
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



1

Chapter

Tomato Leaf Diseases Detection 
Using Deep Learning Technique
Muhammad E.H. Chowdhury, Tawsifur Rahman, 
Amith Khandakar, Nabil Ibtehaz, Aftab Ullah Khan, 
Muhammad Salman Khan, Nasser Al-Emadi, 
Mamun Bin Ibne Reaz, Mohammad Tariqul Islam  
and Sawal Hamid Md. Ali

Abstract

Plants are a major source of food for the world population. Plant diseases 
contribute to production loss, which can be tackled with continuous monitor-
ing. Manual plant disease monitoring is both laborious and error-prone. Early 
detection of plant diseases using computer vision and artificial intelligence (AI) 
can help to reduce the adverse effects of diseases and also helps to overcome the 
shortcomings of continuous human monitoring. In this study, we have extensively 
studied the performance of the different state-of-the-art convolutional neural 
networks (CNNs) classification network architectures i.e. ResNet18, MobileNet, 
DenseNet201, and InceptionV3 on 18,162 plain tomato leaf images to classify 
tomato diseases. The comparative performance of the models for the binary clas-
sification (healthy and unhealthy leaves), six-class classification (healthy and 
various groups of diseased leaves), and ten-class classification (healthy and various 
types of unhealthy leaves) are also reported. InceptionV3 showed superior per-
formance for the binary classification using plain leaf images with an accuracy of 
99.2%. DenseNet201 also outperform for six-class classification with an accuracy of 
97.99%. Finally, DenseNet201 achieved an accuracy of 98.05% for ten-class classifi-
cation. It can be concluded that deep architectures performed better at classifying 
the diseases for the three experiments. The performance of each of the experimen-
tal studies reported in this work outperforms the existing literature.

Keywords: Smart agriculture, automatic plant disease detection, deep learning, 
CNN, classification

1. Introduction

Thousands of years ago, the development of agriculture led to the domestica-
tion of main food crops and animals today. One of the major global problems that 
humanity faces today is food insecurity [1] of which plant diseases are a major cause 
[2]. According to one estimate, plant diseases collectively account for a crop yield 
loss of around 16% globally [3]. The global potential loss from pests is estimated 
to be around 50% for wheat and 26–29% for soybean [3]. Plant pathogens are 
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classified into major groups of fungi, fungus-like organisms, bacteria, virus, viroid, 
virus-like organism, nematodes, protozoa, algae, and parasitic plants. Artificial 
intelligence (AI), machine learning (ML), and computer vision have provided sig-
nificant help in numerous applications including power prediction from renewable 
resources [4, 5] and biomedical applications [6, 7]. The application of AI has seen a 
great boost during the COVID-19 pandemic period for the detection of lung-related 
diseases [8–11] and other prognostic applications [12]. Similar advanced technol-
ogy can be used to mitigate the adverse effects of plant diseases by their early-stage 
detection and diagnosis. Recently, the application of AI and computer vision to 
automatic detection and diagnosis of plant diseases is being extensively studied 
because manual plant disease monitoring is tedious, time-consuming, and labor-
intensive. Sidharth et al. [13] applied a Bacterial Foraging Optimization-based 
Radial Basis Function Network (BRBFNN) to automatically identify and classify 
plant disease achieving the classification accuracy of 83.07%. Convolutional neural 
network (CNN) is a very popular neural network architecture that is used success-
fully for a variety of computer vision tasks in diverse fields [14]. CNN architecture 
and its different variants have been utilized by researchers for the classification and 
detection of plant diseases. Sunayana et al. [15] compared different CNN archi-
tectures for disease detection in potato and mango leaves achieving an accuracy 
of 98.33% for AlexNet and 90.85% for a shallow CNN model. Guan et al. [15, 16] 
used a pre-trained VGG16 model to estimate the disease severity in apple plants and 
achieved an accuracy of 90.40%. Jihen et al. [17] used LeNet [18] model to classify 
healthy and diseased banana leaves and achieved an accuracy of 99.72%.

