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Chapter

Al-Based Approach for Lawn
Length Estimation in Robotic
Lawn Mowers

Yoichi Shivaishi, Haohao Zhang and Kazuhiro Motegi

Abstract

This chapter describes a part of autonomous driving of work vehicles. This type
of autonomous driving consists of work sensing and mobility control. Particularly,
this chapter focuses on autonomous work sensing and mobility control of a com-
mercial electric robotic lawn mower, and proposes an Al-based approach for work
vehicles such as a robotic lawn mower. These two functions, work sensing and
mobililty control, have a close correlation. In terms of efficiency, the traveling
speed of a lawn mower, for example, should be reduced when the workload is high,
and vice versa. At the same time, it is important to conserve the battery that is used
for both work execution and mobility. Based on these requirements, this chapter is
focused on developing an estimation system for estimating lawn grass lengths or
ground conditions in a robotic lawn mower. To this end, two AI algorithms, namely,
random forest (RF) and shallow neural network (SNN), are developed and evalu-
ated on observation data obtained by a fusion of ten types of sensor data. The RF
algorithm evaluated on data from the fusion of sensors achieved 92.3% correct
estimation ratio in several experiments on real-world lawn grass areas, while the
SNN achieved 95.0%. Furthermore, the accuracy of the SNN is 94.0% in experi-
ments where sensor data are continuously obtained while the robotic lawn mower is
operating. Presently, the proposed estimation system is being developed by inte-
grating two motor control systems into a robotic lawn mower, one for lawn grass
cutting and the other for the robot’s mobility.

Keywords: AI, robotic lawn mower, work vehicle, Random Forests,
Neural Network, embedded system, Hybrid Twin

1. Introduction

Recently, automated driving algorithms and systems for work vehicles such as
robotic lawn grass or grass mowers (robo-mowers) [1-3], autonomous snow
blowers [4], automatic guided vehicles (AGVs) [5], autonomous delivery vehicles
[6], and autonomous mobile robots (AMRs) [7], have attracted much attention.
These vehicles are made possible by significant advances in sensor fusion technol-
ogy, high-performance embedded systems, Al algorithms and advanced model-
based design or development methods. Particularly, Industry 4.0 or Society 5.0
needs the digital transformation or smart factory in industry and, now, AGVs and
AMRs perform some tasks that are essential for constructing the automatic
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production lines. As these vehicles share a battery for their work and mobility, the
interaction between their functions should be effectively controlled to reduce bat-
tery charging frequency and time, as well as working time. The authors in [4]
attempted to optimize the skidding control of a snow blower, which has a motor for
mobility and an engine for blowing snow. In this case, the engine is also used to
generate electric power, which is then used to charge the battery that powers the
motor. In this sense, its work and mobility share the energy, thus the two functions
require effective energy management. Precise control handling of work load in
these work vehicles is critical for optimizing its energy management.

In the following sections, because commercial robo-mowers [8] are popular and
readily available for experiments, a robo-mower is used as an example for optimiz-
ing energy management in work vehicles. Mobility control is the next research
theme for optimizing the energy management of robo-mowers. Current robo-
mowers do not recognize the length of lawn grasses or ground conditions such as
dirt, gravel, or concrete. As a result, the motor for cutting lawn grasses operates at a
constant rotation speed from start to finish. Therefore, if the rotation speed of the
motor for a lawn grass cutter is precisely controlled, battery wastage can be
avoided. Moreover, because the control of grass cutting and mobility is correlated,
the mobility speed should be controlled according to the lawn grass lengths and
ground conditions. Then, the working time can also be reduced. Therefore, the
precise estimation of lawn grass lengths using effective sensor data is required in the
first stage, i.e., preventing battery wastage. Then, in the second step, the mobility of
robo-mowers is controlled according to the estimation results from the first stage.
Finally, a cooperative control of a group of robo-mowers is researched [3] and
implemented. In particular, the group control of robo-mowers becomes meaningful
when the performance of each robo-mower is optimized.

In this study, an Al-based approach is adopted for the estimation of lawn grass
lengths from the fusion of sensor data. A random forest (RF) algorithm and shallow
neural network (SNN) are suggested. Ten measurement data types are obtained
from sensors attached to a robo-mower. The combination of sensor data types is
essential for lawn grass estimation, that is, a sensor fusion problem is discussed. In
general, the sensor fusion and use of big data have attracted many researchers’
interest. Recently, there have been detailed surveys on the combination of sensor
fusion and big data analysis [9, 10]. Some applications to actual problems have also
been reported [11-13]. The popular approach for big data analysis is the use of
machine learning. Takami G., et al. [11] studied the observation of plant status.
They used three kinds of sensors and a deep learning (DL) algorithm for big data
analysis. The details of the DL are not described, and the processing time of the
observation system is not known; however, it may be useful to learn that they
predicted the deterioration of sensors performance through their combination.
Alonso S., et al. [12] also adopted the same approach for observing a screw com-
pressor in a chiller. They used five kinds of sensor data and a 1D convolutional
neural network (CNN) for their analysis. The adoption of 1D CNN makes monitor-
ing faster and real-time processing is realized. Their approach is probably suitable
for data without any estimated features; however, in this study some features may
be efficient for the estimation task in advance. Li C., et al. [13] performed the
diagnosis of rotating machinery. They used vibration sensor signals, and the
Gaussian-Bernoulli deep Boltzmann machine was used for their analysis. The accu-
racy of fault estimation was evaluated; however, its real-time processing require-
ment was not mentioned. Therefore, this approach cannot be applied to the
problem dealt with in the following.

