ið Þ the
winding interpretation can be justified by observing that under compactification of
the space variable x, the infinite space line x ¼ �∞,þ∞� ½ gets mapped into a circle


1
xð Þ with angular coordinate �π ≤φ≤ π; so, the integral 1

2π

Ðþ∞
�∞ dx∂xα t, xð Þ gets

replaced by 1
2π

Ðþπ

�π
dφ ∂α

∂φ
; and then the mapping αt : φ ! α t,φð Þ is a mapping between

two circles namely 
1
xð Þ ! 

1
nð Þ; the field α t,φð Þ then describes a soliton (one space

extended object) wrapping the circle 1xð Þ N times; this propery is captured by

π

1
xð Þ


1
nð Þ

� �

¼ ℤ, a homotopy group property [63]. iið Þ The charge Q is independent

of the Lagrangian of the system as it follows completely from the field constraint
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without any reference to the field action. iiið Þ Under a scale transformation ξ0 ¼ ξ=λ
with a scaling parameter λ>0, the topological charge of the field (12) is invariant;
but its total energy (11) get scaled as follows

Q 0 ¼ Q, E0 ¼ 1

λ
E (16)

This energy transformation shows that stable solitons with minimal energy
correspond to λ ! ∞; and then to a trivial soliton spreading along the real axis.
However, one can have non trivial solitonic configurations that are topologically
protected and energetically stable with non diverging λ. This can done by turning on
an appropriate potential energy density V nð Þ in Eq. (10). An example of such

potential is the one given by g
8 n41 þ n42 � 1
� �

, with positive g ¼ M2, breaking SO 2ð Þn;
by using the constraint n21 þ n22 ¼ 1, it can be put g

4 n
2
1n

2
2. In terms of the angular field

α, it reads as V αð Þ ¼ g
16 1� cos 4αð Þ leading to the well known sine-Gordon

Eq. [64, 65] namely ∂μ∂
μα� g

4 sin 4α ¼ 0with the symmetry property α ! αþ π
2. So,

the solitonic solution is periodic with period π
2; that is the quarter of the old 2π

period of the free field case. For static field α xð Þ, the sine Gordon equation reduces

to d2α
dx2

� M2

4 sin 4α ¼ 0; its solution for M>0 is given by arctan expMx½ �
representing a sine- Gordon field evolving from 0 to π

2 and describing a kink with

topological charge Q ¼ 1
4 : ForM<0, the soliton is an anti-kink evolving from π

2 to 0

with charge Q ¼ � 1
4 : Time dependent solutions can be obtained by help of boost

transformations x ! x�vt
ffiffiffiffiffiffiffiffi

1�v2
p .

3.2 Skyrmions in 2d space dimensions

In this subsection, we investigate the topological properties of 2d Skyrmions by
extending the field theory study we have done above for 1d kinks to two space
dimensions. For that, we proceed as follows: First, we turn on the component n3 so that
the skyrmion field n is a real 3-vector with three components n1, n2, n3ð Þ constrained as
in Eqs. (4) and (5); see Figure 2. Second, here we have n ¼ n t, x, yð Þ; that is a 3-
component field living in the 2þ 1ð Þ space time with Lorentzian metric and coordi-
nates ξμ ¼ t, x, yð Þ. This means that dn ¼ ∂μn

� �

dξμ; explicitly dn ¼ ∂n
∂t dtþ ∂n

∂x dxþ ∂n
∂y dy.

3.2.1 Dzyaloshinskii-Moriya potential

The field action S3D ¼
Ð

dtL3D describing the space time dynamics of n t, x, yð Þ
has the same structure as Eq. (10); except that here the Lagrangian L3D involves two

Figure 2.
On left: a spin configuration with n2

1
þ n2

2
þ n2

3
¼ 1 dispatched on a 2-sphere. On right: a two space

dimensional magnetic skyrmion given by the stereographic projection of 2 to plane.
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space variable like
Ð

dxdyL3D and the density L3D ¼ � 1
2 ∂μn
� �2 � V nð Þ � Λ n:n� 1ð Þ;

this is a function of the constrained 3-vector n and its space time gradient ∂μn; it
reads in term of the Hamiltonian density as follows.

L3D ¼ π: _n�H3D nð Þ (17)

In this expression, the H3D nð Þ is the continuous limit of a lattice Hamiltonian
Hlatt na rμ

� �� 
�

involving, amongst others, the Heisenberg term, the Dyaloshinskii-

Moriya (DM) interaction and the Zeeman coupling. The V nð Þ in the first expression
of L3D is the scalar potential energy density; it models the continuous limit of the
interactions that include the DM and Zeeman ones [see Eq. (1.22) for its explicit
relation]. The field Λ ξð Þ is an auxiliary 3D spacetime field; it is a Lagrange multiplier
that carries the constraint n:n ¼ 1 which plays the same role as in subSection 3.1. By

variating this action with respect to the fields n and Λ; we get from δS3D

δΛ
¼ 0

precisely the field constraint n:n ¼ 1; and from δS3D

δn ¼ 0 the following Euler–

Lagrange equation Wn ¼ ∂V
∂n þ Λn: For later use, we express this field equation like

∂
μ
∂μna ¼

∂V

∂na
þ Λna (18)

The interest into this (18) is twice; first it can be put into the equivalent form

∂
μ
∂μna ¼ εabcDbnc where Db is an operator acting on nc to be derived later on [see

Eq. (22) given below]; and second, it can be used to give the relation between the

scalar potential and the operator Db. To that purpose, we start by noticing that there
are two manners to deal with the field constraint nana ¼ 1; either by using the
Lagrange multiplier Λ; or by solving it in terms of two angular field variables as
given by Eq. (5). In the second case, we have the triad na ¼
sin β cos α, sin β sin α, cos βð Þ and

ua ¼ cos β cos α, cos β sin α,� sin βð Þ , va ¼ � sin α, cos α, 0ð Þ (19)

but now β ¼ β t, x, yð Þ and α ¼ α t, x, yð Þ with 0≤ β≤ π and 0≤ α≤ 2π: Notice also
that the variation of the filed constraint leads to nadn

a ¼ 0 teaching us interesting
informations, in particular the two following useful ones. 1ð Þ the movement of na in
the target space is a rotational movement; and so can be expressed like

dna ¼ εabcω
bnc ⇔ dn ¼ ω∧n ⇔ ω � n∧ dn (20)

where the 1-form ωb is the rotation vector to be derived below. By substituting

(20) back into nadna, we obtain εbcaω
bncna which vanishes identically due to the

property εbcan
cna ¼ 0. 2ð Þ Having two degrees of freedom α and β, we can expand

the differential dna like uadβ þ va sin αdα with the two vector fields ua ¼ ∂na
∂β

and

va ¼ ∂na
∂α

as given above. Notice that the three unit fields n,u,vð Þ plays an important

role in this study; they form a vector basis of the field space; they obey the usual
cross products namely n ¼ u∧v and its homologue which given by cyclic permu-
tations; for example,

ua ¼ εabcv
bnc, va ¼ �εabcu

bnc (21)

Putting these Eq. (21) back into the expansion of dna in terms of dα, dβ; and
comparing with Eq. (20), we end up with the explicit expression of the 1-form

angular “speed” vector ωb; it reads as follows ωb ¼ vbdβ � ub sin αdα. Notice that by
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using the space time coordinates ξ, we can also express Eq. (20) like ∂μna ¼ εabcω
b
μn

c

with ωb
μ given by vb ∂μβ

� �

� ub sin α ∂μα
� �

: From this expression, we can compute the

Laplacian ∂
μ
∂μna; which, by using the above relations; is equal to εabc∂

μ ωb
μn

c
� �

reading explicitly as εabc ∂
μωb

μ

� �

nc þ ωb
μ ∂

μncð Þ
h i

or equivalently like ∂
μ
∂μna ¼

εabcDbnc with operator Db ¼ ωb
μ∂

μ þ ∂
μωb

μ

� �

. Notice that the above operator has an

interesting geometric interpretation; by factorising ωb
μ, we can put it in the form

