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Chapter

The Role of Genetics in
Cardiomyopaties: A Review

Luis Vernengo and Haluk Topaloglu

Abstract

Cardiomyopathies are defined as disorders of the myocardium which are
always associated with cardiac dysfunction and are aggravated by arrhythmias,
heart failure and sudden death. There are different ways of classifying them.

The American Heart Association has classified them in either primary or secondary
cardiomyopathies depending on whether the heart is the only organ involved or
whether they are due to a systemic disorder. On the other hand, the European
Society of Cardiology has classified them according to the different morphological
and functional phenotypes associated with their pathophysiology. In 2013 the
MOGE(S) classification started to be published and clinicians have started to

adopt it. The purpose of this review is to update it.

Keywords: cardiomyopathy, primary and secondary cardiomyopathies,
sarcomeric genes

1. Introduction

Cardiomyopathies can be defined as disorders of the myocardium associated
with cardiac dysfunction and which are aggravated by arrhythmias, heart failure
and sudden death [1]. The aim of this chapter is focused on updating and reviewing
cardiomyopathies.

In 1957, Bridgen coined the word “cardiomyopathy” for the first time and in
1958, the British pathologist Teare reported nine cases of septum hypertrophy [2].
Genetics has played a key role in the understanding of these disorders. In general,
the overall prevalence of cardiomyopathies in the world population is 3%.

The genetic forms of cardiomyopathies are characterized by both locus and allelic
heterogeneity. The mutations of the genes which encode for a variety of proteins of
the sarcomere, cytoskeleton, nuclear envelope, sarcolemma, ion channels and
intercellular junctions alter many pathways and cellular structures affecting in a
negative form the mechanism of muscle contraction and its function, and the sensi-
tivity of ion channels to electrolytes, calcium homeostasis and how mechanic force in
the myocardium is generated and transmitted [3, 4].

Panels of genes are performed to diagnose the different mutations of the genes
that can be the cause of the disorders although it is not certain that these disorders
might be caused by these mutations. Increasing insight has shown the overlapping
of the different types of cardiomyopathies [3].

There are different ways of classifying them. In 2006, the American Heart
Association classified them in either primary or secondary cardiomyopathies
depending on whether the heart was the only organ involved or the disorder was a
found in a systemic disease. On the other hand, in 2008, the European Society of
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Cardiomyopathy - Disease of the Heart Muscle

Cardiology classified them according to the different morphological and functional
phenotypes associated with their pathophysiology. In 2013, the MOGE(S) classifi-
cation was described [1, 5-11].

2. Classification

The American Heart Association (AHA) classified cardiomyopathies as primary
those in which the heart is the only organ affected and can be genetic, mixed or
acquired and secondary, those in which the heart is affected as part of a systemic
disease. On the other hand, the European Society of Cardiology (ESC) classified
them according to morphological and functional phenotypes involving their patho-
physiology (Tables 1 and 2) [1, 7-12].

In 2013, MOGE(S), the new cardiomyopathy classification system, was devel-
oped. The MOGE(S) system, which is based on the TNM classification scheme for
tumors, will be a useful tool for the diagnosis, management, and treatment of
cardiomyopathies as well as the TNM classification is to the management of cancer.
The nomenclature of the MOGE(S) classification system used in cardiomyopathies
is easier to describe and understand. This latter configuration system has a descrip-
tive language or code and it allows physicians to comprehend what the different
types of cardiomyopathy are and what mutation each patient has It is a descriptive
genotype—phenotype system. The MOGE(S) classification is based on five attributes
and describes how it can be used on patients who have one of the disorders.
Therefore, MOGE(S) stands for: (M) morphofunctional characteristic; (O) organ
involvement; (G) genetic or familial inheritance pattern; (E) specific etiological
characteristics; (S) Stage of heart failure (functional classes). The MOGE(S)

Genetic Hypertrophic cardiomyopathy
Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia
Left Ventricular Noncompaction
Conduction defects (Lenegre-Lev disease)
Ion channels disorders: Long QT syndrome
Brugada syndrome
Short QT syndrome
Catecholaminergic polymorphic
ventricular tachycardia
Mitochondrial defects.

Mixed Dilated cardiomyopathy
Restrictive cardiomyopathy
Acquired Inflammatory (cardiac amyloidosis)
Takotsubo
Peripartum

Tachicardia-induced
Infants of insulin-dependent diabetic mothers

Table 1.
Primary Cardiomyopathies

CARDIOMYOPATHIES HCM Genetic Disease subtypes
DCM Unidentified gene defect
ACM . .
RCM Non genetic Disease subtypes

Unclassified Unidentified gene defect

Table 2.
European Society of Cardiology. Classification of the cardiomyopathies.
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classification system will, undoubtedly, not only help in the diagnosis, but in the
management of the different cardiomyopathies as well. It will definitely help to
diagnose a cardiomyopathy in the early stages that is to say when the disorder is not
yet present allowing to physicians to start treatment quickly (Table 3) [5, 6, 13-16].