Tomato is a major food crop across the globe with a per capita consumption 
of 20 kilograms per year and represents about 15% of average total vegetable 
consumption. North America is consuming 42 kilograms of tomatoes per capita 
per year while Europe is consuming 31 kilograms of tomatoes per capita per 
year [19, 20]. To meet the global demand for tomatoes, it is imperative to devise 
techniques for improving crop yield and early detection of pests, bacterial, and 
viral infections. Several works have been done in employing artificial intelligence-
based techniques to improve tomato plants’ survival by early detection of diseases 
and subsequent disease management. Manpreet et al. [21] used a pre-trained 
CNN-based architecture known as Residual Network or commonly called 
ResNet to classify seven tomato diseases with an accuracy of 98.8%. Rahman 
et al. [22] proposed a deep learning-based fully-connected network to classify 
Bacterial Spot, Late Blight, and Septorial Spot disease from tomato leaf images 
and achieved an accuracy of 99.25%. Fuentes et al. [23] to classify ten diseases 
from tomato leaves images considered three main families of detectors: Faster 
Region-based Convolutional Neural Network (Faster R-CNN), Region-based 
Fully Convolutional Network (R-FCN), and Single Shot Multibox Detector 
(SSD). These detectors were combined with different variants of deep feature 
extractors VGG16, ResNet50, and ResNet152 for Faster R-CNN, ResNet-50 for 
SSD, and ResNet-50 for R-FCN for real-time disease and pests’ recognition and 
achieved the highest Average Precision of 83% with VGG16 on top of FRCNN. 
Agarwal et al. [24] proposed a Tomato Leaf Disease Detection (ToLeD) model, a 
CNN-based architecture for the classification of ten diseases from tomato leaves 
images achieving an accuracy of 91.2%. Durmuş et al. [25] evaluated AlexNet and 
SqueezeNet architectures for the classification of ten diseases from tomato leaves 
images and achieved an accuracy of 95.5%. Although the disease classification 
and detection in plant leaves are well-studied in tomatoes and other plants, the 
reliability of leaf images with varying back-ground on large image classes are not 
well-studied, since the real-world images can vary greatly in terms of lighting 
conditions, image quality, orientation, etc. [18].
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This chapter has the following main contributions: (i) Investigation of the classifi-
cation tasks for different variants of CNN architecture for binary and different multi-
class classifications of tomato diseases. Several experiments employing different CNN 
architectures were conducted on raw images. Three different types of classifications 
were done in this work: (a) Binary classification of healthy and diseased leaves, (b) 
Six-class classification of healthy and four diseased leaves, and finally, (c) Ten-class 
classification with healthy and 9 different diseases classes. (ii) The performance 
achieved in this work outperforms the existing state-of-the-art works in this domain.

The rest of the chapter is organized in the following manner: Section 1 gives a brief 
introduction, literature review, and motivation for the study. Section 2 describes the 
different types of plant pathogens. Section 3 provides the methodology of the study 
with technical details such as the dataset description, pre-processing techniques, and 
details of the experiments. Section 4 reports the results of the studies followed by 
discussions in Section 5 and finally, the conclusion is provided in Section 6.

