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1. Introduction 

There are some main goals in parallel robot scheduling. Those are total completion time, 
maximum earliness, and maximum tardiness. According to the theoretical viewpoint, 
parallel robot scheduling is a generalization of the single robot scheduling and a special 
study of the flow shop. From the practical viewpoint, solution techniques are useful in the 
real-world problems. Parallel robot scheduling has to deal with balancing the load in 
practice. Scheduling parallel robot may be considered as a double-step. First, which jobs are 
allocated to which Robot. Second, allocated jobs sequence.   Also, preemption plays a more 
important role in parallel robot scheduling.  Robots may be identical or not. Jobs have a 
precedence constraint. For all problem structures may be applied different solution 
techniques for instance algorithms, search algorithms or artificial intelligence techniques. In 
this chapter we interest in different solution techniques for parallel robot scheduling. 
In this chapter, first, a genetic algorithm is used to schedule jobs that have precedence 
constraints minimizing the total earliness and tardiness cost and maximum flow time on n-
number of job and m-number of identical parallel robots. The second one is without 
precedence constraint. There are many algorithms and heuristics related to the scheduling 
problem of parallel machines and robots. In this study, a genetic algorithm has been used to 
find the job schedule, which minimizes maximum flow time. We know that this problem is 
in the class of NP-hard combinatorial problem.          
(Kanjo & Ase, 2003) studied about scheduling in a multi robot welding system. (Sun & Zhu, 
2002) applied a genetic algorithm for scheduling dual resources with robots.  (Zacharia & 
Asparagatos, 2005) proposed a method on GAs for optimal robot task scheduling. In this 
study, the job with n-number of precedence constraints is assigned minimizing mean 
tardiness on m-number of parallel robot using genetic algorithms. 
(Koulamas,1997) developed a heuristic noted hybrid simulated annealing (HAS) based on 
simulated annealing. (Chen et al.,1997)  has developed highes priority job first (HPJF) 
method, which is based on extension of the WI method extended with various priority rules 
such as minimum processing time first (priority = 1/processing time), maximum processing 
time first (priority=processing time), minimum deadline first (priority=1/due date) and 
maximum deadline first (priority = Due date). (Alidaee & Rosa, 1997) proposed a heuristic 
which is based on extending the modified due date (MDD) method belonging (Baker & 

Source: Parallel Manipulators, New Developments, Book edited by: Jee-Hwan Ryu, ISBN 978-3-902613-20-2, pp. 498, April 2008,  
I-Tech Education and Publishing, Vienna, Austria
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Bertrand, 1982). Their method is quite effective for parallel machine problem according to 
their reports. (Azizoglu & Kirca, 1998) proposed a branch and bound (BAB) approach to 
solve the same problem mentioned in this paper. Another example can be given by 
considering identical due dates and processing times, (Elmaghraby & Park, 1974), 
developed an algorithm based on a branch and bound to minimize a function of penalties 
belonging to tardiness. (Barnes & Brennan,1977) evaluated and improved their method 
again. 
In addition to these previous studies, there are a few more studies, which deal with parallel 
machine scheduling problem. But these studies are interested in alternatives. A few 
examples are given in the following for the minimization of the total weighted tardiness: 
(Emmons & Pinedo, 1990), (Arkin & Roundy, 1991); for uniform or unspecified parallel 
machines scheduling, the example studies are: (Emmons, 1987) or (Guinet, 1995). (Karp, 
1972) has shown that even the total tardiness minimization in two identical machine 
scheduling problem was NP-hard. A branch and bound algorithm to minimize maximum 
lateness considering due dates, family setup times and release dates have been presented by 
(Shutten & Leussink, 1996). A genetic algorithm was used to find a scheduling policy for 
identical parallel machine with setup times in (Tamimi & Rajan, 1997). (Armento Yamashita 
, 2000) applied tabu search into parallel machine scheduling. A scheduling problem for 
unrelated parallel machine with sequence dependent setup times was studied by (Kim et al. 
, 2002) using simulated annealing. SA was used to determine a scheduling policy to 
minimize total tardiness. (Min & Cheng, 1995) proposed an algorithm for identical parallel 
machine problem. Their algorithm is based on using GA and SA to minimize makespan. 
According to their studies, it is seen that GA proposed is efficient and fit for larger scale 
identical machine scheduling problem to minimize the makespan.  
(Kashara and Narita, 1985) developed a heuristic algorithm and optimization algorithm for 

parallel processing of robot arm control computation on a multiprocessor system.  (Chen et 

al., 1988) developed a state-space search algorithm coupled with a heuristic for robot inverse 

dynamics computation on a multiprocessor system. An assignment rule noted traffic 

priority index (TPI) was built in 1991 by (Ho & Chang, 1991). In this method, SPT and EDD 

rules are combined using by using a new measurement named as traffic congestion ratio 