ωd
μ Dμð Þbd where Dμð Þbd appears as a gauge covariant derivative Dμð Þbd ¼ δbd∂

μ þ Aμð Þbd
with a non trivial gauge potential Aμð Þbd given by ω

μ

d ∂
νωb

ν

� �

: Comparing with (18)

with ∂
μ
∂μna ¼ εabcDbnc, we obtain ∂V

∂na ¼ εabcDbnc � Λna; and then a scalar potential

energy V given by
Ð

εabc dnaDbnc
� �

� Λ
Ð

nadn
a. The second term in this relation

vanishes identically because nadn
a ¼ 0; thus reducing to

V ¼
ð

εabc dnaDbnc
� �

(22)

containing εabc naDbnc
� �

as a sub-term. In the end of this analysis, let us compare

this sub-term with the εabcn
bncμ1μ2Δ

aμ1μ2 with Δ
aμ1μ2 ¼ daμ3 … μD�2

εμ1 … μD giving the

general structure of the DM coupling (see end of subSection 2.1). For 1þ 2ð ÞD
spacetime, the general structure of DM interaction reads εabcd

a
0 nb∇nc
� �

:eμνε0μν; by

setting e0 ¼ eμνε0μν and da ¼ da0e
0 as well as Da ¼ da:∇, one brings it to the form

εabc naDbnc
� �

which is the same as the one following from (22).

3.2.2 From kinks to 2d Skyrmions

Here, we study the topological properties of the 2d Skyrmion with dynamics
governed by the Lagrangian density (17). From the expression of the 1þ 1ð ÞD
topological current Jμð Þ2D discussed in subSection 2.1, which reads as 1

2π ε
μνna∂νn

bεab,

one can wonder the structure of the 1þ 2ð ÞD topological current Jμð Þ3D that is
associated with the 2d Skyrmion described by the 3-vector field na ξð Þ. It is given by

Jμð Þ3D ¼ 1

8π
εμνρna∂νn

b
∂νn

cεabc (23)

where εabc is as before and where εμνρ is the completely antisymmetric Levi-
Civita tensor in the 1þ 2ð ÞD spacetime. The divergence ∂μ Jμð Þ3D of the above
spacetime vector vanishes identically; it has two remarkable properties that we
want to comment before proceeding. 1ð Þ The ∂μ Jμð Þ3D is nothing but the determi-

nant of the 3� 3 Jacobian matrix ∂na

∂ξμ
relating the three field variables na to the three

spacetime coordinates ξμ; this Jacobian det ∂na

∂ξμ

� �

is generally given by

1
3! ε

μνρ
∂μn

a
∂νn

b
∂νn

bεabc; it maps the spacetime volume d3ξ ¼ dt∧ dx∧ dy into the

target space volume d3n ¼ dn1 ∧ dn2 ∧ dn3. In this regards, recall that these two 3D
volumes can be expressed in covariant manners by using the completely antisym-
metric tensors εμνρ and εabc introduced earlier; and as noticed before play a central

role in topology. The target space volume d3n can be expressed like
1
3! εabcdn

a
∧ dnb ∧ dnc; and a similar relation can be also written down for the

spacetime volume d3ξ. Notice also that by substituting the differentials dna by their
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expansions ∂na

∂ξμ

� �

dξμ; and putting back into d3n, we obtain the relation d3n ¼ J3Dd
3
ξ

where J3D is precisely the Jacobian det ∂na

∂ξμ

� �

. 2ð Þ The conservation law ∂μ Jμð Þ3D ¼ 0

has a geometric origin; it follows from the field constraint relation n21 þ n22 þ n23 ¼ 1
degenerating the volume of the 3D target space down to a surface. This constraint

relation describes a unit 2-sphere 2nð Þ; and so a vanishing volume d3n
�

�


2
nð Þ
¼ 0; thus

leading to J3D ¼ 0 and then to the above continuity equation. Having the explicit
expression (23) of the topological current Jμ in terms of the magnetic texture field

n ξð Þ, we turn to determine the associated topological charge Q ¼
Ð

dxdyJ0 with

charge density J0 given by 1
8π εabcε

0ij
∂in

b
∂ jn

c
� �

na. Substituting ε0ijdx∧ dy by dξi ∧ dξ j,

we have J0dx∧ dy ¼ 1
8π εabcn

a dnb ∧ dnc
� �

. Moreover using the differentials dnb ¼
ubdβ þ vb sin αdα, we can calculate the area dnb ∧ dnc in terms of the angles α and β;

we find 2na sin αð Þdβ∧ dα where we have used εabc ubvc � ucvb
� �

¼ 2na: So, the

topological charge Q reads as 1
4π

Ð


2
n
sin βð Þdαdβ which is equal to 1. In fact this value

is just the unit charge; the general value is an integer Q ¼ N with N being the

winding number π2 
2
n

� �

; see below. Notice that J0 can be also presented like

J0 ¼ εabc

8π
na

∂nb

∂x

∂nc

∂y
� ∂nb

∂y

∂nc

∂x

	 


(24)

Replacing na by their expression in terms of the angles

sin β cos α, sin β sin α, cos βð Þ, we can bring the above charge density J0 into two

equivalent relations; first into the form like sin β
4π

∂β

∂x
∂α
∂y �

∂β

∂y
∂β

∂x

� �

; and second as

1
4π

∂ α, cos β½ �
∂ x, y½ � which is nothing but the Jacobian of the transformation from the x, yð Þ

space to the unit 2-sphere with angular variables α, βð Þ. The explicit expression of
n1, n2, n3ð Þ in terms of the x, yð Þ space variables is given by

n1 ¼
2x

x2 þ y2 þ 1
, n2 ¼

2y

x2 þ y2 þ 1
, n3 ¼

x2 þ y2 � 1

x2 þ y2 þ 1
(25)

but this is nothing but the stereographic projection of the 2-sphere 2ξ on the real

plane. So, the field na defines a mapping between 
2
ξ towards 2n with topological

charge given by the winding number 2n around 
2
n; this corresponds just to the

homotopy property π2 
2
n

� �

¼ N.

4. Three dimensional magnetic skyrmions

In this section, we study the dynamics of the 3d skyrmion and its topological

properties both in target space 4
n (with euclidian metric δAB) and in 4D spacetime


1,3
ξ parameterised by ξμ ¼ t, x, y, zð Þ (with Lorentzian metric gμν). The spacetime

dynamics of the 3d skyrmion is described by a four component field nA ξð Þ obeying a
constraint relation f nð Þ ¼ 1; here the f nð Þ is given by the quadratic form nAnA

invariant under SO 4ð Þ transformations isomorphic to SU 2ð Þ�SU 2ð Þ. The structure
of the topological current of the 3d skyrmion is encoded in two types of Levi-Civita
tensors namely the target space εABCD and the spacetime εμνρτ extending their
homologue concerning the kinks and 2d skyrmions.
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4.1 From 2d skyrmion to 3d homologue

As for the 1d and 2d solitons considered previous section, the spacetime dynam-

ics of the 3d skyrmion in 
1,3 is described by a field action S4D ¼

Ð

dtL4D with

Lagrangian realized as the space integral
Ð

dxdydzL4D. Generally, the Lagrangian
density L4D is a function of the soliton n t, x, y, zð Þ which is a real 4-component field
[n ¼ n1, n2, n3, n4ð Þ] constrained like f n ξð Þ½ � ¼ 1: For self ineracting field, the typical

field expression of L4D is given by � 1
2 ∂μn
� �2 � V nð Þ � Λ f nð Þ � 1½ � where V nð Þ is a

scalar potential; and where the auxiliary field Λ ξð Þ is a Lagrange multiplier carrying
the field constraint. This density L4D reads in terms of the Hamiltonian as Π: ∂n