2. Pathogens of tomato leaves

Fungi is the predominant plant pathogens and it can cause multiple diseases 
including early blight, septoria leaf spot, target spot, and leaf mold. Fungi can attack 
plants through different sources such as infected soil and seeds. Fungal infections 
can spread from one plant to another through animals, humans, machinery, and soil 
contamination. The fungal attack vectors include plant pruning wounds, insects, 
leaf stomata, and others. The early blight disease of tomato plants is caused by the 
fungus, which affects the plant leaves. If it affects the seedlings’ basal stems, adult 
plant’s stem, and fruits, it is called collar rot, stem lesion, and fruit rot, respectively 
[26, 27]. Numerous methods have been devised for the control of early blight but 
the most effective methods are cultural control i.e. efficient soil, nutrients, and crop 
management to reduce infections and also with the use of fungicidal chemicals. 
Septoria leaf spot of tomato plants is caused by fungus [28, 29], which releases 
tomatinase enzyme that speeds up the degradation of tomato steroidal glycoalkaloids 
α-tomatine [30, 31]. The target spot disease of tomato plants is caused by the fungus 
[32, 33]. Symptoms of target spot disease in tomato plants are necrotic lesions of light 
brown color in the center [34, 35]. The lesions spread to a larger blighted leaf area 
and result in early defoliation [34, 35]. The target spot also damages the fruit directly 
by entering into the fruit pulp [34, 35]. The leaf mold disease of plants is caused by 
the fungus [36, 37]. It occurs during periods of extended leaf wetness. Bacteria is 
also a major plant pathogen. Bacteria enter plants through wounds such as insect 
bites, pruning, cuts, and also through natural openings such as stomata. Plant’s sur-
rounding environmental conditions such as temperature, humidity, soil conditions, 
availability of nutrients, weather conditions, and airflow are important factors in 
determining the bacterial growth on the plant and the consequent damage. Bacterial 
spot is a plant disease caused by bacteria [38, 39]. Molds are also a major cause of 
plant diseases. Late blight disease of tomato and potato plants is caused by mold 
[40, 41]. The appearance of dark uneven blemishes on leaves tips and plant stems 
are a few of the symptoms. Tomato yellow leaf curl virus (TYLCV) is a devastating 
virus causing tomato disease. This virus attacks the plant through another insect. 
Although tomato plants are unhealthy diseased leaves and iii) ten-class classifica-
tion of healthy and various diseased leaves. In study II, different types of tomato 
leaf diseases are classified into the group of diseases while in study III, different 
classes of unhealthy and healthy leaf images were classified. Similar experiments the 
primary hosts for the virus, this viral infection has been reported in several other 
plants including beans and pepper, tobacco, potatoes, and eggplants [42, 43]. In the 
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last few decades, due to the rapid spread of the disease, the research focus has been 
shifted to damage control of yellow leaf curl disease [44–47]. Another viral disease 
that specifically affects tomato plants is caused by Tomato mosaic virus (ToMV). 
This virus is found worldwide and affects not only tomatoes but other plants as well. 
Symptoms of ToMV infection include twisting and fern-like appearance of leaves, 
damaged fruit with yellow patches, and necrotic blemishes [48, 49].

3. Methodology

The overall methodology of the study of the paper is summarized in  
Figure 1. This study used tomato leaf data from the plant village dataset [50, 51], 
where tomato leaf images are provided. As explained earlier, the paper has three 
different studies: (i) binary classification of healthy and unhealthy leaves; (ii) 
six-class classification of healthy and different disease group leaves were con-
ducted; and (iii) ten class of healthy and several different diseased leaves were 
carried out. The classification is done using pre-trained networks- ResNet18, 
MobilenetV2, InceptionV3, and DenseNet201 that have been comparatively  
successful in previous publications [8, 10, 11, 52–57].

3.1 Datasets description

In this study, plant village tomato leaf images dataset was used [50, 51], where 
18,162 tomato leaf images are available. All images were divided into 10 different 
classes, where one class is healthy and the other nine classes are unhealthy (such 
as- bacterial spot, early blight, leaf mold, septoria leaf spot, target spot, two-spotted 
spider mite, late bright mold, mosaic virus, and yellow leaf curl virus), and 9 
unhealthy classes are categorized into five subgroups (namely-bacterial, viral, fun-
gal, mold and mite disease). Some sample tomato leaf images, for healthy and differ-
ent unhealthy classes from plant village dataset are shown in Figure 2. Moreover, a 
detailed description of the number of images in the dataset is also shown in Table 1, 
which is useful for classification tasks discussed in detail in the next section.

Figure 1. 
Overall Methodology of the study.
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3.2 Preprocessing

3.2.1 Resizing and normalizing

The various CNN network has input image size requirements. Thus, the images 
were resized to 299 × 299 for Inceptionv3 and 224 × 224 for Resnet18, MobilenetV2, 
and DenseNet201. Using the mean and standard deviation of the images of the 
dataset, z-score normalization was used to normalize the images.

3.2.2 Augmentation

Training with an imbalanced dataset will result in a biased model because the 
dataset is not balanced and does not contain a comparable number of images for the 
various categories. As a result, data augmentation can aid in the creation of a similar 
number of images in each class, resulting in reliable results, as reported in numer-
ous recent publications [6–11]. To align the training images, three augmentation 
techniques (rotation, scaling, and translation) were used. The images were rotated 
in a clockwise and counterclockwise direction with an angle of 5 to 15 degrees for 

Figure 2. 
Sample images of healthy and different unhealthy tomato leaves from the plant village database [3].