Let us show a couple of examples regarding the several cases in which this
classification can be applied.
Let us discuss a patient with Friedriech’s ataxia. The patient was a Caucasian

male who had normal milestones and at age 10 he started with progressive gait. On

examination he had Babinski reflex, pes cavus. The disorder progressed very
quickly. He had limb ataxia and pyramidal signs appear. He underwent surgery

because of the scoliosis and had his spine braced. At age 15, he had dysarthria, distal

M (¢] G E S

Morphofunctional Organ Genetic pattern Etiology Stage

phenotype involvement

Cardiomyopathy ~ 0: Absence of  Inheritance Index cases should  The stage depicted by
diagnosis involvement A- Familial: be tested the letters A,B,C or D
1)HCM (H) H: Heart AD: autosomal 1. If Positive of the

a) H (obs) M Skeletal dominant relatives American College of
obstructive Muscle AR: autosomal  should also be tested cardiology- American
b) H (noObs) non  A: Auditory recessive 2.If Negative Heart Association
Obstructive3) C: Cutaneous XLD: X-inked novel genes should (ACC-AHA)

2)DCM (D) E: Eye, Ocular  dominant be tested and NA: not applicable
3)RCM (R) G: XLR: X-inked relatives regular NU: not used

4 REMF 5) Gastrointestinal recessive check-ups Followed by the class
Endomyocardial K: Kidney Mit: G-OC: Obligate of the New York
fibrosis Li: Liver mitochondrial carrier Heart association
6)ARVC/D (A) Lu: Lung B.Non familial: G-ONC: Non carrier (NYHA) which is

7)LVNC (NC) N: Nervous Phenotipically ~ G-G-A-Genetic described by I, II, II,
8)Early S: Skeletal sporadic 1. amyloidosis v
(specifyiing the Families: G-HFE stands for the
different a) Informative =~ Hemochromatosis functional status
subgroups) b) non DN De novo (and functional class.
a)E(H) Informative mutation (This is optional).
b)E(D) 2. Family G-Neg Test Negative
c)E (R) history not for an unknown
d)E (A) known by mutation
Channelopaties patient G-N mutation not
(are not included) Family yet Identified
0 Unaffected screening 0 No genetic test
NA not available 1. affected performed
NS Non specific asymptomatic  Non-genetic etiologies
phenotype relatives who do  A: amyloidosis (each
not know they  type has to be stated)
have the A: autimmune
disorder. Eo:
2. Abnormal hypereosinophilic
ECGand heart disease
echocardiogram I: infectious diseases
detected in M: myocarditis
relatives V: viral infection
3.Normal ECG  state the gene that
and causes the disorder
echocardiogram  (if the molecular was
in relatives who  performed) and the
have no mutation found
symptoms.
Table 3.

The MOGE(S) system for classifying cardiomyopathy patients.
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wasting, spasticity. The wasting of his muscles could be observed in his limbs. His
fingers resembled aranodactyly.He was wheelchair-bound. Very intelligent person.
Chest X ray: cardiomegaly. He never developed diabetes mellitus. He had several
bouts of pneumonia. Serial ECGs showed repolarization wave abnormalities.
Echocardiograms showed concentric left ventricular hypertrophy and normal ejec-
tion fraction. Pulmonary functional tests showed that he had restrictive pulmonary
syndrome of scoliotic origin. Cranial CT scan demonstrated he had cerebellar atro-
phy. At age 19, he suffered from depression and he developed urinary urgency.
Molecular test confirmed the diagnosis showing a GAA triplet repeat size over
2000.

Myt wave abnormalities) for hypertrophic cardiomyopathy and T wave
abnormalities.

On.M:N+Luss The organs affected were the heart, skeletal muscles, neurological,
lung and skeletal problems,

Gar. the disorder is inherited in an autosomal recessive pattern.

EG.rxn intron 1 GAA repeats >2000.

Sc.

Therefore, the patient could be classified as My (T wave abnormalities)
OH+M+N+Lu+SGAREG—FXN (intron 1 GAArepeats > 2000) SC—II~

The other case is a 17-year-old Caucasian male who had a mitochondrial myop-
athy presenting the typical clinical features of KSS. The patient had intellectual
disability, short stature and hypogrowth. Bilateral palpebral ptosis. External
ophtalmoplegia. Dyspnea at rest. Pigmentary retinal degeneration Sensorineural
loss. Muscle weakness. Cerebellar syndrome. Ataxia. He denied having a disease and
did not want to have any more tests performed. Atrioventricular block appeared in
the different ECGs. Echocardiograms showed dilated cardiomyopathy. Muscle
biopsy showed ragged-red cells. Electron microscopy and no molecular test was
performed. No other family member had the disease.

Mp(ave). for dilated cardiomyopathy with atrioventricular block.

On.M.:N:Luss The organs affected were the heart and the skeletal muscles and
had neurological, lung and skeletal problems,

Gag. the disorder is a mitochondrial disorder.

EG_o: no molecular testing was run.

Sc.ir

The patient could be classified as followed Mpave) On.m.N:E:LiGMitEG-0Sc.

3. Hypertrophic cardiomyopathy

Hypertrophic cardiomyopathy (HCM) has commonly been described as an
unexplained hypertrophy of the left ventricle which develops in the absence of
systemic hypertension, valvular heart disease or amyloidosis. The left ventricular
hypertrophy (LVH) is usually asymmetric and involves the septum leading to a
decrease of the left ventricular chamber [1, 4, 10, 12, 17].

The 2020 AHA/ACC guideline has defined it as the common definition of
primary cardiomyopathies in which the heart is the only organ involved [18]
while Europeans do not take into account the loading conditions in adult
patients, but the wall thickness of the left ventricle which has to be greater than
13 mm and two standard deviations from the predicted mean (z-score > 2) [19, 20].

HCM is a familial disease which has locus heterogeneity. It is inherited in an
autosomal dominant pattern in fifty percent of the cases, but autosomal recessive
and X-linked HCM have also been described [1, 12, 17, 21-26]. The clinical
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presentation is variable and the clinical severity can even lead to, heart failure and
sudden death. Many patients can be asymptomatic, whereas others will need a heart
transplant [18, 27, 28]. It is the most common cause of death in young athletes while
practicing sports [12, 27, 29, 30].

The prevalence of HCM varies from 1:200 to 1: 500 [4, 12, 31-33]. The
cardiac sarcomere is a complex structure and it is a long way to completely
unraveled the pathophysiology of HCM. Most mutations in HCM are private of
each family thus presenting allelic heterogeneity, incomplete penetrance as well as
myocyte hypertrophy and variable interstitial fibrosis. Genetic and environmental
modifiers also play an important part in the development of the HCM [1, 4, 12,

18, 34-36].