In the experiments of the proposed Al-based approach, the application of RF
algorithm to the fusion of seven sensors attained a 92.3% correct estimation ratio in
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several experiments on actual lawn grass areas. In addition, the application of SNN
attained 95.0%. Moreover, the accuracy of SNN is 94.0% in such trials in which
sensing data are continuously obtained while the robo-mower is in operation. The
proposed estimation system is being developed by integrating it with two types of
motor control systems for grass cutting and robot mobility, respectively. At present,
the authors are promoting the research and development of robo-mowers for com-
mercial use by collaborating with an automobile company.

The outline of this chapter is as follows. Section 2 describes the Hybrid Twin ™,
which is the basic idea for controlling the robo-mower in real time. Section 3
describes robo-mower used in this chapter; however, the discussions are not limited
to this robo-mower. Moreover, the estimation problem of lawn grass lengths is also
defined in this section. Section 4 describes the proposed RF and SNN algorithms.
Section 5 describes the experimental results based on the big data obtained from
sensor fusion and a set of features for classifying the sensor data are. Furthermore,
the set of necessary sensors and performance evaluations of the proposed algo-
rithms are stated. Section 6 describes the evaluation of the proposed SNN algorithm
when applied to the consecutive sensor data obtained in real-world use. Finally, the
chapter is summarized in Section 7.

2. Hybrid twin within work vehicle

The Hybrid Twin ™ approach [14] is efficient for real-time object control. The
proposed estimation method is useful for controlling the operation of lawn grass
cutter motor and a mobility motor. When the robot is operating in an area with long
lawn grasses, the motor should be set to the maximum rotation speed. On the other
hand, the rotation speed should be reduced or stopped when the robo-mower is
operating in an area with short lawn grasses or in an area without any lawn grasses,
respectively. As a result, battery consumption will decrease. Furthermore, if it is
possible to control the robo-mower’s speed so that it decreases or increases
according to the length of lawn grasses, the working time will be greatly reduced.
When a ground without lawn grasses is identified, laying the electric cable that
defines the boundary of the area is no more necessary and, as a result, the required
maintenance is reduced.

Digital Twin has become popular for implementing smart factory, and it has been
used [15] for controlling mission-critical systems, such as nuclear plant, airplane
control, or rocket control in the aerospace industry. The Digital Twin constructed in
the virtual space means a twin of a real space object. The twin is a precise model, and
its behaviors are reproduced in the virtual space. The Hybrid Twin ™ is an extension
of Digital Twin. As the target system has become large and complicated, the Virtual
Twin has been separated from the Digital Twin, as shown in Figure 1.

The Digital Twin only obtains data from a fusion of sensors, and measurement
data with some abstractions are transferred to the Virtual Twin. The Virtual Twin is a
precise co-simulator consisting of subsystems obtained using a model-based design
method. This simulator must be sufficiently fast, and it is usually a 1-D simulator,
which is a high-speed version of the original 3-D simulator is used. The Hybrid is a
combination of the Virtual Twin and Digital Twin, and the optimized state of the real
system on time (¢ + At) must be fedback to the real system from the state on time (¢).
This loop is iterated over with the time interval (At). As a result, the state of the real
system is optimized in real time. Measurement data are extracted from the fusion of
sensors for robo-mower operations, and noise reduction is applied to the obtained
parameters in the Digital Twin. This means that the Digital Twin is an accurate
numerical model of real objects. The Virtual Twin receives the obtained data s(t) at
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Figure 1.
Hybrid twin within work vehicles.

time (t), and then, estimation results c(s(¢)) are obtained using Al algorithms. The
control parameter set at time (¢ + At) for motors is given to the real robo-mower. This
loop is repeated during the operation of the robo-mower.

3. Work vehicles
This section describes the work vehicle used in the following discussions and

experiments. A commercial robo-mower [8] is used as the experimental hardware
for evaluating the proposed algorithms with the available fusion of sensors.

3.1 Robotic Lawn mower

The exterior and the backside of the robo-mower are shown in Figure 2(a). The
system configuration is shown in Figure 2(b). It has two kinds of motor controllers,

Lawn Grass Length
Sensors » /Not Lawn Grass
Estimator
Exterior 1 Battery ?
Motor T Motor
Controller Controller
Lawn Grass | |
Cutter '
Motor Motor Motor
Driving l I I
Unit 3 o s s
. B Lawn Grass Driving Driving
Bick Side Cutter Unit Unit
(a) Robotic Lawn Mover (b) Target System Configuration
Figure 2.