Class Unhealthy Healthy

Fungi Bacteria Mold Virus Mite

Sub Class Early blight 

(1000)

Bacterial 

spot 

(2127)

Late 

bright 

mold 

(1910)

Tomato 

Yellow Leaf 

Curl Virus 

(5357)

Two 

spotted 

spider 

mite 

(1676)

Healthy 

(1591)

Septoria leaf 

spot (1771)

Tomato 

Mosaic Virus 

(373)

Target spot 

(1404)

Leaf 

mold(952)

Total Tomato Leaf Images (18,162)

Table 1. 
The number of tomato leaf images for healthy and different unhealthy classes.
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image augmentation. The scaling process involves enlarging or shrinking the image’s 
frame size, and 2.5 percent to 10% image magnifications were used in this analysis. 
Image translation was accomplished by converting images by 5–20% horizontally 
and vertically.

3.3 Experiments

Four pre-trained CNN models were investigated that were originally trained on 
ImageNet Database [58] to classify tomato leaf images. Three different classifica-
tion experiments were carried out in this study. Tables 2–4 summarize the details 
of the images in the experiments for three different classification of leaf images 
separately. Two of the four pre-trained networks are shallow (MobilenetV2, and 
ResNet18), while the other two are deep (Inceptionv3, and DenseNet201) to see 
whether shallow and deep networks are appropriate for this application. Table 5 
presents a summary of the parameters (Batch size (BS), Learning rate (LR), Epochs 
(E), Epochs patience (EP), Loss function (LF), Optimizer (OP)) for classification 
in experiments.

All of the studies were conducted on an Intel Xeon Processor E5–2697 v4, 
2.3 GHz with sixty-four GB RAM and a sixteen GB NVIDIA GeForce GTX 1080 
GPU using the PyTorch library and Python 3.7.

3.4 Performance matrix

Important performance metrics for classification experiment is stated in  
Eqs. (1)–(5):

Database Types Total No. 

of images/ 

class

For Both Segmented and Unsegmented experiment

Train set count/fold Validation 

set count/

fold

Test set 

count/ 

fold

Plant 

village 

dataset

Healthy 1591 1147*10 = 11470 127 317

Unhealthy (9 

diseases)

16570 11930 1326 3314

Table 2. 
Summary of the binary classification experiment.

Database Types Count of 

images/class

For Both Segmented and Unsegmented experiment

Train set count/

fold

Validation set 

count/fold

Test set 

count/fold

Plant village 

dataset

Healthy 1591 1147*3 = 3441 127 317

Fungi 5127 3692 410 1025

Bacteria 2127 1532*2 = 3064 170 425

Mold 1910 1375*3 = 4125 153 382

Virus 5730 4126 458 1146

Mite 1676 1207*3 = 3621 134 335

Table 3. 
Summary of the six-class classification experiment.
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Database Types Count of 

images/class

For Both Segmented and Unsegmented experiment

Train set count/

fold

Validation 

set count/

fold

Test set 

count/

fold

Plant 

village 

dataset

Healthy 1591 1147*3 = 3441 127 317

Early blight 1000 720*5 = 3600 80 200

Septoria leaf 

spot

1771 1275*3 = 3825 142 354

Target spot 1404 1011*3 = 3033 112 281

Leaf mold 952 686*5 = 3430 76 190

Bacterial spot 2127 1532*2 = 3064 170 425

Late bright 

mold

1910 1375*3 = 4125 153 382

Tomato Yellow 

Leaf Curl 

Virus

5357 3857 429 1071

Tomato Mosaic 

Virus

373 268*13 = 3484 30 75

Table 4. 
Summary of the ten-class classification problem.

Parameters for classification model

BS 16

LR 0.001

E 15

EP 6

SC 5

LF BCE

OP ADAM

Table 5. 
Summary of parameters for classification experiments.
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Here, true positive (TP) is the number of correctly classified healthy leaf images 
and true negative (TN) is the number of correctly classified unhealthy leaf images. 
False-positive (FP) and false-negative (FN) are the misclassified healthy and 
unhealthy leaf images, respectively.