∂t �
H nð Þ: Below, we consider a 4-component skyrmionic field constrained as n:n ¼ 1;
and focuss on a simple Lagrangian density L∘ ¼ � 1

2 ∂μn
� �

∂
μnð Þ � Λ n:n� 1½ � to

describe the degrees of freedom of n. Being a unit 4-component vector, we can
solve the constraint n:n ¼ 1 in terms of three angular angles α, β, γð Þ; by setting

n ¼ m sin γ, cos γð Þ, m ¼ sin β cos α, sin β sin α, cos βð Þ (26)

where m is a unit 3-vector parameterising the unit sphere 2α½ �. Putting this field

realisation back into L∘, we obtain � cos 2γ
2 ∂μγ
� �2 � 1� cos 2γ

4 ∂μm
� �2 � Λ m:m� 1½ �:

Notice that by restricting the 4D spacetime 1,3 to the 3D hyperplane z=const; and
by fixing the component field γ to π

2, the above Lagrangian density reduces to the
one describing the spacetime dynamics of the 2d skyrmion. Notice also that we can
expand the differential dnA in terms of dγ, dβ, dα; we find the following

dna ¼ ma cos γdγ þ sin γ uadβ þ va sin βdαð Þ, dn4 ¼ � sin γdγ (27)

For convenience, we sometimes refer to the three α, β, γð Þ collectively like αa ¼
α1, α2, α3ð Þ; so we have dnA ¼ EA

a dα
b with EA

a ¼ ∂nA

∂αa
:

4.2 Conserved topological current

First, we investigate the topological properties of the 3d skyrmion from the
target space view; that is without using the spacetine variables t, x, y, zð Þ ¼ ξμ. Then,
we turn to study the induced topological properties of the 3d skyrmion viewed from

the side of the 4D space time 1,3.

4.2.1 Topological current in target space

The 3d skyrmion field is described by a real four component vector nA subject to

the constraint relation nAnA ¼ 1; so the soliton has SO 4ð Þ � SO 3ð Þ1 � SO 3ð Þ2 sym-

metry leaving invariant the condition nAnA ¼ 1 that reads explicitly as n1ð Þ2 þ
n2ð Þ2 þ n3ð Þ2 þ n4ð Þ2 ¼ 1: The algebraic condition f n½ � ¼ 1 induces in turns the

constraint equation df ¼ 0 leading to nAdnA ¼ 0 and showing that nA and dnA

orthogonal 4-vectors in 
4
nð Þ. From this constraint, we can construct

nAdnB � nBdnA
� �

=2 which is a 4�4 antisymmetric matrix Ω
AB½ � generating the

SO 4ð Þ rotations; this Ω AB½ � contains 3+3 degrees of freedom generating the two

SO 3ð Þ1 and SO 3ð Þ2 making SO 4ð Þ; the first three degrres are given by Ω
ab½ � with

a, b ¼ 1, 2, 3; and the other three concern Ω
a4½ �: Notice also that, from the view of

the target space, the algebraic relation nAnA ¼ 1 describes a unit 3-sphere 3n sitting
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in 
4
n; as such its volume 4-form d4n, which reads as 1

4! εABCDdn
A ∧ dnB ∧ dnC ∧ dnD,

vanishes identically when restricted to the 3-sphere; i.e.: d4n
�

�


3
n
¼ 0. This vanishing

property of d4n on 
3
n is a key ingredient in the derivation of the topological current

J of the 3D skyrmion and its conservation dJ ¼ 0. Indeed, because of the property

d2 ¼ 0 (where we have hidden the wedge product ∧ ), it follows that d4n can be
expressed as dJ with the 3-form J given by

J ¼ 1

4!
εABCDn

AdnBdnCdnD (28)

This 3-form describes precisely the topological current in the target space; this is

because on 
3
n, the 4-form d4n vanishes; and then dJ vanishes. By solving, the

skyrmion field constraint nAnA ¼ 1 in terms of three angles αa as given by Eq. (26);

with these angular coordinates, we have mapping f : 
4
n ! 

3
n with 

3
n ≃

3
α. By

expanding the differentials like dnA ¼ EA
a dα

a with EA
a ¼ ∂nA

∂αa
; then the conserved

current on the 3-sphere 3α reads as follows

J ¼ 1

4!3!
εABCD nAEB

bE
C
c E

D
d

� �

εabcd3α (29)

where we have substituted the 3-form dαbdαcdαd on the 3-sphere 3α by the

volume 3-form εabcd3α. In this regards, recall that the volume of the 3-sphere is
Ð


3
nð Þ
d3α ¼ π2

2 .

4.2.2 Topological symmetry in spacetime

In the spacetime 1,3 with coordinates ξμ ¼ t, x, y, zð Þ, the 3d skyrmion is
described by a four component field nA ξð Þ and is subject to the local constraint

relation nAnA ¼ 1. A typical static configuration of the 3d skyrmion is obtained by
solving the field sonctraint in terms of the space coordinates; it is given by Eq. (26)
with the local space time fields m ξð Þ and γ ξð Þ thought of as follows

m ξð Þ ¼ x

r
,
y

r
,
z

r

� �

, γ ξð Þ ¼ arcsin
2rR

r2 þ R2 ¼ arccos
r2 � R2

r2 þ R2 (30)

with r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z2
p

, giving the radius of 2ξ, and R associated with the circle


1
ξ fibered over 2ξ; the value R ¼ r corresponds to γ ¼ π

2 and R> > r to γ ¼ π. Notice

that γ ξð Þ in Eq. (30) has a spherical symmetry as it is a function only of r (no angles
α, β, γ). Moreover, as this configuration obeys sin γ 0ð Þ ¼ 0 and sin γ ∞ð Þ ¼ 0; we
assume γ 0ð Þ ¼ n0π and γ ∞ð Þ ¼ n

∞
π. Putting these relations back into (26), we

obtain the following configuration

~n ¼ 2xR

r2 þ R2 ,
2yR

r2 þ R2 ,
2zR

r2 þ R2 ,
r2 � R2

r2 þ R2

	 


(31)

describing a compactification of the space 3
ξ into 

3
ξ which is homotopic to 

3
n.

From this view, the ~n : ξ ! ~n ξð Þ is then a mapping from 
3
ξ into 

3
n with topological

charge given by the winding number characterising the wrapping 
3
n on 

3
ξ; and for

which we have the property π3 
3
n

� �

¼ . In this regards, recall that 3-spheres 3
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have a Hopf fibration given by a circle 1 sitting over 2 (for short 3 � 
1⋉

2); this

non trivial fibration can be viewed from the relation 
3 � SU 2ð Þ and the

factorisation U 1ð Þ � SU 2ð Þ=U 1ð Þ with the coset SU 2ð Þ=U 1ð Þ identified with 
2; and

U 1ð Þ with 
1. Applying this fibration to 

3
ξ and 

3
n, it follows that ~n : 

3
ξ ! 

3
n; and

the same thing for the bases 2ξ ! 
2
n and for the fibers 1ξ ! 

1
n. Returning to the

topological current and the conserved topological charge Q ¼
Ð


3d

3rJ0 t, rð Þ, notice
that in space time the differential dnA expands like ∂μnA

� �

dξμ; then using the

duality relation J νρτ½ � ¼ εμνρτJ
μ, we find, up to a normalisation by the volume of the

3-sphere π2=2, the expression of the topological current Jμ ξð Þ in terms of the 3D
skyrmion field

Jμ ¼ 1

12π2
εμνρτna∂νn

b
∂ρn

c
∂τn

cεabcd (32)

In terms of the angular variables, this current reads like N ∂να∂ρβ∂τγε
μνρτ with

N ¼ 1
2π2 sin βð Þ sin γð Þ2. From this current expression, we can determine the associ-

ated topological charge Q by space integration over the charge density

J0 t, rð Þ ¼ � sin 2γ

2π2r2
dγ

dr
(33)

Because of its spherical symmetry, the space volume d3r can be substituted by

4πr2dr; then the charge Q reads as the integral � 4π
2π2

Ð γ ∞ð Þ
γ 0ð Þ sin 2γdγ whose integration

leads to the sum of two terms coming from the integration of sin 2γ ¼ 1
2 � 1

2 cos 2γ.