(TCR). Then, for the cases with one or identical machine they built heuristics. Their 

heuristics consist of building a first solution by scheduling jobs in increasing order of their 

priority index. Then they improved this solution using permutation technique of WI 

method, which was developed previously by (Wilkerson & Irwin, 1971). 

2. Definition of the problems 

In this study, the job with n-number of precedence constraints is scheduled minimizing total 

earliness and tardiness cost and maximum flow time on m-number of parallel robots. There 

are process time and due date for each job. There is not any ready time that belongs to jobs. 

A robot can do just one job at the same time. The processing is non-preemptive. The target 

function, which will be minimized, is given below in Eq. (1). 
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DEFINE 
THE PROBLEM 

TYPE 

WITH 
PRECEDENCE 
CONSTRAINTS

WITHOUT 
PRECEDENCE 
CONSTRAINT

SPT, LPT, 
HU’s 

ALGORITHM, 
SIMULATED 
ANNEALING

SPT, LPT, 
McNAUGHTON 

ALGORITHM, 
SIMULATED 
ANNEALING 

PREPARE THE 
INITIAL 

POPULATION
FOR GENETIC 
ALGORITHM

RUN 
THE 

GENETIC 
ALGORITH 

SOLUTION 
FOR 

PROBLEM 

Here, Tj = max {0, Cj - dj} is the tardiness of job j.  ej = max {0, dj - Cj} is the earliness of job j. 
Cj being the completion time and dj being due date for job j. R(i,j), represents processing or 
unprocessing of j job on i robot. we is unit earliness cost, wT is unit tardiness cost. If j job is 
being processed on i robot, R(i,j)=1, otherwise (if not being processed) R(i,j)=0. Fmax is 
maxsimum flow time. Pj is processing time. 

 Fmax  = max  (Fi = ∑∑
= =

m

1i

n

1j

j ),( pjiR )   (2) 

Figure 1. Proposed solution system for the parallel machine scheduling problem. 

3. Genetic algorithm 

The advantages of the genetic algorithms have been mentioned in the previous section. In 
this section, the modeling and the application of the GA are explained. From the view point 
of the working principle, genetic algorithms firstly needs the coding of the problem with the 
condition that it should be fitting with the GA. After coding process, GA operators are 
applied on chromosomes. It is not guaranteed that the obtained new offsprings are good 
solutions by the working of crossover and mutation operators. Feasible solutions are 
evaluated, and others are left out of evaluation. The feasible ones of the obtained offsprings 
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are taken and new populations are formed by reproduction process using these offsprings. 
Crossover, mutation and reproduction processes go on until an optimal solution is found. 
The modeling of the defined problem using genetic algorithm has been presented below 
with its details. 

3.1 Coding for problem statement 

The scheduling of the jobs on each robot forms the chromosomes. Here, the chromosomes 

give the number of robots too. The gene code are c1, c2, c3,.., cj,… , cn, where cj ∈ [1,m]. cj is 
positive integer number. Here, each parallel robot represents a chromosome; and gene in 
chromosome, represents ordered jobs on a robot. The assigned of jobs on robots when 
forming initial population is done randomly, and while this ordering is done, precedence 
constraints are taken under care. For instance, let us suppose that there are 8 jobs and 2 
robots, and their precedence constraints are given in Figure 3.  Sample list representation of 
the schedule of the jobs on M1 and M2 robots has been given in figure 3. The sample 
schedule gives also a sample gene code. 
 