4. Results

The performance of various networks in the different experiments is reported in 
this section.

In this study, three different experiments were conducted for tomato leaf images 
and the comparative performance for four different CNNs for the three classifica-
tion schemes is shown in Table 6. It is apparent from Table 6 that all the evaluated 
pre-trained models perform very well in classifying healthy and unhealthy tomato 
leaf images in two-class, six-class, and ten-class problems.

Among the networks trained with leaf images for two-class, six-class, and ten-
class problems, Densenet201 outperformed other trained models except without 
segmented two-class and with segmented six class problems where InceptionV3 
was the best-performing network. Moreover, shallow networks ResNet18, and 
MobilenetV2 both showed comparable performance to most of the deep networks 
for the classification of images.

DenseNet201 outperforms others and for six-class and ten-class problems 
showed accuracy, sensitivity, and specificity of 97.99%, 97.99%, 99.54% and 
98.05%, 98.03%, 99.76%, respectively. On the other hand, InceptionV3 produced 
the best result with accuracy, sensitivity, and specificity of 99.2%, 99.2%, and 96%, 
respectively for the two-class problem. Figure 3 clearly shows that the Receiver 
operating characteristic (ROC) curves for two-class, six-class, and ten-class 

Classification Model Overall Weighted

Binary 

Classification

Accuracy Precision Sensitivity F1-score Specificity

ResNet18 98.4 98.4 98.37 98.37 95.2

MobileNet 98.42 98.42 98.38 98.33 95.45

DenseNet201 98.9 98.85 98.66 98.76 95.56

Inceptionv3 99.2 99.23 99.2 99.25 96

Six-Class 

Classification

ResNet18 96.86 96.84 96.84 96.84 99.18

MobileNet 96.74 96.76 96.74 96.74 99.25

DenseNet201 97.99 97.99 97.99 97.98 99.54

Inceptionv3 97.65 97.67 97.65 97.63 99.41

Ten-Class 

Classification

ResNet18 96.75 96.77 96.79 96.76 99.65

MobileNet 97.2 97.18 97.19 97.17 99.7

DenseNet201 98.05 98.03 98.03 98.03 99.76

Inceptionv3 97.35 97.34 97.35 97.34 99.69

Table 6. 
Summary of the tomato leaf disease classification performance using original leaf images.
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problems of tomato leaf images. It is evident from Figure 3 that network perfor-
mances are comparable for 2-, 6- and 10-class problems. However, deep networks 
can provide better performance gain for 6- and 10-class problems.

Figure 3. 
Comparison of the ROC curves for healthy, and unhealthy tomato leaf image classification using CNN based 
models for two-class, six-class, and ten-class Classification.

Figure 4. 
Confusion Matrix for healthy, and unhealthy tomato leaf image classification using CNN based models for  
(A) Binary-class, (B) six-class, and (C) ten-class Classification.
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The confusion matrix for the best performing networks for the different clas-
sification problems are shown in Figure 4. It can be noticed that even with the best 
performing network InceptionV3 for two-class tomato leaf images, 69 out of 16,570 
unhealthy tomato leaf images were miss-classified as healthy and 74 out of 1,591 
healthy tomato leaf images were miss-classified as unhealthy images.

For the six-class problem, which consisted of one healthy class and five differ-
ent unhealthy classes, only 27 out of 1,591 healthy tomato leaf images were miss-
classified as unhealthy images, and 385 out of 16,570 unhealthy tomato leaf images 
consisted of one healthy class and nine different unhealthy classes, only 32out of 
1,591 healthy tomato leaf images were miss-classified as unhealthy images and 382 
out of 16,570 unhealthy tomato leaf images of nine different categories were miss-
classified as healthy or any other unhealthy classes.