Robotic Lawn mower and target system configuration.
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one of which is used for controlling the lawn grass cutter and another is for its
mobility. These controllers are powered by the same battery, and therefore, battery
wastage depends on their usages. The subsystem, “Lawn Grass Length/Not Lawn
Grass Estimator” is newly developed.

The robo-mower is used for experiments by attaching sensors, a single-board
computer, a personal computer and peripheral devices on the robo-mower, as
shown in Figure 3. All these devices are managed by an ROS (robot operating
system) running on the personal computer. The robo-mower can be autonomously
driven; however, it is controlled using a Bluetooth controlling device in the exper-
iments to increase the accuracy of the experiments. A camera can be used as a
sensor, but it is inadequate for the experiments due to its high cost of image
processing software and hardware. In the experiments, it will be shown that no
camera is needed for the required estimation.

3.2 Fusion of sensors

The sensors attached to the robo-mower shown in Figure 3 are listed in Table 1.
The robo-mower has originally been equipped with built-in sensors. The 9-axis

Personal Computer

. Microphone

Lawn Grass

Cutter
Wheel and

9-axis Inertia Motor

Measurement . .

Unit 9-axis Inertia
Measurement v
Unit -

(a) Front Side (b) Back Side
Figure 3.

Robotic Lawn mower with sensors and devices for development.

Sensors Mounting positions Measurements

9-axis Inertial Measurement Unit Inside of the Robo-mower Acceleration

Angular Acceleration

Surface of the Robo-mower Acceleration

Angular Acceleration

Built-In Battery Voltage

Current

Power

Rotation of Grass Cutting Motor

Rotation of Traveling Motor

Horizontal/Vertical Acceleration

Table 1.
Fusion of sensors.
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inertial measurement units (IMUs), MPU-9250 [16], are attached inside and to the
surface of the robo-mower to measure acceleration and angular acceleration. Six
built-in sensors are available for measuring the corresponding parameters as shown
in Table 1. Here the noise of sensors is negligibly small; however, outliers are
excluded in the Digital Twin. The adequate fusion of these sensors is determined in
each of the proposed algorithms, and this is verified in the experiments.

3.3 Estimation problem of Lawn grass lengths

The estimation problem of lawn grass lengths and ground conditions is defined
below. The problem is to estimate lawn grass lengths in real time using sensor fusion
data. The objective function is to increase the accuracy of estimation.

The Estimation Problem.

Input: set of available sensors, robo-mower’s specifications, set of areas labeled.

long lawn grass, short lawn grass, and without lawn. grasses, some of which are
specified as test areas.

Output: fusion of sensors necessary for estimation and estimation results for test
areas.

Objective Function: maximization of estimation accuracy.

4. Al-based approach

An Al-based approach is adopted for solving the estimation problem. The reason
for this is that a combination of different types of sensor data should be handled,
and the definition of long or short lawn grass is determined by the height of the
lawn grass cutter from the ground. Moreover, a human operator estimates the
length of a lawn grass based on sounds made by the lawn grass cutter while cutting
grasses. Estimation using an Al-based approach is expected to be more efficient and
accurate than estimation based on human judgment. The RF algorithm and SNN are
adopted considering the execution speed in real-world applications.

4.1 Random Forest algorithm

The RF algorithm, a machine learning algorithm, originates from Breiman
[17], and recently, its deep version has also been proposed [18]. This algorithm
is used for classification, regression or clustering, etc. and is a type of ensemble
algorithm using a set of decision trees as weak learners to avoid over-fitting and
to maintain its high generalization performance. It is fast and achieves a com-
paratively high performance. According to the study [18], the deep RF algo-
rithm achieves better results in specific applications while performing nearly as
well in other wide applications. In the following, a specific RF algorithm is
developed.

An RF algorithm consists of a given number of binary decision trees. The
training and inference phases of the algorithm are shown in Figure 4(a) and (b),
respectively. In the configuration of binary decision trees, a set of training data
sampled from input data is given to each of the binary decision trees. Then, the
binary decision trees are constructed, as shown in Figure 5.

The data consist of the followings:

{ni} (i =1,2, -, p): input data for classification, regression or clustering, etc.

{xi} (i =1,2,-,q): features for classifying input data {»;}.
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(a) Configuration of binary decision trees (b) Classification of data

Figure 4.
Random forest algorithm.

Xy < Cy Xg 2= Cy

Figure 5.
Construction of binary decision tree.

4.1.1 Configuration of binary decision tree

An example of a binary decision tree is shown in Figure 5. In the root node, the
input data are divided into two subsets using the conditions, x1 <c¢; and x1 >¢;. If
the data satisfy the condition x1 <1, the data are classified into the class /; as shown
in this figure. When all data are classified into the corresponding classes (that is,
leaves), the binary decision tree is completed. Here, for example, a classification
and regression tree algorithm is used for classification, and the objective function is
Gini’s diversity index [18]. All parameters in binary decision trees are used in the
classification phase.