A decade ago, there were thirty-three genes in the world literature that have
been reported to be involved and caused the disease. The genetically based HCM are
due to mutations in the cardiac sarcomere or the associated proteins (See Table 4).
This has changed now and the classification of HCM is based on the ClinGen
framework for evaluating gene-disease clinical validity. The genes that are consid-
ered to cause most likely HCM are MYH7, TNNT2, TPM1, MYBPC3, ACTC1, TNNI3,
MYL2 and MYL3. The different gene variants are now classified as definitive,
strong, moderate, limited and no reported evidence. Conflicting evidence
reported is defined when there is contradictory evidence reported and there are
cases that were first described as HCM but later on they could not be confirmed
[18, 19, 37-45].

There seems to be no correlation between the phenotype of the patients and the
location of the mutations. Most of the mutations are usually missense with excep-
tion of the mutations in the MYBPC3 gene in which it is common to find insertions,
deletions and truncation mutations due to some frameshift mutations [1, 12, 17, 36,
46, 47].

There are syndromic phenotypes associated with HCM. Among them
cardiofacial syndromes are commonly referred as RASopathies (Noonan, Leopard,
Costello syndromes), neurological diseases (Frederich’s ataxia which is caused by
the expansion of GAA sequence in intron 1 of the frataxin gene), mitochondrial
diseases caused by deletion syndromes (KSS, MELAS, MERFF; LOHN), metabolic
disorders of lysosomal storage diseases (Anderson-Fabry disease (GLA mutations),
Hurler’s syndrome (absence of alpha-L-iduronidase,) and glycogen storage diseases
(Wolf-Parkinson-White syndrome caused by mutations in the PRKAG2 gene),
Forbes” disease (mutations in the AGL gene) and Pompe disease [mutations in the
alpha-1,4-glucosidase (GAA)]; infiltrative diseases (Danon disease that has muta-
tions in LAMP2 gene). Other disorders that have HCM are Noonan syndrome
caused by the syndromic genes PTPN11, RAF1 and RIT and myofibrillar myopathies
caused by mutations in BAG3, FLNC and ZASP [11, 26, 36, 40, 48, 49].

4. Dilated cardiomyopathy

Dilated cardiomyopathy (DCM) is characterized by an enlargement of the left
ventricular chamber with impaired left ventricular systolic function, which is pro-
gressive and, in some cases, has secondary diastolic dysfunction. The prevalence of
DCM is greater than 1 in 2500. DCM is the most common cause of congestive heart
failure in young patients. The prevalence is ~36: 100,000 in the U.S The most
common feature is congestive heart failure, though, conduction impairment, syn-
cope and sudden death may also occur. Cardiac transplantation is sometimes the
only solution to the disease [12, 50-55].
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HCM gene Symbol Locus Chromosome Protein Mode of ClinGen
name locus inheritance Gene
Validity
Classification
Beta-myosin MYH7 CMH1 14q11.2 Myosin heavy AD Definitive
heavy chain chain, cardiac

muscle beta isoform

Troponin T TNNT2 CMH2 1q32.1 TroponinT, cardiac AD Definitive
muscle
alpha- TPM1 CMH3 15q22.1 Tropomyosinl Definitive
tropomyosin alpha chain
Myosin- MYBPC3 CMH4 11p11.2 Myosin-binding AD AR Definitive
binding protein C, cardiac-
protein C type
TroponinI ~ TNNI3  CMH7 19q13.42 Troponinl, cardiac ~ AD Definitive
muscle
Actin ACTC1 CMH11 15q14 Actin, alpha cardiac AD Definitive
muscle 1
Regulatory  MYL2 CMH10 12q.24.11 Myosin regulatory ~ AD Definitive
myosin light light chain 2,
chain ventricular/
cardiacmuscle
isoform
Essential MYL3 CMHS8 3p.21.31 Myosin light AD Definitive
myosin light polypeptide 3 AR
chain
HGNC PLN CMH18 6q22.31 Phospholamban AD Definitive
Alpha ALPK3  CMH27 15q25.3 Alpha-protein AR Strong
kinase3 kinase 3
Cysteine- CSRP3 ~ CMH12 11p15.1 Cysteine- and AD Moderate
rich protein glycine-rich protein
3 3
slow-twitch TNNC1 CMH13 3p21.1 Cardiac troponin C ~ AD Moderate
skeletal
junctophilin  JPH2 CMH17 20q13.12 Junctophilin-2 AD Moderate
alpha- ACTN2 CMH23 1q43 Actinin, a2 AD Moderate
actinin-2
NEXN gene NEXN CMH20 1p31.1 Nexilin AD Limited
Ankyrin ARKD1 10q,21 Ankyrin repeat AD Limited
repeat domain 1
domain-

containing 1

CALR3 gene CALR3 19p13.11 Calreticulin AD Limited

Telethonin ~ TCAP CMH25 17q.12 Telethonin AD Limited

MYOZ2 gene MYOZ2 CMH16 4q26 Myozenin 2 AD Limited
(calsarcin 1)

Titin TTN CMH9 2q.312 Titin AD Limited

Tripartite TRIM63 1p36.11 Muscle ring finger ~ AD Limited

motif protein 1

containing

63
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HCM gene Symbol Locus Chromosome Protein Mode of ClinGen
name locus inheritance Gene
Validity
Classification

Kruppel-like KLF10 8q22.3 AD Limited

factor 10

Myosin MYH6  CMHI14 14qll1.2 Myosin heavy chain AD Limited

heavy chain a

a gene

Myomesin1 MYOM1 18p11.31 AD Limited

Myoalladim MYPN  CMH22 10q.21.3 AD Limited

Obscurin OBSCN 1q42.13 AD Limited
PDLIM3 4q35.1 PDZ and LIM AD Limited

domain protein 3
Ryanodine ~ RYR2 1q43 Cardiac Ryanodine AD Limited
2

Myosin light MYLK2 CMH1 20q11.21 Myosin heavy chain ADDD Limited

chain kinase digenic a

2 gene

Table 4.