Figure 2. The jobs with precedence constraints 
 

Figure 3. List representation of the schedule 

Here, the scheduling of the jobs on robots also shows chromosomes code. M job can be 

scheduled on N robots in different combinations. But, because of the fact that some of the 

obtained schedules will be precedence constraints in problem definition, they will not be 

1

7

2

53

64

Level 1 Level 2 Level 3 Level 4

8

Level 5

2 4 6M2:

1 73 5M1: 8 
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possible solution. For example, the solution given in figure 4 is not a feasible solution for the 

precedence constraints in Figure 4. Because the precedence constraints have not been taken 

under care. 

 

Figure 4. Infeasible solution sample according to the given precedence constraints 

3.2 Preparing initial population 

Initial population is not produced randomly, fully. In initial population, the solutions for 

problem with precedence constraints, which are obtained from SPT and EDD heuristics, 

Simulated Annealing, Hu’s algorithm (Baker, 1974) exist and the other. In initial population, 

the solutions for problem without precedence constraints, which are obtained from SPT and 

EDD heuristics, Simulated Annealing, McNaughton’s algorithm (Baker, 1974) exists. The 

chromosomes out of these are generated randomly. The jobs are randomly let (determined 

or given) on robots. However, because of the precedence constraints, in other words, there 

are some situations like that some jobs may be done before others; some of obtained 

solutions will not be feasible. These solutions, which are not feasible, will be thrown and the 

new solutions will be tried to be obtained, randomly. 

3.3 Applying crossover operator for the problem 

The crossover process is crossing obliquely from cut points of randomly determined two 
chromosomes. At the end of this operation, two new chromosomes are obtained. In this 
problem when chromosomes are crossed with, cross is taken care to the chromosomes in the 
same robots. For instance, number 1 robot in the first chromosomes and number 1 robot in 
the second chromosomes are crossed. Then, the second robot in the first chromosomes and 
the second robot in the second chromosomes are crossed. Let us explain this with an 
example;  
 By taking care of the given precedence constraints given in Figure 2, let us crossover the 
given two chromosomes in figure5. 
 

 M1   1  3  5  7 8             M1   2  4  6  7 8 
CHROMOSOME #1                                ,  CHROMOSOME #2  
 M2   2  4  6          M2   1  3  5   

Figure 5. Two different chromosomes for crossover process 

As it is seen above, the jobs in the first chromosomes on the first robot have been scheduled 
as 1-3-5-7-8 and in the second robot they have been scheduled as 2-4-6. The schedule in the 

4 2 6M2:

1 73 5M1: 8 
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second chromosomes on the first robot is as 2-4-6-7-8, and on the second robot as 1-3-5. 
When crossover process is applied to these chromosomes, the first robot in the first 
chromosome and the first robot in the second chromosome and the second robot in the first 
chromosome and the second robot in the second chromosome gene will be crossed from 
randomly determined points. The result of the crossover operation has been given in figure 
6.  
 

CHROMOSOME 
#1 

 
CHROMOSOME 

#2 
 

OFFSPRING 
#1 

 
OFFSPRING 

#2 
1  3 | 5  7 8  2  4 | 6  7 8  1  3  6  7 8  2  4  5  7 8 

 X  ⇒  ,  
2  4 | 6  1  3 | 5  2  4  5  1  3  6 

Figure 6. Crossover process and obtained offsprings 

Here, the sign “|” refers to randomly selected crossover point. On the other hand, the sign 
“X” represents the crossover operation. At the end of crossover operation, two new 
chromosomes are obtained. The selected crossover point is the same on the parts 
representing M1 and M2 parallel robots of chromosomes in the example given in figure 5, 
and it is after than second gene. But, for instance, the point after than second gene for M1 
part may be crossover point, likewise the point after than the first gene may be crossover 
point for M2 part. Here, there is the possibility of obtaining unfeasible solutions when there 
are precedence constraints between jobs. 

3.4 Applying mutation operator for the problem 
In the mutation operation, a gene is randomly selected from inside of the chromosomes in 
the population according to the given mutation rate. This gene will represent a job. This job 
will be swapped with any other job, which has the same precedence constraint on another 
robot or on the same robot with it. If there is more than one job, which is on the same level 
with it, one of them will be selected randomly. At the end of the mutation operation, a new 
chromosome will be obtained. For example, let us apply mutation operation to the 
chromosome given in figure 7; 
 

SELECTED 
CHROMOSOME 

AND GEN 

 
MUTATION 

 

 
OFFSPRING 

1  3  5  7  8 
 

1  3  6  7  8 
 

 
2  4  6 

The job, which is on the same level with 
number 5 job, will be replaced with 

number 6 job so two jobs will be swapped.
 