4.1.2 Classification of data

For example, Bagging, an ensemble algorithm, is used for data classification. In
this case, data that should be classified are distributed to all binary decision trees,
and the decision of each binary decision tree is obtained. The final decision, that is,
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the class to which the data belong, is determined on the basis of the majority rule.
This process is faster if the binary decision trees are executed in parallel, and the
decision quality is higher than if only one binary decision tree is used. As a 1D
simulator, or a Virtual Twin, processing time for estimating the target area is
essential.

4.2 Shallow neural network

As another Al-based approach, a SNN is used. “Shallow” means it has only one
hidden layer, and this is expected to fasten processing. The estimation performance
of SNN is compared with that of the RF algorithm.

4.2.1 Design of shallow neural network

The deep neural network performs well in image recognition, and it has been
used in autonomous driving of automobiles, appearance inspection, image recogni-
tion of robots, and other applications. However, it requires a large amount of
training data, and accordingly, a huge amount of processing time is needed in
network training. In addition, the inference should also be executed on a GPU
machine. On the contrary, the size of signal data is not so big because they are time-
series, and no deep neural network may be needed for its recognition. For example,
the on-line hammering sound inspection based on the simplest neural network with
no hidden layers, a support vector machine, achieves more than 99% accuracy
within a short time [19].

In the following, an SNN, as shown in Figure 6, is constructed. Here, the
number of hidden layers is only one, and this layer has ten neurons. The number of
neurons in the input layer equals the size of input signal length or statistical features
such as the maximum value, minimum value, average value, median value, stan-
dard deviation value, peakedness value, and skewness value, all of which are
obtained from the input sensor signal. The number of neurons in the output layer is
two, that is, areas with or without lawn grasses, or with short or long lawn grasses.
A hyperbolic tangent activation function and a softmax function are incorporated
into the output layer.

Ten Neurons

Activation Function
2

1+ exp(—2x) -1

y =tanh(x) =

Figure 6.
Shallow neural network configuration.
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4.2.2 Application of shallow neural network

In the following, two SNN models are developed with a cascade connection. The
first model estimates the target areas that are with or without lawn grasses because
this can be distinguished according to the acceleration of the robo-mower operating
in a corresponding area. The second model estimates the height of the lawn grass as
long or short. It is expected that this might be determined by checking the current
of the motor depending on the load on the cutting blade. These two models are
connected in series, that is, a cascade configuration. Furthermore, these SNNs are
trained independently.

5. Experimental results

This section focuses on the experiments and evaluations of the RF algorithm and
SNN on real-world sensing data.

5.1 Experiments on RF algorithm
5.1.1 Measurement data

The data measured by the sensors are obtained by driving the robo-mower on a
field with long lawn grasses and short lawn grasses as well as without lawn grasses.
The actual remote-controlled robo-mower is shown in Figure 7. The remote-control
system through Bluetooth communication is incorporated in the robo-mower by
mounting a mini-PC and running an ROS on it. The mini-PC can also handle the
collected sensor data.

Figure 7.
Remote-controlled driving of Robo-mower.
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The collected data are manually categorized into long and short lawn grass datasets
according to the height of the grass cutter from the ground. If the length of lawn
grasses exceeds the height of the grass cutter, the lawn grass length is defined as long
and otherwise, short. When the heights of lawn grasses and grass cutter are equal, a
human operator determines whether the lawn grass is long or short according to the
operating sound of the grass cutter. The measurement data are collected within a total
time of 2.3 h. All data are collected on flatlands on sunny days.

5.1.2 Features for classifying data

Statistical features of input data {x;} (i = 1,2, ---,q) for classification are calcu-
lated, including (i) maximum value, (ii) minimum value, (iii) average value, (iv)
median value, (v) standard deviation value, (vi) kurtosis value, and (vii) skewness
value. The values of seven feature types are normalized into the interval [-1,1].
These features are used in configuring binary decision trees, and they are calculated
for each time frame obtained approximately every 3.2 s over 2.3-h measurement
data. The details of the collected data are shown in Table 2. Even if the total time
for data collection is less than 2.3 h because of, for example, some issues with
measurement devices, the obtained data are used.

In the experiments, a subset of time frames obtained from each field data is used
for configuring the binary decision trees, and the completed forest is applied to the
remaining test data. Then, classification performance of the RF algorithm is evaluated.

The number of time frames (training data) used to configure the binary decision
trees in each group is chosen at random from the measurement data. The remaining
time frames are used as test data for evaluating the RF’s performance. These are
shown in Table 3.

5.1.3 Evaluation critevia

Each of the time frame data has its label, that is, long lawn grasses, short lawn
grasses, and not lawn grasses, and the estimation can be verified. This process

Groups Number of time frames
Long Lawn Grasses 2,356
Short Lawn Grasses 1,575
Not Lawn Grasses 3,374
Total 7,305
Table 2.