Genes that cause HCM.

It is known that hypertension, valve disease, viral infections, toxins, drugs,
metabolic disorders among others can cause DCM, but in almost 40% of DCM
patients the cause of the disorder is due to a genetic mutation [12, 26, 53, 56].

The familial cases of DCM present autosomal dominant, autosomal recessive or
X-linked inheritance so it can be stated that there is. both locus and allelic hetero-
geneity (See Table 2). The autosomal dominant pattern is undoubtedly the most
frequent mode of inheritance. It has been demonstrated that DCM has reduced
penetrance and expressivity is always variable. The mutations of the genes involved
in DCM are those which encode cytoskeletal, sarcomeric, mitochondrial, desmo-
somal, nuclear membrane, and RNA-binding proteins [53, 54, 57, 58]. Generally
speaking, the onset of DCM is in adulthood although its appearance has great
variability [59, 60]. When the mutation is in one of the sarcomeric genes the
affected patients are usually young adults [12, 61]. The most common genes that
cause DCM are FLNC, TTN and LMNA. The truncating mutations found in FLNC
and in TTN account for 4% and in 15-25% of the DCM cases respectively. 10% of
cases are due to mutations in LMNA. It has been observed that patients with
mutations in both LMINA and FLNC have a poor prognosis and are more susceptible
to having an arrhythmogenic phenotype [12, 56, 62, 63].

The MOGE(S) classification can also be applied to patients that have been
diagnosed with DCM and it has been observed there is a worse prognosis with the
presence of multiple attributes [13, 64] (Table 5).

5. Restrictive cardiomyopathy

Familial restrictive cardiomyopathy (RCM) is a rare disease, which is inherited
in autosomal dominant pattern with incomplete penetrance [65]. The exact preva-
lence of RCM is unknown [7]. In childhood, RCM accounts for 2-5% of cardiomy-
opathies and has a poor prognosis [10, 12, 66, 67].
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DCM gene Symbol Locus Chromosome Protein Mode of
name locus inheritance

Lamin A/C LMNA  CMD1A 1q21 lamin A and lamin C AD

gene

LDB3 gene CMD1C  10q22-q23 LIM domain-binding protein3 ~ AD

TNNT2 TNNT2 CMD1D 1q32 Troponin T, cardiac muscle AD

gene

SCN5A CMDIE 3p Sodium channel protein type 5 AD
subunit alpha

TTN gene  TTN CMD1G  2q31 Titin AD

DES gene  DES CMD1I 2q35 Desmin AD

EYA4 gene EYA4 CMD1J 6q23-q24 Eyes absent homolog 4 AD

SGCD gene SGCD CMDIL  5q33 Delta-sarcoglycan AD

CSRP3 gene CSRP3  CMDIM  11pl5.1 Cysteine and glycine-rich AD
protein 3

TCAP gene TCAP CMDIN  17q12; Telethonin AD

ABCC9 CMD10, on 12pl12.1; ATP-binding cassette, AD

gene subfamily C, member 9

PLN gene  PLN CMD1P  on 6q22.1;, Cardiac phospholamban AD

ACTC1 ACTC1 CMDI1R  15q14 Actin, alpha cardiac muscle 1 AD

gene

MYH7 gene MYH7  CMDI1S  14ql2; Myosin 7 AD

TMPO gene TMPO CMDI1T  12q22 Hymopoietin AD

PSEN1 gene PSEN1 CMD1U  14q24.3 Presenilin-1 AD

PSEN2 PSEN2 CMD1V  1q31-q42; Presenilin-2 AD

gene

VCL CMD1W  10q22-q23 Vinculin AD

FKTN FKTN CMD1X  9q31 Fukutin AR

TPM1 gene TPM1 CMD1Y  15q22.1 tropomyosin-1 AD

TNNC1 TNNC1 CMD1Z  3p21.3-p14.3  slow troponin-C AD

gene

ACTN2 ACTN2 CMD1AA 1q42-q43; Alpha-actinin-2 AD

gene

DSG2 gene DSG2 CMD1BB 18q12.1-q12.2; desmoglein-2 AD

NEXN gene NEXN CMDi1CC 1p31.1 Nelin AD

RBM20 RBM20 CMDI1DD 10q25.2; RNA-Binding motif protein 20 ~ AD

gene

MYHG6 gene MYH6 CMDIEE 14q12 Myosin 7 AD

TNNI3 TNNI3  CMDIFF 19q13.4; Troponin I, AD

gene

SDHA gene SDHA CMD1GG 5p15; Succinate dehydrogenase AD
complex subunit A

BAG3 gene BAG3 CMD1HH 10q25.2-q26.2 BCL2-associated athanogene3 ~ AD

TNNI3 TNNI3 ~ CMD2A, 19q13.42 Troponin I, cardiac muscle AR

gene
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DCM gene Symbol Locus Chromosome Protein Mode of
name locus inheritance

GATAD1  GATAD1 CMD2 7q21.2 GATA zinc finger domain AR

gene. containing protein 1

Dystrophin DMD CMD3B  Xp21.2 dystrophin X-linked

gene

LAMP2 LAMP2  Danon Xq24 lysosome-associated membrane X-linked

gene disease protein-2

TAZ gene  TAZ Xq28 dystrophin X-linked
Table 5.

Genes that cause DCM.