 
2  4  5 

Figure 7. Mutation process and obtained offspring 

3.5 Reproduction 
A copy of each gene is made by the reproduction operator in the population and it is added 
to the list of candidate genes. Fundamentally, this warrants that each chromosome in the 
current population remains a candidate to be selected for the next population. In this 
problem, the aim is to find the solution that minimizes the given fitness function. As it is 
known the fitness function is a tardiness value function. Here, the obtained chromosomes 
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are scheduled from low tardiness value to high tardiness value in every population. GA 
may have better chances to survive chromosomes with quite higher fitness. The living good 
chromosomes stay in the population. This process will be kept going until an optimal 
solution is found in each population. 

4. Simulated annealing 

In this study, two operators have been used in the application of SA. The first operator is 
that a randomly selected job has been swapped with another job, which is on the same level, 
and then, a new offspring has been obtained. The second operator is that a randomly 
selected job has been again swapped with another job and then, a new solution alternative 
has been obtained. If these obtained solution alternatives are valid, they are taken into 
consideration. Used first operator does the same operation with the mutation operation in 
GA. The working mechanism of these used operators has been revealed in figure 8 and 9.    
SA begins with an initial solution (A), and initial temperature (B), and an iteration number 
(C). The duty of temperature (T) is controlling the possibility of the acceptance of a 
disturbing solution, and an iteration number (C) is used in the decision of the number of 
repetitions until a solution has a stable state under the temperature. The T may have the 
following implicit meaning of flexibility index. At high temperature situation, namely, early 
in the search, there is some flexibility to move to a worse solution situations, on the other 
hand, at lower temperature, in other words later in the search, less of this flexibility exists. A 
new neighborhood solution (N) is generated based on these B, C through a heuristic 
perturbation on the existing solutions. If the change of an objective function is improved, the 
neighborhood solution (N) becomes a good solution.  Even though it is not improved, the 
neighborhood solution will be a new solution with a convenient probability which is based 
on e-Δ/T. This situation leaves the possibility of finding a global optimal solution out of a 
local optimum. The algorithm will be stopped when there is no change after C iterations. 
Otherwise, the algorithm will be continuing with a new temperature value (T). 

4.1. Simulated annealing algorithm 

Begin; 
 INITIALIZE (A,B,C); 
Repeat 
 For I=1 to C do 
          N= PERTURB (A);  {generate new neighborhood solution} 
          D= C(N)-C(A) 

          If((C(N)<=C(A) or (exp(-D/T)>RANDOM(0,1)) 

  Then A=N; {Accept the movement) 
          Endif 
            Endfor; 
 UPDATE (T, C); 
Until (Stop-Criterion) 
End 
In order to apply SA to practical problems, there are several factors to be decided initially.  
Firstly, the definition of a procedure to generate neighborhood solutions from a current 
solution is necessary. To generate these solutions efficiently, some parameters should be 
decided appropriately. Some examples to these parameters can be given as an initial 
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temperature, the number of repetitions, conditions for completion and the ratio of 
temperature change. The combination of these parameters should be adjusted according to 
the problem to obtain a good solution. 
SA has some weak points such as long running time and difficulty in selecting cooling 
parameter  when  the  problem  size  becomes  larger. A geometric ratio was used in SA as  
Tk+1 = αTk, where Tk and  Tk+1 are the temperature values for k and k+1 steps, respectively. 
Geometric ratio is used more commonly in practice. In this study, the initial temperature 
was taken 10000 and 0.95 was used for cooling ratio (α). 
 

 
OLD SOLUTION 

 
SA OPERATOR-1 NEW SOLUTION 

1  3  5  7  8 
 

1  3  6  7  8 
 

 
2  4  6 

Only number 6 work is on the same 
level with number 5 work that is 

selected randomly; so two works will 
be exchanged. 