Specifications of measurement data for evaluating RF algorithm.

Groups Number of time frames
For training For testing
Long Lawn Grasses 1,686 670
Short Lawn Grasses 904 671
Not Lawn Grasses 2,705 669
Total 5,295 2,010

Table 3.
Number of time frames for training and testing RF algorithm.
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consists of two stages. The first stage is used to estimate whether an area is with or
without lawn grasses. In the second stage, an area is further estimated whether it
has long or short lawn grasses when it is estimated to have lawn grasses. In the
testing, four kinds of evaluation criteria are used. These are defined below [20].

Actuals
Positive Negative
Predictions Positive TP FP
Negative FN TN
1. Accuracy
TP + TN
A = 1
WY =Tp L FP+FN + TN M
2.Precision
TP
Precision = ——— 2
recision TP + P (2)
3.Recall
TP
Recall = ———
eca TP+ FN (3)
4.F-Measure

2 #* Presision * Recall
F-M = 4
casure Precision + Recall )

where TP, TN, FP, and FN denote “True Positive,” “True Negative,” “False
Positive,” and “False Negative,” respectively.

5.1.4 Evaluation results

Seven combinations of sensor data used are shown in Table 4. These combina-
tions cover all possible cases. Using the measurement data from C1 to C7, the best
combination of sensor data is determined based on the above-mentioned evaluation
criteria.

The procedure of experiments is as follows.

1.Select the sensor data corresponding to the cases shown in Table 4 collected in
three ground conditions, that is, “Long Lawn Grasses,” “Short Lawn Grasses,”
and “Not Lawn Grasses.”

Determine the subset of sensor data (1) and partition it to configure the binary

decision trees and to test the RF algorithm according to the number of the time
frames shown in Table 3.

11



Robotics Software Design and Engineering

2.Configure the binary decision trees.

3.Evaluate the performances of the RF algorithm based on the evaluation
criteria.

The number of binary decision trees, that is, the size of the forest is set to 1,000.
Each binary decision tree is configured using the seven features mentioned in 5.1.2
until each leaf coincides with one of three ground conditions. An example of an
actually constructed binary decision tree is shown in Figure 8. Here, the feature,
median value, obtained from built-in vertical angle sensor data with its threshold
370.75, is used for classifying the input data on the root node. The class

Sensors Mounting Measurements Cl C2 C3 C4 C5 C6 C7
positions
9-axis Inertial Measurement Inside of Body Acceleration \/ \/ \/ \/ \/ \/
Unit
Angulr VR EANVENEN,
Acceleration
Surface of Body ~ Acceleration \/ \/ \/
Angular Vv Vv Vv
Acceleration
Built-In Battery Voltage \/ \/ \/ \/ \/
Current \/ \/ \/ \/ \/
Pover VY VY
Rotation of Grass Cutting Motor \/ \/ \/ \/ \/
Rotation of Traveling Motor \/ \/ \/ \/ \/
Horizontal/Vertical Angles \/ \/ \/
Table 4.
Combinations of sensor data.
Median_g_sensor_z_axis <370.75 }\ /{ Median_g_sensor_z_axis > =370.75 I
i ”‘“'m“ﬂ'&’*{—— =TS
e :ﬁ\'\-w‘—‘--:’"‘_‘-v S — ﬁ/jf"_:-_-:—_‘?-.wm:-:_:-:- i
hfl-n-&’}h\ﬂ\hu--u ms S asem gy PP T

N,
.—m-?-

urtosis_g_semsor_x_axis > =0.77733 L*_;:

2 =~ v

Ty Boomeis prener s s

4-*-&'-’—-—*»,,,_1 Kurtosis_g_sensor_x_axis < 0.77733 l‘\" /
M-/.{-.Qg-—';." R =\ - :

Figure 8.
Example of binary decision tree in RF algorithm.
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“TreeBagger” included in “Statics and Machine Learning Toolbox” in MATLAB [21]
is used for implementing the RF algorithm. The processing time for configuring
1,000 binary decision trees is less than ten minutes on a PC with the standard
performances. The completed forest is applied to the testing data whose size is
approximately 700 in each of the three ground conditions shown in Table 3. The
estimating time is negligibly small, and this is no issue in the actual Hybrid Twin
approach. Table 5 shows the performance of the algorithm according to different
sensor data combinations. Seven cases are evaluated with respect to the measure-
ment criteria in each ground condition. The most important performance is the
accuracy, and it increases when the built-in sensor data are used. Particularly, C6
and C7, excluding the built-in horizontal or vertical angle sensor, have higher
accuracy. It seems reasonable that the battery status and motor rotation conditions
contribute to higher performance because the rotation of the motor becomes high
when it encounters long lawn grasses. On the other hand, the load on both the grass
cutting motor and traveling motor is reduced when the robo-mower travels on a
ground without lawn grasses. From the evaluation results, C6 is desirable among
seven cases. The reason is that

1.the accuracy is high, with a difference of only 0.1 points from maximum
92.28%,

2.the recall ratio of Short Lawn Grasses, 87.08%, is the highest.