The integral first reads as 1
π
γ 0ð Þ � γ ∞ð Þ½ �; by substituting γ 0ð Þ ¼ n0π, it contributes

like Nπ. The integral of the second tem gives 1
2π sin 2γ 0ð Þ � sin 2γ ∞ð Þ½ �; it vanishes

identically. So the topological charge is given by

Q ¼ γ 0ð Þ � γ ∞ð Þ
π

¼ N (34)

5. Effective dynamics of skyrmions

In this section, we investigate the effective dynamics of a point-like skyrmion in
a ferromagnetic background field while focussing on the 2d configuration. First, we
derive the effective equation of a rigid skyrmion and comment on the underlying
effective Lagrangian. We also describe the similarity with the dynamics of an
electron in a background electromagnetic field. Then, we study the effect of dissi-
pation on the skyrmion dynamics.

5.1 Equation of a rigid skyrmion

To get the effective equation of motion of a rigid skyrmion, we start by the spin
0þ 1ð ÞD action Sspin ¼

Ð

dtLspin describing the time evolution of a coherent spin

vector modeled by a rotating magnetic moment n tð Þ with velocity _n ¼ dn
dt; and make

some accommodations. For that, recall that the Lagrangian Lspin has the structure
LB � ℏSγH where LB is the Berry term having the form LB ¼ qeA: _n with geometric
(Berry) potential A � nj _nh i; and where H is the Hamiltonian of the magnetic
moment n tð Þ obeying the constraint n2 ¼ 1. This magnetisation constraint is solved
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by two free angles α tð Þ, β tð Þ; they appear in the Berry term LB ¼ �ℏS 1� cos βð Þ dαdt :
Below, we think of the above magnetisation as a ferromagnetic background n rð Þ
filling the spatial region of 1,d

ξ with coordinates ξ ¼ t, rð Þ; and of the skymion as a

massive point- like particle R tð Þ moving in this background.

5.1.1 Rigid skyrmion

We begin by introducing the variables describing the skyrmion in the magnetic

background field n rð Þ. We denote by Ms the mass of the skyrmion, and by R and _R
its space position and its velocity. For concreteness, we restrict the investigation to

the spacetime 1,2
ξ and refer to R by the components Xi ¼ X,Yð Þ and to r by the

components xi ¼ x, yð Þ. Because of the Euclidean metric δij; we often we use both

notations Xi and Xi ¼ δijX
j without referring to δij. Furthermore; we limit the

discussion to the interesting case where the only source of displacements in 
1,2
ξ is

due to the skyrmion R tð Þ (rigid skyrmion). In this picture, the description of the
skyrmion R tð Þ dissolved in the background magnet n rð Þ is given by

n r, tð Þ ¼ n r� R tð Þ½ � (35)

In this representation, the velocity _n of the skyrmion dissolved in the back-

ground magnet can be expressed into manners; either like � _X
i
∂n
∂Xi; or as _X

i
∂n
∂xi; this is

because ∂

∂Xi ¼ � ∂

∂xi. With this parametrisation, the dynamics of the skyrmion is

described by an action Ss ¼
Ð

dtLs with Lagrangian given by a space integral Ls ¼
ℏs
a2

Ð

d2rLs and spacetime density as follows

Ls ¼ γℏSH� ℏSLB (36)

In this relation, the density LB ¼ � 1� cos βð Þ ∂α
∂t where now the angular vari-

ables are spacetime fields β t, rð Þ and α t, rð Þ. Similarly, the density H is the Hamilto-

nian density with arguments as H n, ∂μn, r
� 


and magnetic n as in Eq. (35). In this

field action Ss, the prefactor a�2 is required by the continuum limit of lattice
Hamiltonians Hlatt living on a square lattice with spacing parameter a. Recall that for
these Hlatt‘s, one generally has discrete sums like

P

μ …ð Þ,Pμ,ν …ð Þ and so on; in the

limit where a is too small, these sums turn into 2D space integrals like a�2
Ð

d2r …ð Þ.
To fix ideas, we illustrate this limit on the typical hamiltonian HHDMZ, it describes

the Heisenberg model on the lattice 2 augmented by the Dzyaloshinskii-Moriya
and the Zeeman interactions [66, 67]

HHDMZ ¼ �J
X

μ, νh i
n rμ
� �

n rνð Þ �D
X

μ, ν, ρ

dμ: n rνð Þ∧n rρ
� �� 


εμνρ �
X

μ

B:n rμ
� �

(37)

with rν ¼ rμ þ aeνμ; that is eνμ ¼ rν � rμ
� �

=a where a is the square lattice param-
eter. So, the continuum limitH of this lattice Hamiltonian involves the target space

metric δab and the topological Levi-Civita tensor εabc of the target space
3
n; it involves

as well the metric gμν and the completely antisymmetry εμνρ of the space time 1,2
ξ . In

terms of δab and εabc tensors, the continuous hamiltonian density reads as follows

H ¼ Ja2

2
δab∂

ina∂in
b þ aεabcd

a
μ nbDνρn

c
� �

εμνρ � B:n (38)
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with ∇νρ ¼ eνμ:∇. Below, we set J=1 and, to factorise out the normalisation factor

a2, scale the parameters of the model like daμ ¼ a~d
a

μ and B ¼ a2~B. For simplicity, we

sometimes set as well a¼ 1:

5.1.2 Skyrmion equation without dissipation

To get the effective field equation of motion of the point-like skyrmion without
dissipation, we calculate the vanishing condition of the functional variation of the

action; that is δ
Ð

dtd2rL
� �

¼ 0. General arguments indicate that the effective equa-
tion of the skyrmion with topological charge qs in the background magnet has the
form

Ms
€Xi ¼ qsEi þ qsεijz

_X
jBz (39)

from which one can wonder the effective Lagrangian describing the effective
dynamics of the skyrmion. It is given by

Ls ¼
Ms

2
δij _X

i
_X
j � qsεzijBzXi _X

j � qsV Xð Þ (40)

Notice that the right hand of Eq. (39) looks like the usual Lorentz force
(qeEþ qe _r∧B) of a moving electron with qe in an external electromagnetic field

Ei,Bið Þ; the corresponding Lagrangian is m
2
_r2 þ qeB: r∧ _rð Þ � qeE:r. This similarity

between the skyrmion and the electron in background fields is because the
skyrmion has a topological charge qs that can be put in correspondence with qe; and,
in the same way, the background field magnet Ei,Bi can be also put in correspon-
dence with the electromagnetic field Ei,Bið Þ. To rigourously derive the spacetime
Eqs. (39) and (40), we need to perform some manipulations relying on computing

the effective expression of Ss ¼ ℏS
Ð

dt
Ð

d2rLs

� �

and its time variation δSs ¼ 0.
However, as Ls has two terms like γℏSH� ℏSLB, the calculations can be split in two

stages; the first stage concerns the block γℏS
Ð

d2rH with H n, ∂μn, r
� 


which is a
function of the magnetic texture (35); that is n r� Rð Þ. The second stage regards the

determination of the integral ℏS
Ð

d2rLB. The computation of the first term is
straightforwardly identified; by performing a space shift r ! rþ R, the Hamilto-
nian density becomes H n, ∂μn, rþ R

� 


with n rð Þ and where the dependence in R

becomes explicit; thus allowing to think of the integral γℏS
Ð

d2rH as nothing but the

scalar energy potential V Rð Þ ¼ ℏSγ
Ð

d2rH t, r,Rð Þ: So, we have

δ

δXa ℏSγ

ð

d2rH
	 


¼ ∂V
∂Xa (41)