 
2  4  5 

Figure 8. The first new solution generation operator used in SA 
 

OLD SOLUTION 
 

SA OPERATOR-2 
 

NEW SOLUTION 

1  3  5  7  8 
 

4  3  6  7  8 
 

2  4  6 

Randomly selected number 1 work 
will be swapped with again randomly 

selected number 4 work 2  1  5 

Figure 9. The second new solution generation operator used in SA 

5. Comparison of GA and SA 

GA and SA are not much different algorithms; theoretically, both of them are quite relative 
algorithms. However, their formulations are done using very different terminology. In a 
problem solution with SA, the costs, neighbors and moves of the solutions are talked 
(discussed), however, in a problem solution with GA, one discusses about chromosomes, 
their crossover, fitness and mutation. Another difference; a chromosome is considered as a 
genotype, which only indicates a solution. This is a traditional feature of GA and there is not 
any reason about that why a resembling approach could not be used in SA in the same way.  
Fundamentally, for the situation of that the population size is only one, SA can be 
considered as GA. Because there is only chromosome, and there is not any crossover, but 
only mutation. Indeed, this the most important difference between GA and SA. SA 
generates a new solution by modifying only one solution with a local move; however, GA 
generates solutions by using the different solutions in a combination.  It is not exactly 
known that if this actually makes the algorithm better or worse, however, it is clear that it 
depends on the problem and the representation. The principles of these two algorithms are 
based on the same basic supposition that convenient solutions are mode probably found 
“near” already known convenient solutions than by randomly selecting from the whole 
solution space. If this were not the case with a particular problem or representation, they 
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would not perform better than random sampling. The difference in the action of the GA is 
treating combinations of two existing solutions as being “near”, supposing that such 
combinations (children) significantly share the properties of their parents, so that a child of 
two suitable solutions is more probably good solution than a random one. It should us 
significantly emphasized that this is just valid for a particular problem or representation; 
otherwise GA will not have an advantage over SA. 

6. Example problem-I 

Seven jobs and two parallel machines problem is given as an example below. The process 
and due dates belongs the works in table 1 and additionally, the precedence constraints in 
figure 9 were given. The solution, which minimizes maximum flow time, was obtained by 
considering these data. The problem was solved by using three different methods, which are 
SPT heuristic, SA and GA. The data and the results were given below. 
 

Job i Processing time Due date 

1 3 9 

2 2 8 

3 4 3 

4 6 7 

5 7 4 

6 5 5 

7 8 6 

Table 1. Processing time and Due date of every job 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Precedence constraints of every job for example problem 

The result of the implementation of GA and SA to the problem stated above has been given 

in Table 2. Furthermore, in figure 10, the view of the obtained solution from GA on Gannt 
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4
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Chart has been given. The complementing (finishing) time of each job has been shown on 

Gannt chart. For example, the finishing time of the number 5 job and number 7 job are 14 

and 22, respectively. 7x2 refers to 7 jobs and 2 machines.  

 

Heuristic Schedule Maximum Flow Time 

SPT 
M1: 2-4-6 
M2: 1-3-5-7 

22 

EDD 
M1: 2-1-3-5-7 
M2: 4-6 

24 

GA 
M1: 1-3-5 
M2: 2-4-6-7 

22 

SA 
M1: 1-3-5 
M2: 2-4-6-7 

22 

 

Table 2.  The result of calculation for 7 X 2 problem size 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 11. A schedule for two machines displayed as Gannt Chart 

7. Example problem-II 

As another example, a parallel machine problem with 12 jobs and 2 parallel machines was 
taken under consideration below. The process times, delivery times and precedence 
constraints of jobs were given. The solution, which minimizes the total earliness and 
tardiness cost, was obtained by considering these data. The problem was solved by using 
SPT, EDD, SA and GA. The data and the results were given below. In Table 3, the jobs with 
process and due dates belonging to them were given. The precedence constraints of the jobs 
were given in Figure 11. In Table 4, the solutions obtained from GA, SA, SPT and EDD were 
given. Tardiness cost and earliness cost have been taken as 1 and 0.5, respectively. 