RCM is characterized by abnormal diastolic function, which has a restrictive
filling pattern, a reduced diastolic volume of one of the ventricles or both ventricles,
enlargement of the atria, pulmonary hypertension, and heart failure. In the early
stages of the disorder the systolic function may be normal, but as the disease pro-
gresses, the systolic function generally declines [12, 68-70].

The list of RCM-associated genes includes sarcomeric and cytoskeletal genes
often similar to those genes observed in HCM and DCM, but in total the genotyping
success rate is quite low, corresponding approximately to 30%. The familial RCM is
linked to the cardiac troponin genes. RCM1 is caused by a mutation in the TNNI3
gene on chromosome 19q13. This gene encodes the cardiac muscle isoform of
troponin 1. RCM2 has been mapped to chromosome 10q23. RCM3 is caused by
mutation in the TNNT2 gene. Mutations in the sarcomere gene, alpha-cardiac actin
gene (ACTC) have also been reported to cause RCM. Cardiomyopathy, familial
restrictive 5 is caused by mutations in the FLNC gene on chromosome 7q32. In
many cases RCM can be observed overlapping with either HCM or DCM [10, 26,
66-68, 70-76].

Fabry’s disease, Hurler syndrome, Gaucher’s disease, haemochromatosis and
glycogen storage diseases are among the diseases in which RCM can be observed
[10, 26].

6. Arrhythmogenic cardiomyopathy

Arrhythmogenic cardiomyopathy (ACM) is a rather new word used to describe
what previously was known as Arrhythmogenic right ventricular cardiomyopathy/
dysplasia (ARVC/ARVD). The prevalence has been estimated 1:5000 in the general
population.

Later on, it was observed that in many cases the left ventricle was also affected
(ALVC) thus this disorder started to be called ACM.

The age of onset is between 10 and 50 years old. The clinical features include
ventricular tachyarrhythmias, electrocardiographic abnormalities, systolic heart
failure, syncope and sudden death. It is a frequent cause of sudden death in young
people and athletes ACM is characterized by fibro-fatty replacement of the myo-
cardium, apoptosis and inflammation [8, 12, 77, 78].

It is transmitted most of the time in an autosomal dominant pattern; though
autosomal recessive families have also been reported. The data has shown the
inheritance could be even be oligogenic or multifactorial where environmental
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ARCYV gene Symbol  Locus Chromosome Protein
name locus

Transforming growth factor TGFB3 ARVD1 14q24.3 Transforming growth
beta- 3 factor beta-3
Ryanodine receptor 2 RYR2 ARVD2 1q43 RYR2
Unknown Unknown ARVD3 14q12-q22 Unknown
Unknown Unknown ARVD4 2q32.1-q32.3  Unknown
transmembrane protein 43 TMEM43 ARVD5 3p25.1 Transmembrane protein 43
Unknown Unknown ARVD6 10p14-p12 Unknownn
Desmin DES ARVD7 2q35 Desmin
Desmoplakin DSpP ARVDS 6p24.3 Desmoplakin
Plakophilin-2 PKP2 ARVD9 12p11.21 Plakophilin-2
Desmoglein-2 DSG2 ARVD10  18ql2.1 Desmoglein-2
Desmocollin-2 DSC2 ARVD11  18ql2.1 Desmocollin-2
Junction plakoglobin jup ARVD12  17q21.2 Junction plakoglobin
Alpha-T-catenin CTNNA3 ARVC13  10q21.3 Catenin
Cadherin2 CDH2 ARVC14  18ql2.1 Cadherin

Table 6.

Genes that cause ARVC.

factors intertwine to cause the disease. Incomplete penetrance and great variability
in the symptoms have been observed [7, 12, 77-84].

The two first disorders to be described were Naxos disease and Carvajal syn-
drome, which are inherited in an autosomal recessive pattern. The former is caused
by mutations in the plakoglobin gene on chromosome 17q21,2 and the latter by
mutations in the desmoplakin gene on chromosome 6p24 [12, 77, 78, 80, 85-88].

Desmosomes are intercellular junctions that link intermediate filaments to the
plasma membrane and are essential to tissues that experience mechanical stress
such as the myocardium. Mutations in the cardiac desmosome genes are to be held
responsible for most of the cases that cause the disorder (See Table 6). The prog-
nosis of those who have a mutation in these genes is much worse [12, 79, 89-91].

There are overlapping syndromes. Myofrillar myopathies genes such as filamin
C can cause ARLV [77]. The mutations p.S13F, p.E114del and p.N116S in the desmin
gene have the same ARVC cardiac phenotype. In transfection cells aggresome
formation in the cytoplasm was observed [12, 82, 92, 93]. The members of the
Swedish family who were diagnosed with ARVC7 linked to chromosome 10q23.2
had instead the p.Pro419Ser mutation in DES [94, 95]. In mutations in the SCN5A
gene the mutations can cause ARVC with Brugada syndrome, long QT syndrome or
DCM. In both Titin and lamin A/C ACM overlaps with DCM [12, 77].

7. Non-compaction cardiomyopathy

Non-compaction cardiomyopathy (NCCM) has been classified as a primary
cardiomyopathy with a genetic etiology. The age of onset varies from neonatal to
adult hood. There is variability in the clinical features which include heart failure,
arrhythmias and thromboembolism, but patients can also be asymptomatic.

10
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The most common congenital heart defects in NCCM are Ebstein’s anomaly, septal
defects and patent ductus arteriosus.

The patients have a thickened two-layered myocardium with a thin, compact,
epicardial layer and a severely thickened endocardial layer with a ‘spongy’
appearance due to prominent trabeculations and intertrabecular recesses [96-102].