Concerning the calculation of the ℏS
Ð

d2rLB, the situation is somehow subtle; we

do it in two steps; first we calculate the δ
Ð

d2rLB

� �

because we know the variation
δLB

δna which is equal to 1
2 εabcn

b _nc. Then, we turn backward to determine ℏS
Ð

d2rLB by

integration. To that purpose, recall also that the Berry term LB is given by

� 1� cos βð Þ ∂α
∂t; and its variation δLB

δna
∂na

∂X j ∂X
j is equal to 1

2 εabcn
b _nc. To determine the

time variation δLB ¼ δ
Ð

d2rδLB, we first expand it like
Ð

d2r δL
δna δn

a; and use δna ¼
� ∂na

∂X j ∂X
j to put it into the form -

Ð

d2r δLB

δna
∂na

∂X j ∂X
j. Then, substituting δLB

δna by its

expression 1
2 εabcn

b _nc with _nc expanded like -∂n
c

∂Xi
_X
i
, we end up with
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δLB ¼ 2ℏS

ð

d2r
1

2
εabcn

b ∂n
c

∂xi
∂na

∂x j

	 


εij _XδY � _YδX
� �

(42)

Next, using the relation εijd2r ¼ dxi ∧ dx j, the first factor becomes
Ð

1
2 εabcn

adnb ∧ dnc gives precisely the skyrmion topological charge qs: So, the

resulting δLB reduces to 2qsℏS
_XδY � _YδX
� �

that reads also like

δLB ¼ �2qsℏSεij
_X
i
δX j (43)

This variation is very remarkable because it is contained in the variation of the

effective coupling Lint
B ¼ �2qsℏSεij

_X
i
X j which can be presented like Lint

B ¼ �qsAi
_X
i

where we have set Ai ¼ 2ℏSεzijX
j; this vector can be interpreted as the vector

potential of an effective magnetic field Bz ¼ 1
2 ε

zij
∂iAi. By adding the kinetic term

Ms

2
_X
i
_Xi, we end up with an effective Lagrangian LB associated with the Berry term;

it reads as follows LB ¼ Ms

2 δij _X
i
_X
j � qsAi

_X
i
: So, the effective Lagrangian Leff

describing the rigid 2d skyrmion in a ferromagnet is

Leff ¼
Ms

2
_R
2 � qsA: _R� V Rð Þ (44)

From this Lagrangian, we learn the equation of the motion of the rigid skyrmion

namely Ms
€X j ¼ f j þ 4qsℏSεzij

_X
i
; for the limit Ms ¼ 0, it reduces to _X

i ¼ 1
4qsℏS

εzji f j.

5.2 Implementing dissipation

So far we have considered magnetic moment obeying the constraint n2 ¼ 1 with
time evolution given by the LL equation _n ¼ �γf ∧n where the force f ¼ � ∂H

∂n .

Using this equation, we deduce the typical properties n: _n ¼ f : _n ¼ 0 from which we

learn that the time variation dH
dt of the Hamiltonian, which reads as ℏSγ

Ð

d2r ∂H
∂na

_na,

vanishes identically as explicitly exhibited below,

dH

dt
¼ �ℏSγ

ð

d2r f : _nð Þ (45)

In presence of dissipation, we loose energy; and so one expects that dH
dt <0;

indicating that the rigid skyrmion has a damped dynamics. In what follows, we
study the effect of dissipation in the ferromagnet and derive the damped skyrmion
equation.

5.2.1 Landau-Lifshitz-Gilbert equation

Due to dissipation, the force F acting on the rigid skyrmion R tð Þ has two terms,
the old conservative f ¼ � ∂H

∂n ; and an extra force δf linearly dependent in

magnetisation velocity _n. Due to this extra force δf ¼ � α
γ
_n, the LL equation gets

modified; its deformed expression is obtained by shifting the old force f like F ¼
f � α

γ
_n with α a positive damping parameter (Gilbert parameter). As such, the

previous LL relation gives the so called Landau-Lifschitz-Gilbert (LLG) equation
[68, 69]
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_n ¼ �γf ∧nþ α _n∧n (46)

where its both sides have _n. From this generalised relation, we still have n: _n ¼ 0
(ensuring n2 ¼ 1); however f : _n 6¼ 0 as it is equal to the Gilbert term namely
�α f ∧nð Þ: _n: Notice that Eq. (46) still describe a rotating magnetic moment in the
target space (dn ¼ 0); but with a different angular velocity Ω which, in addition to
f, depends moreover on the Gilbert parameter and the magnetisation n. By
factorising Eq. (46) like _n ¼ Ω∧n, we find

Ω ¼ �γ

1þ α2
f þ α f ∧nð Þ½ � (47)

Notice that in presence of dissipation (α 6¼ 0), the variation of the hamiltonian
dH
dt given by (45) is no longer non vanishing; by first replacing f : _n ¼ �α f ∧nð Þ: _n and

putting back in it, we get

dH

dt
¼ αℏS

ð

d2rγ f ∧nð Þ: _n (48)

then, substituting γf ∧n ¼ α _n∧n� _n; we find that dH
dt is given by �αℏs

Ð

d2r: _n2

indicating that dH
dt <0; and consequently a decreasing energy H tð Þ (loss of energy)

while increasing time.

5.2.2 Damped skyrmion equation

To obtain the damped skyrmion equation due to the Gilbert term, we consider
the rigid magnetic moment n r� R tð Þ½ �; and compute the expression of the

skyrmion velocity _R in terms of the conservative force f and the parameter α. To
that purpose we start from Eq. (46) and multiply both equation sides by ∧ dnwhile
assuming f :n ¼ 0 (the conservative force transverse to magnetisation), we get
_n∧ dn ¼ �γ f :dnð Þnþ α dn: _nð Þn. Then, multiply scalarly by n, which corresponds to
a projection along the magnetisation, we obtain

n: _n∧ dnð Þ ¼ �γ f :dnð Þ þ α dn: _nð Þ (49)

Substituting dn and _n by their expansions dxi ∂inð Þ and � _X
i
∂inð Þ, then multiply-

ing by ∧ dxl; we end up with a relation involving dx j
∧ dxl (which reads as εzjld2r); so

we have

_X
l
4πJ0d2r
� �

¼ �γε0lj f :∂ jn
� �

d2rþ αε0lj _X j ∂ jn
� �2

d2r (50)

where we have set J0 ¼ 1
2π ε

zijn: ∂inð Þ∧ ∂ jn
� �� 


, defining the magnetization den-

sity, and where we have replaced ∂in:∂ jn
� �

by δij ∂knð Þ2. By integrating over the 2d

space while using
Ð

J0d2r ¼ 4πqs and setting η j ¼ 1
4π

Ð

d2r ∂ jn
� �2 � η, we arrive at the

relation

4πqs
_X
l ¼ γε0lj

ð

f :∂ jn
� �

d2r� 4πηαε0lj _X
l

(51)

with εzxy ¼ �εzxy ¼ �1. The remaining step is to replace the conservative force f

by � ∂H
∂n and proceeds in performing the integral over f :∂ jn

� �

. Because of the explicit
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dependence into r, the f :∂ jn can be expressed like ∂
exp
j H� ∂

tot
j H; the explicit

derivation term ∂
exp
j H has been added because the Hamiltonian density has an

explicit dependence H n, ∂μn, r
� 


: Recall that ∂totj H is given by ∂
exp
j Hþ ∂H

∂n :∂ jn which

is equal to ∂
exp
j H� f :∂ jn: Notice also that the term ∂

exp
j H can be also expressed like

� ∂H
∂R. Therefore, the integral f :∂ jn

� �

d2r has two contributions namely the
Ð

∂
tot
j H

� �

d2r which, being a total derivative, vanishes identically; and the term
Ð

∂
exp
j H

� �

d2r that gives � ∂V
∂R : Putting this value back into (51), we end up with

4πqs
_X
l ¼ γεzlj

∂V
∂X j

þ 4πηα

γ
_X
l

	 


(52)

Implementing the kinetic term of the skyrmion, we obtain the equation with

dissipation Ms
€R ¼ � ∂V

∂R þ G z∧ _R� ηα

qs
_R

� �

where the constant G ¼ 4πℏSqs
a2 stands for

the gyrostropic constant.