5. Discussion

Plant diseases are a major threat to global food security. Latest technologies need 
to be applied to the agriculture sector to curb diseases. Artificial intelligence-based 
technologies are extensively investigated in plant disease detection. Computer 
vision-based disease detection systems are popular for their robustness, ease of 
acquiring data, and quick results. This research investigates how different CNN-
based architectures perform on classification of tomato leaf images. The study 
was divided into 3 sub-studies of 2 class classification (Healthy, and Unhealthy), 6 
class classification (Healthy, Fungi, Bacteria, Mold, Virus, and Mite), and 10 class 

Paper Database Reported performance

P. Tm et al. [59] (2018) Plant village dataset (10 classes) Accuracy-94.85%, Precision-94.81%, 

Sensitivity-94.81%, F1 Score − 94.81%

Mohit et al. [24] 

(2020)

Plant village dataset (10 classes) Accuracy-91.20%, Precision-90.90%, 

Sensitivity-92.90%, F1 Score- 91.60%

H. Durmuş et al. [25]

(2017)

Plant village dataset (10 classes) Accuracy-95.50%

Keke et al. [60] (2018) Plant village dataset (2 classes) Accuracy-97.20%

Belal et al. [61] (2018) Plant village dataset (2 classes) Accuracy-98.00%

Ouhami et al. [62] 

(2020)

Own dataset (6 classes, 666 

images)

Accuracy-95.65%

Fuentes et al. [63] 

(2018)

Plant village dataset (9 classes) Accuracy-96.00%

Madhavi et al. [64] 

(2020)

Own dataset (2 classes, 520 

images)

Accuracy-80.00%

Proposed Study Plant village dataset (2 classes,6 

classes, and 10 classes) 18162 

images

(Binary Class)

Accuracy-99.2%, Precision- 99.23%, 

Sensitivity-99.2%, F1 Score- 99.25%

(Six Class)

Accuracy-97.99%, Precision- 97.99%, 

Sensitivity-97.98%, F-1 Score- 97.54%

and

(Ten Class)

Accuracy-98.05%, Precision- 98.05%, 

Sensitivity-98.03%, F-1 Score- 98.03%

Table 7. 
Results in the paper compared with other state of the art results.



11

Tomato Leaf Diseases Detection Using Deep Learning Technique
DOI: http://dx.doi.org/10.5772/intechopen.97319

classification (Healthy, Early blight, Septoria leaf spot, Target spot, Leaf mold, 
Bacterial spot, Late bright mold, Tomato Yellow Leaf Curl Virus, Tomato Mosaic 
Virus, and Two-spotted spider mite). Overall, the DenseNet201 model outper-
formed every other model except for binary classification, where the InceptionV3 
model outperformed other models. In the binary classification of healthy and 
diseased tomato leaves, InceptionV3 showed an overall accuracy of 99.2%, while 
DensNet201 showed an overall accuracy of 99.67%. In 6 class classification, 
DenseNet201 showed an overall accuracy of 97.99%, while InceptionV3 showed an 
overall accuracy of 97.65%. In 10 class classification, DenseNet201 showed an overall 
accuracy of 98.05%, while InceptionV3 showed an overall accuracy of 97.35%. The 
results in the paper are comparable to the state-of-the-art results and are also sum-
marized in Table 7. Although the Plant Village dataset used in this study contains 
images taken in diverse environmental conditions, the dataset is collected in a spe-
cific region and is of specific breeds of tomatoes. A study conducted using a dataset 
containing images of other breeds of tomato plants from different regions of the 
world may result in a more robust framework for early disease detection in tomato 
plants. Furthermore, the lighter architecture of CNN models with non-linearity in 
the feature extraction layers might be useful to investigate for portable solutions.

6. Conclusion

The stages of the process into the infinite possibilities of machine learning 
for agriculture applications, complete with case studies. ResNet, MobileNet, 
DenseNet201, and InceptionV3 are examples of state-of-the-art pre-trained CNN 
models that do an excellent work of classifying diseases from plant leaf images. 
When compared to other architectures, the DenseNet201 was found to be better at 
extracting discriminative features from images. The trained models can be used to 
detect plant diseases early and automatically. As a result, preventive actions can be 
adopted faster. This research could help with early and automated disease detection 
in tomato crops, due to the use of cutting-edge technology like smartphones, drone 
cameras, and robotic platforms. The proposed structure can be combined with a 
feedback system that provides appropriate insights, treatments, disease prevention, 
and control techniques, resulting in improved crop yields.
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