The majority of the patients have an autosomal dominant mode of inheritance.
Mutations in several genes coding for sarcomeric proteins such as f-myosin heavy
chain (MYH?), cardiac myosin-binding protein C (MYBPC3), a-cardiac actin
(ACTC1), cardiac troponin T (TNNT2), a-tropomyosin (TPM1) and cardiac
troponin I (TNNI3). have been described in NCCM.

While mutations in the tail domain of MYH7 and TTN have been reported to be
associated to NCCM with DCM and have a poor patient ouycome, mutations in
MYBPC3 are linked to NCCM with HCM. Mutations in DES, DSP, FKTN, HCN4,
KCNQ1, LAMP2, LMNA, MIB1, NOTCH1, PLN, RYR2, SCN5A, and TAZ have also
been described [12, 98, 102-107].

8. Takotsubo cardiomyopathy

Takotsubo cardiomyopathy is characterized by an acute but transitient LV sys-
tolic dysfunction without atherosclerotic coronary artery disease and it is triggered
by psychological stress. It is more common to find it in women than in men.
Although some genes are considered to be involved in developing the disorder there
is controversy about this and many believe Takotsubo cardiomyopathy is not
genetically determined [108-112].

9. Ion channel disorders

The cell membrane transit of sodium and potassium ions is ruled by the ion
channel genes which encode proteins responsible for the right transit of these ions.
Mutations in these proteins lead to a group of familial disorders [113]. These ion
channel disorders include long QT syndromes (LQTS), of which the Romano Ward
syndrome is the commonest, the short-QT syndrome (SQTS), Brugada syndrome,
and the catecholaminergic polymorphic ventricular tachycardia (CPVT). 5-10% of
the sudden deaths in children can be associated to ion channel disorders [78,
114-117]. Many of the mutations found in these genes overlap in the different traits.

9.1 Long QT syndromes (LQTS)

LQTS is an arrhythmia syndrome characterized by a prolonged QT interval
ECG, torsades de pointes and a higher chance of sudden cardiac death. In most of
the cases it is inherited in an autosomal dominant pattern. The prevalence is 1:2000.
The most common syndromes are LQT1 (40-55%), LQT2 (30-45%) and LQT3
(5-10%). The autosomal dominant mutations are found in genes KCNQ1, KCNH2
and SCN5A respectively whereas TRDN is an autosomal recessive gene (Table 7).
While in LQT1 cardiovascular symptoms that can lead to sudden death occur during
exercise, in LQT2 the symptoms appear with auditory stimuli and in LQT3 during
rest or sleep [71, 114, 118].

The Jervell and Lange-Nielsen syndrome (JLNS) is inherited as an autosomal
recessive trait. The affected children present symptoms before the age of three and
they died before the age of 15 if they are not treated. The prevalence can vary
considerably and it depends on the population studied. The patients have a more
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Long QT syndromes Gene Protein

LQT1 KCNQ1 Kv7.1 potassium channel

LQT2 KCNH2 ky11./hERG Kv11.1 potassium channel
LQT3 LQT3 NaV1.5 sodium channel

LQT4 ANK2 ankyrin B

LQT5 KCNE1 minK

LQT6 KCNE2 MiRP1

LQT7 (Andersen-Tawil syndrome) KCNJ2 Kir2.1

LQT8 (Timothy syndrome) CACNA1C Cayl.2

LQT9 CAV3 Caveolin-3

LQT10 SCN4B B4-subunit of the voltage-dependent Na + channel
LQT11 AKAPY A-kinase anchor protein-9

LQT12 SNTA1 al-syntrophin

LQT13 KCNJ5 Kir3.4

LQT14 CALM1 calmodulin

LQT15 CALM?2 calmodulin

CALM3 calmodulin

TRDN Triadin
RYR2 ryanodine receptor 2
TRPM4 Transient receptor potential melastatin 4

Table 7.
Genes that cause long QT syndromes.

severe QT prolongation (greater than 500 msec) which is associated which
tachiarrhythmias including torsade de pointes, ventricular fibrillation, syncope and
sudden death. Mutations in the KCNQ1 gene on chromosome 11p15.5-p15.4 and
KCNET1 gene on chromosome 21q22.12, have been reported in the affected
individuals [116, 119].

Timothy syndrome is a rare autosomal dominant disorder that is due to either a de
novo mutation or parent germline mosaicism. Mutations in the gene CACNAIC cause
the two forms of the disorder: the classic, type 1, and type 2. The reported cases of the
patients suffering type 1 syndrome have shown complete penetrance [120]. This
complex multisystem disorder has a long QT syndrome associated with various
forms of congenital heart defects such as tetralogy of Fallot and hypertrophic car-
diomyopathy Webbing of both fingers and toes have been observed. Type 2 patients
did not have syndactily [121]. Children died at age of 2.5 years due to ventricular
tachycardia and ventricular fibrillation, infection or malignant hypoglycemia.

The Andersen-Tawil syndrome (LQT7) presents with QT interval prolongation,
hypokalemic periodic paralysis and facial dysmorphism. The type 1 disorder disease
is caused by mutations in KCNJ2 while type 2 is due to mutations in KCNJ5-GIRK4
gene [119, 120, 122-129].

9.2 Short-QT syndrome

Short-QT syndrome is a familial disease that is characterized by a high incidence
of sudden death. Patients with this disease have QT intervals that are <300 ms, and
increased risk of atrial and ventricular arrhythmia.
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It is an autosomal dominant inherited disorder that affects patients of 30 years of
age, but the fibrillation can even be observed in newborns and young patients.

Missense mutations in the KCNH2 gene on chromosome 7q36.1 and mutations in
the KCNQI gene on chromosome 11p15.5-p15. and the KCNJ2 gene on chromosome
17q24.3 have shown that this is a genetically heterogeneous disease There also differ-
ent variants in mutations of the genes CACNA2D1, KCNH2, KCNJ2, KCNQ1 and
SLC4A3 which have been described in SQTS, but most of them are VUS [130-132].