6. Electron-skyrmion interaction

In this section, we investigate the interacting dynamics between electrons and
skyrmions with spin transfer torque (STT) [70]. The electron-skyrmion interaction

is given by Hund coupling JH Ψ
†σaΨ

� �

:na which leads to emergent SU 2ð Þ gauge
potential that mediate the interaction between the spin texture n t, rð Þ and the two
spin states Ψ↑,Ψ↓ð Þ of the electron. We also study other aspects of electron/
skyrmion system like the limit of large Hund coupling; and the derivation of the
effective equation of motion of rigid skyrmions with STT.

6.1 Hund coupling

We start by recalling that a magnetic atom (like iron, manganese, ...) can be
modeled by a localized magnetic moment n t, rð Þ and mobile carriers represented by
a two spin component field Ψ t, rð Þ; the components of the fields n and Ψ are
respectively given by na t, rð Þ with a=1,2,3; and by Ψα t, rð Þ with α ¼ ↑↓. Using the

electronic vector density j eð Þ ¼ Ψ
†σΨ, the interaction between localised and itiner-

ant electrons of the magnetic atom are bound by the Hund coupling reading as
He�n ¼ �JHn:j eð Þ with Hund parameter JH >0 promoting alignment of n and j eð Þ. So,

the dynamics of the interacting electron with the backround n is given by the

Lagrangian density Le ¼ ℏΨ† i∂
∂tΨ�He�n expanding as follows

Le Ψ,n½ � ¼ ℏΨ† i∂

∂t
Ψ�Ψ

† P2

2m
� JHσ:n

	 


Ψ (53)

where P ¼ ℏ
i ∇ and σ:n ¼ σxnx þ σyny þ σznz.

6.1.1 Emergent gauge potential

Because of the ferromagnetic Hund coupling (JH >0), the spin observable Ŝ
z

e ¼
ℏ
2 σ

z of the conduction electron tends to align with the orientation σn ¼ σ:n of the
magnetisation n — with angle θ ¼ ^ez,nð Þ—; this alinement is accompanied by a
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local phase change of the electronic wave function Ψwhich becomes ψ ¼ UΨwhere

U t, rð Þ ¼ eiΘ t,rð Þ is a unitary SU 2ð Þ transformation mapping σz into σn; that is σn ¼
U†σzU. For later use, we refer to the new two components of the electronic field like
ψþn,ψ�n (for short ψ _α with label _α ¼ �) such that the gauge transformation reads
as ψ _α ¼ Uα

_αΨα; that is ψ� ¼ U�↓Ψ↑ þ U�↑Ψ↓. This local rotation of the electronic

spin wave induces a non abelian gauge potential with components Aμ ¼ �iU∂μU
†

mediating the interaction between the electron and the magnetic texture. Indeed,
putting the unitary change into Le Ψ,n½ �, we end up with an equivalent Lagrangian
density; but now with new field variables as follows

Le ψ ,Aμ

� 


¼ ℏψ† i∂0 � Aa
0σa

� �

ψ � ψ† Pþ ℏAaσað Þ2
2m

� JHσ
z

 !

ψ (54)

Here, the vector potential matrix Aμ is valued in the SU 2ð Þ Lie algebra generated
by the Pauli matrices σa; so it can be expanded as Ax

μσ
x þ Ay

μσ
y þ Az

μσ
z with compo-

nents Aa
μ ¼ 1

2Tr σaAμ

� �

. Notice that in going from the old Le Ψ,n½ � to the new
~Le ψ ,Aμ

� 


, the spin texture n has disappeared; but not completely as it is manifested

by an emergent non abelian gauge potential Aμ; so everything is as if we have an
electron interacting with an external field Aμ. To get the explicit relation between

the gauge potential and the magnetisation, we use the isomorphism SU 2ð Þ � 
3 and

the Hopf fibration 
1 � 

2 to write the unitary matrix U as follows

U ¼ eiγ
cos

θ

2
e�iφ sin

θ

2

eþiφ sin
θ

2
� cos

θ

2

0

B

@

1

C

A
, Aμ ¼

ℨμ W�
μ

Wþ
μ �ℨμ

 !

(55)

where the factor eiγ describes 1 and where, for later use, we have set W�
μ ¼

A1
μ � iA2

μ and ℨμ ¼ A3
μ. So, a specific realisation of the gauge transformation is given

by fixing γ ¼ cst (say γ ¼ 0); it corresponds to restricting 
3 down to 

2 and SU 2ð Þ
reduces down to SU 2ð Þ/U 1ð Þ. In this parametrisation, we can also express the
unitary matrix U likem:σ with magnetic vector m ¼ sin θ

2 cosφ, sin
θ
2 sinφ, cos

θ
2

� �

obeying the property m2 ¼ 1; the same constraint as before. By putting back into

Uσ:nU†, and using some algebraic relations like εabdεdce ¼ δacδbe � δbcδae, we obtain
2 m:nð Þm� n½ �:σ. Then, substituting n by its expression sin θ cosφ, sin θ sinφ, cos θð Þ,
we end up with the desired direction σz appearing in Eq. (54). On the other hand, by

puttingU ¼ m:σ back into�iU∂μU
†, we obtain an explicit relation between the gauge

potential and the magnetic texture namely Aa
μ ¼ εabcmb∂μmc. From this expression, we

learn the entries of the potential matrix Aμ of Eq. (55); the relation with the texture n
is given in what follows seen thatm θð Þ ¼ n θ=2ð Þ.

6.1.2 Large Hund coupling limit

We start by noticing that the non abelian gauge potential Aa
μ obtained above can

be expressed in a condensed form like εabcma∂μmb (for short m∧ ∂μmÞ; so it is
normal to m; and then it can be expanded as follows

Aa
μ ¼

1

2
ea∂μθ � fa sin

θ

2
∂μφ (56)
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where we have used the local basis vectors m θð Þ, e θð Þ and f θð Þ. This is an
orthogonal triad which turn out to be intimately related with the triad vectors given
by Eq. (5); the relationships read respectively like n θ=2ð Þ,u θ=2ð Þ and v θ=2ð Þ
involving θ=2 angle instead of θ. Substituting these basis vectors by their angular
values, we obtain

A1
μ

A2
μ

A3
μ

0

B

B

@

1

C

C

A

¼ 1

2

� sinφ

cosφ

0

0

B

@

1

C

A
∂μθ �

1

2

sin θ cosφ

sin θ sinφ

cos θ � 1

0

B

@

1

C

A
∂μφ (57)

from which we learn that the two first components combine in a complex gauge

field W�
μ ¼ A1

μ � iA2
μ which is equal to i

2 e
iφw�

∂μn with w� ¼ u� iv; and the third

component A3
μ has the remarkable form 1

2 1� cos θð Þ∂μφ whose structure recalls the

geometric Berry term (7). Below, we set A3
μ ¼ ℨμ as in Eq. (55); it contains the

temporal component ℨ0 and the three spatial ones ℨi — denoted in Section 2
respectively as a0 and ai—.

In the large Hund coupling (JH >> 1), the spin of the electron is quasi- aligned
with the magnetisation n; so the electronic dynamics is mainly described by the
chiral wave function ψþ, 0

� �

denoted below as χ ¼ χ, 0ð Þ. Thus, the effective
properties of the interaction between the electron and the skyrmion can be obtained
by restricting the above relations to the polarised electronic spin wave χ. By setting
ψ� ¼ 0 into Eq. (54) and using χ†σxχ ¼ χ†σyχ ¼ 0 and χ†σzχ ¼ χχ as well as

replacing Ax
μσx

� �2
þ Ay

μσy

� �2
by 1

4 ∂μn
� �2

, the Lagrangian (54) reduces to the

polarised L polð Þ
e ¼ Le χ,n,Zμ

� 


given by

L polð Þ
e ¼ ℏχ† i∂0 � ℨ0σ

zð Þχ � χ†
Pi þ ℏℨa

i σa
� �2

2m
þ ℏ2

8m
∂μn
� �2 � JHσ

z

 !