Especially, the low recall ratio of Short Lawn Grasses means that the probability
of incorrectly recognizing short lawn grasses as long lawn grasses or a ground other
than lawn grasses is high. Then, the traveling speed of the robo-mower is reduced,
and the rotation of the grass cutting motor is increased. This would increase the
working time and waste electric energy. Moreover, when a short lawn grass area is
incorrectly classified as a ground without lawn grasses, the robo-mower will not
move on the areas and will not cut lawn grasses. Therefore, it would be concluded
that C6 is the best combination in this evaluation results. Sensor data, including the
acceleration and angular acceleration values obtained using the 9-axis IMU attached
inside the robo-mower; the voltage, current, and power of the battery; the rotation

Combinations of sensor data C1 Cc2 C3 C4 C5 Ceé C7

Accuracy 7584 77.52 86.32 90.92 9158 9218 92.28

Long Lawn Grasses Precision 77.06 70.70 92.68 92.60 91.46 92.66 91.04
Recall 73.02 67.70 93.46 93.60 93.64 93.44 93.56

F-measure 7499 69.17 93.07 93.10 92.54 93.05 92.28

Short Lawn Grasses Precision 72.66 73.84 8730 90.48 9212 89.40 92.04

Recall 60.88 68.28 70.06 82.00 83.26 87.08 85.58

F-measure 66.25 70.95 77.73 86.03 87.47 88.22 88.69

Not Lawn Grasses Precision 77.06 86.34 80.24 89.70 91.34 94.40 93.72

Recall 93.60 96.60 95.46 9720 9790 96.08 97.70

F-measure 84.53 91.18 87.19 9330 9451 9523 95.67

Average of Precision, Recalls, and F-measures 75.56 77.20 86.35 90.89 91.58 92.17 92.25

Table 5.
Evaluation vesults for sensor fusions.
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speed of the grass cutting and traveling motors obtained using built-in sensors, are
used in C6.

5.2 Experiments for SNN
5.2.1 Available sensors

The built-in sensors attached to the robo-mower are listed in Table 1. Six built-
in sensors are available for measuring the corresponding parameters shown in
Table 1. The objectives of the experiments are first to evaluate the accuracy of lawn
grass height estimation and ground condition estimation and, second, to compare
the SNN'’s results with those of the RF algorithm.

5.2.2 Measurement data

The data measured by sensors are collected while driving the robo-mower on a
field with long and short lawn grasses as well as without lawn grasses. The three
types of lawn grasses are shown in Figure 9(a)—(c) are used for the experiments. In
each of these cases, the long lawn grass case and short lawn grass case are performed
by adjusting the lawn grass cutting blade height from the ground. Similarly, several
ground conditions without lawn grasses are adopted as shown in Figure 9(d)—(f),
which are asphalt, gravel, and stone pavement, respectively.

The collected data are categorized into three groups. The first group is for long
lawn grasses, that is, the height of lawn grass is larger than the specified one. The
second group is for the short lawn grasses, that is, the lawn grass is shorter than or
equal to the specified one. The third group is the field without lawn grasses, that is,
dirt, gravel, stone pavement, tiled, asphalt, or concrete fields. The measurement
data are collected for a total driving time of 2.3 h for each group with various fields.

(c¢) Lawn Grass 3 (f) Stone Pavement

Figure 9.
Variations of target areas.
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5.2.3 Fusion of sensors for SNN

The fusions of sensors for two SNNs SNN1 and SNN2 are experimentally deter-
mined. Ten types of sensors, as shown in Table 1. As Figure 10 shows, SNN1 and
SNN2 are cascade connected, where SNN1 estimates if a target area is with or
without lawn grasses, and SNN2 provides the result that an area is with long/short
lawn grasses. The basic idea behind this configuration is that sensor fusion may
differ with these two types of estimations.

For SNN1, the Horizontal/Vertical Acceleration sensor seems adequate, and the
combinations of x, y, and z-axis sensor data are experimented with and evaluated on
some datasets. The obtained accuracy is shown in Figure 10. For the estimation of
lawn lengths, sensor fusion indicating the load of the lawn grass cutter seems
effective. Therefore, the measurement data obtained from the combinations of the
battery sensor and duty ratio given to the cutting motor are evaluated with some
datasets. As shown in Figure 10, the multiplication of battery voltage and the duty
ratio for the cutting motor achieves maximum accuracy. The differences are minor;
however, this multiplication is probably the reason for showing the load of grass
cutting motor.

As a result, the x-axis and z-axis values obtained from the Horizontal/Vertical
Acceleration sensor are used as inputs for SNN1. Similarly, the multiplication of
battery voltage and the duty ratio for the grass cutting motor, respectively, obtained
from Battery Voltage and Rotation of Grass Cutting Motor are used as inputs for
SNN2.