9.3 Brugada sindrome

The Brugada syndrome is associated with sudden death in young people as the
patients have malignant ventricular tachyarrhythmias and sudden cardiac death.
The heart is not affected by either a structural heart or systemic disease. The cardiac
differential diagnosis must be made with Duchenne muscular dystrophy,
Freidreich’s ataxia and ARVC. The age of appearance ranges from a two- day- old
patient to 85 years. It was believed to be inherited in an autosomal dominant pattern
with incomplete penetrance. Up to eighty different mutations were identified in
the SCN5A gene. A family with a pathogenic variant in KCNE5 which is inherited in
an X-linked recessive pattern. The genetic variants in SCN5A-SCN10A and HEY?2
have also been described [120, 125-127, 133-141].

9.4 Catecholaminergic polymorphic ventricular tachycardia

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited
tachyarrhythmia that is caused by acute adrenergic activation during exercise or
acute emotion in young adolescents. The age of onset varies from 7 to 9 years to the
fourth decade of life. It presents locus heterogeneity and in only approximately 50%
of the cases the mutations in the genes causing the disease have been identified.

The prevalence of CPVT in the population is not known, but it could be esti-
mated in approximately 1:10,000. In CPVT, CALM1 and RYR?2 are inherited in an
autosomal dominant manner while CASQ2 and TRDN are inherited in an autosomal
recessive manner [142-146].

10. Cardiomyopathy in muscular dystrophies

Muscular dystrophies are a heterogeneous group of inherited disorders, charac-
terized by progressive weakness and wasting of the skeletal muscles. They are
generally associated with cardiomyopathy. In many cases, there is no correlation
between the skeletal myopathy and the involvement of the heart. The mutations of
the genes that cause muscular dystrophies affect the skeletal and/or cardiac mus-
cles. These include proteins which are associated with the dystrophin-glycoprotein
complex, the nuclear lamina or the sarcomere [12, 147, 148].

Cardiomyopathy occurs in myofibrillar myopathy, myotonic dystrophies, myo-
tonic myopathies, dystrophinopathies, Emery-Dreifuss muscular dystrophy, and
limb girdle muscular dystrophies [147-149]. They are inherited in autosomal dom-
inant, autosomal recessive and X-linked mode. (See Table 4). In this respect
Duchenne muscular dystrophy and its allelic form Becker muscular dystrophy is of
significant importance. These two conditions are the most common disorders in
muscular dystrophies and cardiomyopathy can be a cardinal finding during the
follow-up, thus requiring yearly evaluations.

The different forms of muscular dystrophies vary in the age of onset with no
male or female prevalence and have different clinical features and severity.

13



14"

Disease Name Gene Symbol Locus name Chromosome locus Protein Mode of inheritance CMP
Desminopathy Desmin DES MFM1 2q35 Desmin AD/AR HCM
HCR
Alpha-B crystallinopathy CRYAB gene CRYAB MFM2 11q23.1 alpha-B-crystallin AR/AD HCM
Myotilinopathy Myotilinn MYOT  MFM3 5q31.2 Myotilin AD
(TTID) (titinmmunoglobulin domain protein)
ZASPopathy ZASP LDB3 MFM4 10q23.2 LIM domain-binding protein 3 AD HCD
Filaminopathy FilaminC FLNC MFM5 7q32.1 Filamin C AD HCM
HCR
BAG3-Related Myofibrillar Myopathy =~ BCL2-associated athanogen 3 BAG3 BAG3 10q26.11 BAG family molecular chaperone regulator 3 AD HCM
HCD
Myotonic dystrophy type 1 myotonin-protein kinase (Mt-PK). DMPK DMPK 19q13.3 dystrophia myotonica-protein kinase AD HCD
Myotonic dystrophy type 2 zinc finger protein-9 gene CNBP ZNF9 3q21.3 zinc finger protein-9 AD HCD
Duchenne/Becker muscular dystrophy  dystrophin DMD DMD Xp21.2 emerin X-linked HCM
Rigid spine syndrome Selenoprotein 1 SEPN1 1p36.11 Selenon AR HCD
LGMD1B Lamin A/C Lamin A 1q.22 AD HCM
LGMD1C Caveolin-3 CAV3 AR HCM
LGMD2B Dysferlin Dysf 2p13.2 Dysferlin AR HCD
LGMD2E Beta-sarcoglycan SGCB SGCB 4q12 Beta-sarcoglycan AR HCD
LGMD2I Fukutin-related protein FKRP AR HCD
LGMD2] Titin TTN 2q.31.2 AD HCM
AR
LGMD2M Fukutin FKTN 9q.31.2 AR HCD
Barth syndrome Tafazzin TAZ Xq28 Tazffin XLR HCM
LVHT

Table 8.

Genes that cause cardiomyopathy in muscular dystrophies and limb givdle muscular dystrophies.

2]OSNIN 24V 2Yy1 Jo asvasiyT - Ayrwdoluorpivy)



The Role of Genetics in Cardiomyopaties: A Review
DOI: http://dx.doi.org/10.5772/intechopen.97242

Mutations in the genes that are involved in muscular dystrophies can cause hyper-
trophic, dilated or restrictive cardiomyopathy depending on the mutations of the
genes involved, but most cardiomyopathies in patients with a muscular dystrophy
are of the dilated type. The progression of the disorders and life expectancy vary
widely, even among different members of the same family. Patients die of sudden
death due to conduction defects, and heart failure.