χ (58)

where ℨ0,ℨið Þ define the four components of the emergent abelian gauge
prepotential ℨμ associated with the Pauli matrix σz; their explicit expressions are

given by ℨ0 ¼ 1
2 1� cos θð Þ _φ and ℨi ¼ 1

2 1� cos θð Þ∂iφ; their variation with respect

to the magnetic texture are related to the magnetisation field like
δℨμ

δn ¼ 1
2 ∂μn∧n.

6.2 Skyrmion with spin transfer torque

Here, we investigate the full dynamics of the electron/skyrmion system e�,nf g
described by the Lagrangian density Ltot containing the parts Ln þ Le�n; the elec-
tronic Lagrangian Le�n is given by Eq. (54). The Lagrangian Ln, describing the
skyrmion dynamics, is as in eqs (5)–(7) namely �ℏSℨ0 �Hn with ℨ0 ¼
1
2 1� cos θð Þ _φ: By setting ~Hn ¼ Hn þ ℏ2

8m ∂μn
� �2

ψ†ψ , the full Lagrangian density Ltot

with can be then presented like ~L ψ ,ℨμ

� 


� ~Hn like

~L ψ ,ℨμ

� 


¼ �ℏSℨ0 þ ℏψ† i
∂

∂t
� ℨ0σ

z

	 


ψ � ψ† Pi þ ℏℨiσ
zð Þ2

2m

 !

ψ (59)

with Pi þ ℏℨiσ
zð Þ2 expanding as P2

i þ ℏ2
iℨ

2 þ ℏ Piℨ
i þ ℨiPi

� �

σz. The equations of

motion of ψ and n are obtained as usual by computing the extremisation of this
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Lagrangian density with respect to the corresponding field variables. In general, we
have δLtot ¼ δLtot=δnð Þ:δnþ δLtot=δψð Þ:δψ þ hcwhich vanishes for δLtot=δn ¼ 0 and
δLtot=δψ

† ¼ 0.

6.2.1 Modified Landau-Lifshitz equation

Regarding the spin texture n, the associated field equation of motion is given by
δLtot=δn ¼ 0; the contributions to this equation of motion come from the variations
~L and ~Hn with respect to δn namely

δ ~H
δn

� δ ~L
δℨμ

δℨμ

δn
¼ 0 (60)

The variation δHn
δn depends on the structure of the skyrmion Hamiltonian density

~H; its contribution to the equation of motion can be presented like λ∂μ∂μn ¼ F with

some factor λ. However, the variation δL
δℨμ

δℨμ

δn describes skyrmion-electron interac-

tion; and can be done explicitly into two steps; the first step concerns the calculation

of the time like component δL
δℨ0

δℨ0

δn ; it gives � ℏ
2 2Sþ ψ†σzψ½ � _n∧nð Þ; it is normal to n

and to velocity _n and involves the eletron spin density ρze ¼ ψ†σzψ .

The second step deals with the calculation of the space like component� δL
δℨi

δℨi

δn ; the

factor δL
δℨi

gives �ℏJ i with a 3-component current vector density reading as follows

J i ¼
1

2m
ψ†σzPiψ � Piψ

†σzψ
� �

þ ℏ

m
ψ†ψ
� �

ℨi (61)

This vector two remarkable properties: 1ð Þ it is given by the sum of two contri-

butions as it it reads like J þnð Þ
i þ J �nð Þ

i with

J þnð Þ
l ¼ ℏ

m
ψþnψþn

� �

ℨl þ
1

2m
ψþn

ℏ

i
∂lψþn �

ℏ

i
∂lψþnψþn

	 


J �nð Þ
l ¼ ℏ

m
ψ�nψ�nð Þℨl �

ℏ

2im
ψ�n

ℏ

i
∂lψ�n �

ℏ

i
∂lψ�nψ�n

	 
 (62)

These vectors are respectively interpreted as two spin polarised currents; the

J þnð Þ
i is associated with the ψþn wave function as it points in the same direction as n;

the J �nð Þ
i is however associated with ψ�n pointing in the opposite direction of n. 2ð Þ

Each one of the two J þnð Þ and J �nð Þ are in turn given by the sum of two contribu-
tions as they can be respectively split like ℏ

m ψþnψþn

� �

ℨþ j
ψþn

and ℏ
m ψ�nψ�nð Þℨþ

j
ψ�n

with vector density j
ψ
standing for the usual current vector j

ψ
¼ 1

2mψP
$
ψ . The

contribution ℏ
m ψψð Þℨ is proportional to the emergent gauge field ℨ; it defines a spin

torque transfert to the vector current density J i.

Regarding the factor δℨi

δn , it gives
1
2 ∂in∧nð Þ; by substituting, the total contribution

of δL
δℨi

δℨi

δn leads to � ℏ
2 J i

∂in
� �

∧n that reads in a condensed form like � ℏ
2 J :∇nð Þ∧n.

Putting back into Eq. (60), we end up with the following modified LL equation

�ℏ

2
2Sþ ψ†σzψ
� 


_n∧nð Þ þ ℏ

2
J :∇nð Þ∧n� δHn

δn
¼ 0 (63)
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To compare this equation with the usual LL equation (ℏS _n ¼ δHn
δn ∧nÞ in absence

of Hund coupling (which corresponds to putting ψ to zero), we multiply Eq. (63)
by ∧n in order to bring it to a comparable relation with LL equation. By setting

ρze ¼ ψ†σzψ , describing the electronic spin density ψþn

�

�

�

�

2 � ψ�nj j2; we find

�ℏ
S

a�d
þ ρze

2

� �

_n ¼ δHn

δn
∧n� ℏ J :∇ð Þn½ � (64)

where, due to n2 ¼ 1, the space gradient J :∇n is normal to n; and so it can be set

as Ω eð Þ ∧n with Ω
eð Þ ¼ J iω

eð Þ
i . The above equation is a modified LL equation; it

describes the dynamics of the spin texture interacting with electrons through Hund

coupling. Notice that for ψ ! 0, this equation reduces to ℏ S
a�d _n ¼ ω nð Þ ∧n showing

that the vector n rotates with ω nð Þ ¼ � δHn
δn . By turning on ψ , we have _n �

ω nð Þ þΩ
eð Þ� �

∧n indicating that the LL rotation is drifted by Ω
eð Þ coming from two

sources: ið Þ the term ℏ J :∇ð Þn½ � which deforms LL vector ω nð Þ drifted by the

n∧ J :∇nð Þ; and iið Þ the electronic spin density ρze ¼ Ne

a�d; this term adds to the density
S
a�d of the magnetic texture per unit volume; it involves the number Ne ¼
Nþn

e �N�n
e with N�n

e standing for the filling factor of polarized conduction elec-
trons. Moreover, if assuming n t, rð Þ ¼ n r�Vstð Þ with a uniform Vs, then the drift

velocity _na ¼ � ∂in
að ÞV i

s and Jie∂i
� �

na ¼ Jae . Putting back into the modified LLG
equation, we end up with the following relation between the Vs and ve velocities

Sþ ne
2

� �

vas ¼ nev
a
e where we have set ∂in

að ÞV i
s ¼ vas and Jae ¼ nev

a
e .