5.2.4 Featuves for classifying data

The input data features are (i) maximum value, (ii) minimum value, (iii) aver-
age value, (iv) median value, (v) standard deviation value, (vi) peakedness value,
and (vii) skewness value. In signal recognition based on machine learning, some

Cascade Connection

Long Lawn Grasses
SNN2 | -|: ’

Short Lawn Grasses

7

Sensor Data SNN1 Not Lawn Grasses

T ) ,

Sensor Data for SNN1

¥

¥

Horizontal / Vertical Acceleration Sensor

x y z xy | %z | vz | xyus

Accuracy(%) | 959 | 749 | 963 | 947 | 975 | 96.1 | 973

Sensor Data for SNN2
Battery Battery Battery Voltage
Current Power X Duty of Cutting Motor
Accuracy(%) 96.0 96.6 96.8
Figure 10.

Fusion of sensors for SNN.
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features are typically extracted from input signal data during pre-processing. The
obtained features are used as input data to a machine learning algorithm. Therefore,
for each sensor data, seven neurons are needed in the input layer of SNN shown in
Figure 6. In the experiments, these features are obtained from a time frame
obtained every 3.2 s over 2.3-h measurement data.

The details of collected data are shown in Table 6. In the experiments, a subset
of time frames from each field data is used for training the SNN, and the obtained
model is tested on the remaining test data. The number of time frames used for
testing is approximately 670 in each group. The remaining time frames are used for
training, as shown in Table 7.

5.2.5 Shallow neural network construction

Two SNNs are constructed, and they are cascade connected. The first SNN1
estimates whether the ground is with or without lawn grasses using the horizontal
or vertical acceleration sensor. These sensors are expected to measure the accelera-
tion changes caused by the surface of the ground. There are seven feature types, as
mentioned in 5.2.4, and 14 neurons in the input layer of SNN1. The second SNN2
estimates the lawn grass lengths using the product of the battery voltage and duty
ratio of the motor control signal. This product value tends to vary according to the
loads given to the cutting motor. The number of neurons in the input layer of SNN2
is seven. These networks are constructed using “Statistics and Machine Learning
Toolbox” in MATLAB [22]. The specifications of the two SNNs are summarized in
Table 8.

5.2.6 Evaluation results

In the following, two SNNss are first trained, and next, they are used to estimate
lawn grass lengths or ground conditions. Their results are compared with those of
the RF algorithm. The evaluations are repeated ten times, and their averages are

Groups Number of time frames
Long Lawn Grasses 2,356
Short Lawn Grasses 1,574
Not Lawn Grasses 2,470
Total 6,400
Table 6.

Specifications of measurement data for evaluating SNN.

Groups Number of time frames
For training For testing
Long Lawn Grasses 1,686 670
Short Lawn Grasses 904 670
Not Lawn Grasses 1,801 669
Total 4,391 2,009

Table 7.
Number of time frames for training and testing SNN.
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Number of neurons Used sensors

Input Hidden Output

SNNT1 for Ground Condition 14 10 2 Horizontal or Vertical Acceleration
Sensor
SNN2 for Long/Short Lawn 7 10 2 Battery Voltage & Control Signal’s Duty
Grasses
Table 8.

Configurations of two SNN.

Estimation SNN RF Diff.

Precision Long Lawn Grasses 92.3 94.1 -1.8
Short Lawn Grasses 96.2 92.8 +3.4

Not Lawn Grasses 95.8 95.5 +0.3

Recall Long Lawn Grasses 97.6 94.1 +3.5
Short Lawn Grasses 90.9 92.4 -1.5

Not Lawn Grasses 96.3 95.9 +0.4

F-Measure Long Lawn Grasses 94.9 94.1 +0.8
Short Lawn Grasses 93.5 92.6 +0.9

Not Lawn Grasses 96.0 94.1 +0.3

Accuracy 94.8 94.1 +0.7

Table 9.
Evaluation of SNN.

used because the set of training data is randomly selected from the set of time
frames, as shown in Table 7.

The evaluation results are shown in Table 9. The evaluation results
corresponding to the evaluation measurements defined in 5.1.3 are shown in this
table. The accuracy of the SNN outperforms that of the RF algorithm on average,
and the differences in evaluation criteria of each estimation are shown in the “Diff”
column in Table 9. Except for the Precision of “Long Lawn Grasses” and the Recall
of “Short Lawn Grasses,” the differences are positive. However, the differences are
not as large in all estimations, and the required estimation time is negligible.