Job i Processing time Due date 

M2 

M1 1 3 5

2 4 6 7

3 7 14

132 8 14 22 
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1 2 1 

2 4 3 

3 5 2 

4 3 8 

5 8 7 

6 7 4 

7 10 12 

8 12 14 

9 9 11 

10 3 8 

11 5 9 

12 9 15 

Table 3. Processing time and Due date of every job for example problem-II 

 

 

Figure 12. Precedence constraints of every job for example problem-II 
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Heuristic Schedule Total Earliness and Tardiness Cost 

SPT 
M1: 1-4-5-7-10-8 
M2: 2-3-6-9-11-12 

148,5 

EDD 
M1: 1-2-5-9-11-8-12 
M2: 3-6-4-7-10 

153 

GA 
M1: 1-4-7-10-9-11 
M2: 3-2-6-5-8-12 

144,5 

SA 
M1: 1-4-5-7-10-8-12 
M2: 3-2-6-9-11 

169,5 

Table 4. The result of calculation for 12 X 2 problem size 

8. Computational experimentation for scheduling with precedence 
constraints 

The number of jobs used in the problems in this study were given in Table 5. In this table, i 

denotes the jobs and pi is an integer processing time and wi is an integer weight, which were 

generated from two uniform distributions. The function of [1, 10] and [1, 100] are to create 

low or high variations, respectively. TF, which is the relative range of due dates, RDD and 

Average tardiness factor, were selected from the set [0.1, 0.3, 0.5, 0.7, 0.9]. Here, di is an 

integer due date from the uniform distribution [P (1-TF-RDD/2), [P(1-TF+RDD/2)] and  it 

was generated for each job i. In these expressions, P denotes total processing time. As 

summarized in Table 5, 1700 examples set were considered, totally. The problems were 

considered in 17 different sizes and for each size 100 different samples were examined. The 

parameters of the GA were given below. These parameters are firstly tried with different 

 

Population size  : 20, Crossover rate   :%100, 
Max generation : 100, Mutation rate     :0.05. 

 

Factors Settings 

Number of jobs 
[10],[20],[30],[40],[50],[60],[70],[80],[90],[100] 

[120],[150],[170],[200],[220],[250],[300] 

Processing time variability [1-10] [1-100] 

Weight variability [1-10] [1-100] 

Relative range of due dates 0.1, 0.3, 0.5, 0.7, 0.9 

Average tardiness factor 0.1, 0.3, 0.5, 0.7, 0.9 

Table 5. Experimental design 

values and according the results of these experimental studies these parameters were 

determined as the best ones. In different studies, these parameters are determined like the 

ones obtained in this study. The obtained optimal solutions for different population sizes 

were given below in Figure 12 for the problem defined with 100x8 sizes. In Figure 13, the 

cost values for initial population, generation 50 and generation 100 were presented. These 

figures give clearly information about the selected parameters of GA. As seen in Figure 12, 
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to obtain optimal solution, the different population size values were applied. When the 

population size is selected as 20, the obtained optimal solution is found better than ones 

examined with other population sizes.  
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 Figure 13. The obtained near optimal solutions according to the different population sizes 
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Figure 14. The obtained cost values for initial population, generation 50-100 
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The results have shown that GA has given better results than SA in large-size problems. SA 

has some weak points such as long running time and difficulty in selecting cooling 

parameter when the problem size becomes larger. A geometric ratio was used in SA as Tk+1 

= αTk, where Tk, and Tk+1 are the temperature values for k and k+1 steps, respectively. 

Geometric ratio is used more commonly in practice.  In this study, the initial temperature 

was taken 10000 and 0.95 was used for cooling ratio (α). In Table 6 and Table 8, the obtained 

solutions for different problem sizes were given 
 

Problem size 
Number of

example 

Average 
value of GA

for total 
earliness and 

tardiness 
cost 

Average 
Value of SA 

for total 
earliness and 
tardiness cost

CPU time 
for GA for 
an example 

(s) 

CPU time for 
SA for 

an example 
(s) 

t 
statistics 

60 X 7 100 756.4 921.2 28.07 34.15 11.30 

70 X 7 100 890.0 1056.7 32.71 44.19 12.47 

80 X 8 100 1018.1 1263.6 39.03 48.22 15.21 

90 X 8 100 1293.0 1512.8 43.35 54.17 16.23 

100 X 8 100 1650.8 2004.2 62.28 73.05 17.46 

120 X 8 100 1926.2 2137.9 78.05 91.33 19.33 

150 X 8 100 2184.4 2410.5 92.17 102.09 21.96 

170 X 8 100 2432.7 2985.0 100.02 114.43 22.07 

200 X 8 100 3257.3 3863.3 118.34 136.57 24.97 

220 X 8 100 3469.2 4112.4 127.28 151.48 25.35 

250 X 8 100 3966.4 4698.9 139.11 178.12 29.46 

300 X 8 100 5469.6 7282.7 152.22 196.47 31.45 

Table 6. The results of the problems in different sizes for total earliness and tardiness cost 