6.2.2 Rigid skyrmion under spin transfer torque

Here, we investigate the dynamics of a 2D rigid skyrmion [n ¼ n r� Rð Þ� under a
spin transfer torque (STT) induced by itinerant electrons. For that, we apply the
method, used in sub-subSection 5.1.2 to derive Ls from the computation space

integral of
Ð

d2rLs and Eq. (36). To begin, recall that in absence of the STT effect,
the Lagrangian Ls of the 2D skyrmion’s point- particle, with position R ¼ X,Yð Þ and
velocity _R ¼ _X, _Y

� �

, is given by Ms

2
_R
2 � G

2 z: R∧ _R
� �

� V Rð Þ with effective scalar

energy potential V Rð Þ ¼
Ð

d2rH r,Rð Þ and a constant G ¼ 4πℏ
a2 qsS: Under STT

induced by Hund coupling, the Lagrangian Ls gets deformed into ~Ls ¼ Ls þ ΔLs,
that is

~Ls ¼
Ms

2
_R
2 �G

2
z: R∧ _R
� �

� V Rð Þ þ ΔLs (65)

To determine ΔLs, we start from ~Ls ¼
Ð

d2r ~Ltot with Lagrangian density as
~Ltot ¼ ~L � ~Hn with ~L given by Eq. (59). For convenience, we set ~L ¼ �ℏSℨ0 þ ~Le�n

and set

~Le�n ¼ ℏψ† i
∂

∂t
� ℨ0σ

z

	 


ψ � ψ† Pi þ ℏℨiσ
zð Þ2

2m

 !

ψ (66)

The deviation ΔLs with respect to Ls in (65) comes from those terms in Eq. (66).
Notice that this expression involves the wave function ψ coupled to the emergent

gauge potential field ℨμ ¼ ℨ0,ℨið Þ; that is �ℏ
Ð

d2rψ†σzψℨ0 and
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� 1
2m

Ð

d2rψ† Pi þ ℏℨiσ
zð Þ2

h i

ψ . Thus, to obtain ΔLs, we first calculate the variation

δ ΔLsð Þ
δℨμ

δℨμ and put δℨμ ¼
δℨμ

δR :δR. Once, we have the explicit expression of this

variation, we turn backward to deduce the value of ΔLs. To that purpose, we
proceed in two steps as follows: ið ÞWe calculate the temporal contribution
δ ΔLsð Þ
δℨ0

δℨ0

δR :δR; and iið Þ we compute the spatial δ ΔLsð Þ
δℨi

δℨi

δR :δR: Using the variation δℨ0 ¼
1
2 δn: n∧ ∂ jn

� �

_X
j
, the contribution of the first term can be put as follows

δ ΔLsð Þ
δℨ0

δℨ0

δXl
δXl ¼ �ℏ

2
Jz0εzij

_X
i
δX j

h i

(67)

where we have set ρz ¼ ψ†σzψ and Jz0 ¼
Ð

d2r ρz

2 ε
zkln: ∂kn∧ ∂lnð Þ: Notice that the

right hand side in above relation can be also put into the form ℏ
2 J

z
0εzij δ

_X
i
X j

h i

�

δ ℏ
2 εzijJ

z
0
_X
i
X j

h i

indicating that ΔLs must contain the term ℏ
2 εzijJ

z
0
_X
i
X j which reads as

well like ℏ
2 J0z:

_R∧R
� �

. Regarding the spatial part δ ΔLsð Þ
δℨi

: δℨi

δXl δX
l, we have quite similar

calculations allowing to put it in the following form

δ ΔLsð Þ
δℨi

:
δℨi

δXl
δXl ¼ �ℏεzijJ

ziδX j (68)

where we have set Jzi tð Þ ¼
Ð

d2rJ zi t, rð Þ with J zi t, rð Þ given by Eq. (61). Here
also notice that the right hand of above equation can be put as well like

δ �ℏεzijJ
ziX j

� 


indicating that ΔLs contains in addition to ℏ
2 J0z:

_R∧R
� �

, the term

�ℏεzijJ
ziX j which reads also as �ℏz:J ∧R with two component vector J ¼ Jzx, Jzyð Þ.

Thus, we have the following modified skyrmion equation

~Ls ¼
Ms

2
_R
2 � 1

2
Gþ ℏJ0ð Þz: _R∧R

� �

þ ℏz: J ∧Rð Þ � V Rð Þ (69)

from which we determine the modified equation of motion of the rigid skyrmion
in presence of spin transfer torque.

7. Comments and perspectives

In this bookchapter, we have studied the basic aspects of the solitons dynamics
in various 1þ dð Þ spacetime dimensions with d ¼ 1, 2, 3; while emphasizing the
analysis of their topological properties and their interaction with the environment.
After having introduced the quantum SU 2ð Þ spins, their coherent vector represen-
tation S ¼ R α, β, γð ÞS0 with S0 standing for the highest weight spin state; and their
link with the magnetic moments μ⋉Sn, we have revisited the time evolution of
coherent spin states; and proceeded by investigating their spatial distribution while
focusing on kinks, 2d and 3d skyrmions. We have also considered the rigid
skyrmions dissolved in the magnetic texture without and with dissipation. More-
over, we explored the interaction between electrons and skyrmions and analyzed
the effect of the spin transfer torque. In this regard, we have refined the results
concerning the modified LL equation for the rigid skyrmion in connection with
emergent non abelian SU 2ð Þ gauge fields. It is found that the magnetic skyrmions,
existing in a ferromagnetic (FM) medium, show interesting behaviors such as
emergent electrodynamics [71] and current-driven motion at low current densities
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[72, 73]. Consequently, the attractive properties of ferromagnetic skyrmions make
them promising candidates for high-density and low-power spintronic technology.
Besides, ferromagnetic skyrmions have the potential to encode bits in low-power
magnetic storage devices. Therefore, alternative technology of forming and con-
trolling skyrmions is necessary for their use in device engineering. This investiga-
tion was performed by using the field theory method based on coherent spin states
described by a constrained spacetime field captured by f nð Þ ¼ 1. Such condition
supports the topological symmetry of magnetic solitons which is found to be
characterised by integral topological charges Q that are interpreted in terms of
magnetic skyrmions and antiskyrmion; these topological states can be imagined as
(winding) quasiparticle excitations with Q >0 and Q <0 respectively.

Regarding these two skyrmionic configurations, it is interesting to notice that,
unlike magnetic skyrmions, the missing rotational symmetry of antiskyrmions leads
to anisotropic DMI, which is highly relevant for racetrack applications. It follows
that antiskyrmions exist in certain Heusler materials having a particular type of
DMI, including MnPtPdSn [36] and MnRhIrSn [74]. It is then deduced that stabi-
lized antiskyrmions can be observed in materials exhibiting D2d symmetry such as
layered systems with heavy metal atoms. Furthermore, the antiskyrmion show
some interesting features, namely long lifetimes at room temperature and a parallel
motion to the applied current [75]. Thus, antiskyrmions are easy to detect using
conventional experimental techniques and can be considered as the carriers of
information in racetrack devices.

To lift the limitations associated with ferromagnetic skyrmions for low-power
spintronic devices, recent trends combine multiple subparticles in different mag-
netic surroundings. Stable room-temperature antiferromagnetic skyrmions in syn-
thetic Pt/Co/Ru antiferromagnets result from the combination of two FM nano-
objects coupled antiferromagnetically [76]. Compared to their ferromagnetic ana-
logs, antiferromagnetic skyrmions exhibit different dynamics and are driven with
several kilometers per second by currents. Coupling two subsystems with mutually
reversed spins, gives rise to ferrimagnetic skyrmions as detected in GdFeCo films
using scanning transmission X-ray microscopy [77]. At ambient temperature, these
skyrmions move at a speed of 50m=s with a reduced skyrmion Hall angle of 20°.
Characterized by uncompensated magnetization, the vanishing angular momentum
line can be utilized as a self-focusing racetrack for skyrmions. Another technologi-
cally promising object is generated by the coexistence of skyrmions and
antiskyrmions in materials with D2d symmetry. The resulting spin textures consti-
tute information bits ‘0’ and ‘1’ generalizing the concept of racetrack device. Insen-
sitive to the repulsive interaction between the two distinct nano-objects, such
emergent devices are promising solution for racetrack storage applications.
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