6. Evaluations of SNN against sensor data stream

As stated in 5.2.6, the SNNs outperforms the RF algorithm, and the estimation
system based on the SNNs is implemented on a Raspberry Pi assuming an actual
ECU. The processes Lawn Grass Length/Not Lawn Grass Estimator are shown in
Figure 11. The sensor data streams are sent in a serial format and are received and
saved in the memory of the Raspberry Pi. When the required data size is reached, a
set of data is preprocessed. Seven features mentioned in 5.2.4 are extracted
according to the sensors, including Horizontal/Vertical Acceleration and Battery
Voltage times Duty of Cutting Motor, as shown in Figure 10. Then, the Lawn
Length/Not Lawn Grass Estimator based on the SNNs estimates that a target area is
with Long Lawn Grasses, Short Lawn Grasses, or without Lawn Grasses. Finally, the
estimation result is sent to the motor controllers, as shown in Figure 2(b).
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ECU
Sensors E 24 B Serial }— Data Receiver | \

Data Saver
‘ Lawn Grass Length
/ Not Lawn Grass > s
Estimator l
Lawn Length / Not Lawn Grass
Estimator
Drive Train 12 B Serial Sender I /
F
Figure 11.
Implementation of estimator on ECU.
Sensor Record (24B)
1 8 13 11
t Data ID Measurement Data t4
I— COBS CRC — COBS

Estimation Result Record (12B)

1 8 111 _
COBS: Consistent Overhead
i Data ID t (1]t Byte Stuffing
L "]‘ CRC: Cyclic Redundancy Check
COBS Result — COBS
CRC
Figure 12.

Frame Design of Sensor and Estimation Result Records.

Figure 12 shows the frames of sensor records and estimation result record. The
sensor record has 24 bytes, and it is framed using COBS (Consistent Overhead Byte
Stuffing) [23]. This frame has 8-bit Data ID, 13-bit Measurement Data (floating point
value), and a 1-bit CRC (cyclic redundancy check) [24] for error detection. The frame
of estimation result record consists of COBS, CRC, Data ID, and the estimation result,
which is a 1-byte integer (1, 2, or 3) representing the three kinds of estimations.

The sensor data records are obtained every 0.1 s. The 32 records, that is, the 3.2-s
measurement data are handled in the SNN training, as shown in Figure 13(a). The
robo-mower travels with a speed of 0.55 m/s on average [8], and it moves 1.76 m
before the 3.2-s sensor data are obtained. Furthermore, if the total processing time for
data I/O, motor control, and wheel driving are assumed to be 2 s, the robo-mower will
travel 2.86 m if the estimation waits for a 3.2-s data stream. This distance is too large
when the robo-mover reaches the boundary between areas with and without lawn
grasses. Therefore, as shown in Figure 13(b), the sensor data stream should be treated
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Measured Measured
Sensor Data Sensor Data
_ . — 32 records
- —1 32 records
— — 32 records ] — | —
— —— 32 records — - R —
(a) Tramning of SNN (b) Estimation by SNN
Figure 13.
Pipeline processing of Lawn length estimation.

Estimation Pipeline Non-Pipeline Diff.

Precision Long Lawn Grasses 98.9 97.2 +1.7
Short Lawn Grasses 88.7 90.8 21

Not Lawn Grasses 94.7 97.4 2.7

Recall Long Lawn Grasses 97.6 92.7 +4.9
Short Lawn Grasses 95.0 96.7 1.7

Not Lawn Grasses 89.3 95.5 6.2

F-Measure Long Lawn Grasses 98.3 94.9 +3.4
Short Lawn Grasses 91.7 92.8 1.1

Not Lawn Grasses 91.9 95.4 3.5

Accuracy 94.0 95.0 -1.0

Table 10.
Accuracies between pipeline and non-pipeline processes.

as a pipeline. This means that the estimation is performed every 2.1 s (i.e., 0.1 + 2),
resulting in 1.16-m traveling, which is not a significant issue in the real world. The
other cause for the estimation delay is the acceleration of other related processes.

Another problem to consider when using the robo-mower in the real world is
estimation accuracy. This is because the SNNs are trained with each 3.2-s data frame
of sensor data, as shown in Figure 13(a), ensuring that there are no overlaps in the
consecutive dataset. The data streams in the pipeline processing have 3.1-s overlap
because they are obtained every 0.1 s. The accuracy comparison result is shown in
Table 10, and the decrement is 1.0 points. Therefore, the estimation accuracy in the
pipeline process is not a major issue.

7. Conclusions

The workload estimation methods for autonomous driving of work vehicles are
proposed and evaluated. A commercial electric robo-mower is used for the
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experiments. Specifically, the task to recognize ground conditions, including
grounds with long lawn grasses, short lawn grasses, or no lawn grasses, is handled
by analyzing data obtained from sensors attached to the robo-mower. Two Al-based
algorithms, namely, an RF algorithm and a SNN are proposed. A sensor fusion
problem is defined and solved to determine the best combination of sensor data
from ten different sensor types. The RF algorithm consisting of 1,000 decision trees
and the SNN with only one hidden layer are implemented and evaluated on obser-
vation data obtained from various grass cutting field experiments. The RF algorithm
achieves 92.3% correct estimation ratio on sensor fusion data in several experi-
ments, while the SNN achieves 95.0%. Furthermore, the accuracy of the SNN is
94.0% in experiments where sensing data are continuously collected as a data
stream in real time while the robo-mower is operating. Presently, the proposed
estimation system is being developed by integrating two motor control systems into
a robo-mower, one for grass cutting and the other for the robot’s mobility.
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