In Table 7 and Table 9, the 100 samples given for each problem size were evaluated and how 

many of the obtained results by using GA are better or equal to SA.. For each problem size, 

100 different samples were used. GA and SA were applied to these samples. The average 

value of the obtained optimal solutions was revealed in the table. According to the average 

value, it is clearly seen that GA has given the better result. From the viewpoint of evaluating 

CPU time, the obtained result with GA is again better. All algorithms were coded in C++ 

and implemented on a Pentium IV 2.4 GHz computer. 
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Problem size Number of examples 
Number of 

examples for that 
GA is better than SA

Number of examples for 
that GA is equal to SA 

60 X 8 100 91 9 

70 X 7 100 95 5 

80 X 8 100 98 2 

90 X 8 100 100 0 

100 X 8 100 100 0 

120 X 8 100 100 0 

150 X 8 100 100 0 

170 X 8 100 100 0 

200 X 8 100 100 0 

220 X 8 100 100 0 

250 X 8 100 100 0 

300 X 8 100 100 0 

Table 7. Comparison of the results of the examples according to the optimal values for total  
earliness and tardiness cost 
 

Problem size 
Number of

example 

Average 
value of GA

for 
maximum 
flow time

Average 
Value of 
SA for 

maximum 
flow time

CPU time for 
GA for an 

example (s) 

CPU time for 
SA for 

an example 
(s) 

t 
statistics 

60 X 7 100 72 78 18.03 22.21 13.45 

70 X 7 100 85 93 26.07 30.18 15.68 

80 X 8 100 96 108 32.09 39.43 17.13 

90 X 8 100 119 134 39.01 51.19 19.86 

100 X 8 100 132 142 45.15 63.05 18.94 

120 X 8 100 148 161 54.45 71.45 19.73 

150 X 8 100 176 183 62.22 76.39 22.12 

170 X 8 100 189 202 70.56 83.55 24.28 

200 X 8 100 217 230 81.30 90.57 24.88 

220 X 8 100 239 255 92.12 103.49 27.35 

250 X 8 100 264 292 102.37 114.42 29.49 

300 X 8 100 286 305 129.21 142.47 33.57 

Table 8. The results of the problems in different sizes for maximum flow time 
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Problem size Number of examples 
Number of 

examples for that 
GA is better than SA

Number of examples for 
that GA is equal to SA 

60 X 8 100 94 6 

70 X 7 100 95 5 

80 X 8 100 100 0 

90 X 8 100 100 0 

100 X 8 100 100 0 

120 X 8 100 100 0 

150 X 8 100 100 0 

170 X 8 100 100 0 

200 X 8 100 100 0 

220 X 8 100 100 0 

250 X 8 100 100 0 

300 X 8 100 100 0 

Table 9. Comparison of the results of the examples according to the optimal values for 
maximum flow time  

9. Conclusions 

The genetic algorithms (GA) have the great advantage and success in the solution of NP 

problems. There are various important applications on this way. In this study, the job with 

n-number of precedence constraints is assigned minimizing total earliness and tardiness and 

maximum flow time on m-number of parallel machine. Genetic algorithms and simulated 

annealing methods were used to find the solutions, which minimizes the total earliness and 

tardiness costs. In GA, the solution alternatives, which were obtained by using genetic 

operators, were investigated to understand that if they are feasible or not and the feasible 

ones according to precedence constraints were considered. The way, trying to make 

infeasible solutions feasible, was not selected. Likewise, obtained infeasible solutions were 

not evaluated. Again any study about making these infeasible solutions feasible was not 

done. According to the results obtained by using GA and SA methods, it was evidently 

observed that GA algorithm is more successful. Especially for larger problem sizes, it is seen 

that GA gives results better than SA. 
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