In dystrophinopathies, sarcoglycanopathies, and the disorders that are linked to
mutations in the fukutin-related protein, the feature that stands out is the cardio-
myopathy the patients suffer. In muscular dystrophies, the patients usually have a
dilated cardiomyopathy. Hypertrophic cardiomyopathy can be observed in Danon
disease, a-B crystallinopathy, and on patients or carriers of DMD and BMD. It has
been proved that in spite of the fact that mutations in codon 92 (R92L and R92W)
of the cardiac troponin T gene are in the same found in the same codon the severity
and phenotypes are completely different due to fact that the mutated protein has a
completely different function [4, 12, 48, 147, 148, 150-169] (Table 8).

11. Mitochondrial disorders

Mitochondrial disorders are a heterogeneous group of disorders that have com-
mon clinical features and are caused by the different mutations found in either the
nuclear or mitochondrial DNA (mtDNA) genes which regulate the mitochondrial
respiratory chain, the essential final common pathway of aerobic metabolism, tis-
sues and organs. mtDNA is maternally inherited and the disorders can appear at any
age. All the mitochondria have multiple copies of their own mtDNA and the muta-
tion rate is much higher than in nuclear DNA [170-173].

Many mitochondrial disorders involve multiple organ systems such as the brain,
the heart, the liver, and the skeletal muscles which are, therefore, affected due to
the fact they depend on the energy and they are especially susceptible to energy
metabolism impairment [170-173].

Mitochondrial dysfunction and clinical symptoms appear when the
heteroplasmic levels are above 80-90% [170-172].

The different mitochondrial cardiomyopathies are a result of the heart being
commonly affected. Sometimes, the cardiomyopathy is diagnosed during the first
year of life even before the mitochondrial disorder has been diagnosed. HCM,
DCM, LVNC cardiomyopathies have been reported [171, 173, 174].

11.1 Kearns-Sayre syndrome

The Kearns-Sayre syndrome (KSS), a mitochondrial deletion syndrome, is char-
acterized by the triad: onset of the disorder before the age of 20, progressive
external ophthalmoplegia and pigmentary retinopathy. A cerebrospinal fluid pro-
tein concentration greater than 100 mg/d, and a commonly elevated lactate and
pyruvate concentrations in blood and cerebrospinal fluid are found.

The KSS has cardiac involvement with conduction defects such as right bundle
branch block, left anterior hemiblock or complete A-V block. These patients can
develop a cardiomyopathy usually dilated [170, 173, 175-177].

11.2 MELAS

It is a multisystem disorder with onset in childhood with mitochondrial
encephalomyopathy, lactic acidosis, and recurrent stroke-like episodes. The
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variability of symptoms and the severity of the syndrome make it difficult to
confirm the diagnosis.

MELAS is transmitted by maternal inheritance.

The cardiac involvement is considered to be 18-100% [178-180]. The first
symptom the affected children have is the cardiomyopathy. The most common
feature is a hypertrophic cardiomyopathy, although dilation has also been reported
[134, 181, 182].

Mutations in the nuclear genes that also encode mitochondrial proteins can
cause cardiomyopathies. These disorders are sometimes not considered among the
group of mitochondrial primary disorders. Two of the most well-known disorders
are Friedreich’s ataxia and Barth syndrome [12, 171, 173, 183].

Friedreich’s ataxia is an autosomal recessive disorder. Frataxin, the protein
encoded by FXN, is involved in the mitochondrial transport and is needed for the
synthesis of the enzymes of the respiratory chain complexes I — III and aconitase.
HCM is found in this disorder [173].

In Barth syndrome, abnormal mitochondria and DCM are described as well as
neutropenia [173].

12. The impact of genetics in the understanding of cardiomyopathy

Genetics started to play a key role with the advent of molecular genetics there-
fore physicians should not only base themselves on the family history of a patient,
but with molecular genetics they have a tool that they could use and help them to
diagnose and understand the disorders. Every year, new pathogenic mutations in
the different genes are described, but it has not yet been figured out what the
specific function and the pathogenic mechanisms the mutated proteins are.

The fact a molecular analysis can be performed does not mean the different steps
physicians follow to evaluate and diagnose a cardiomyopathy should be left out, if
one takes into account the fact that cardiomyopathies are in many cases inherited
disorders. Therefore, a three generation family history looking for cardiac symp-
toms is essential as well as a thorough examination. Blood tests, ECGs, echocardio-
grams, cardiovascular magnetic resonance imaging, electromyography, and muscle
biopsy should be carried out in order to provide us with the information that can
help us to diagnose a cardiomyopathy. The suspected cardiomyopathy will have to
be confirmed by DNA analysis not only in the patients, but also in asymptomatic
carriers [12, 18, 51, 53, 59].

Multigene panels for molecular testing have been developed which allow physi-
cians to diagnose the different disorders. If these tests are negative, exome
sequencing, looking for point mutations and insertions as well as exome arrays
checking for deletions and duplications should be performed. When performing the
genetic testing the genes that should be tested are those that are considered to be the
most common ones and are held responsible for the disorder. Cascade genetic
testing of first degree relatives at risk seeking for a mutation that has been
previously found in a patient should be performed. In children and adolescents,
screening by means of serial ECGs, echocardiograms and genetic testing should
be done every year or every two years while in adults it should be performed
every three years There should be a lifelong surveillance of family members
[18, 19, 51, 53, 54].

It has been observed that mutations in the same gene and in the same family can
give rise to HCM; DCM, RCM, the three major types of cardiomyopathy, which in
many cases overlap. It can be said that the different mutations of the genes plus
modifier genes are liable to trigger the different pathways that lead to the
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remodeling of the heart. The different mechanisms are 11. still not clear and have to
be cleared up [1, 12, 184, 185].

HCM is an autosomal dominant disorder in which mutations in the MYH7,
TNNT2, TPM1, MYBPC3, ACTC1, TNNI3, MYL2 and MYL3 have been classified
as definitive according to the new classification and most of the patients suffering
from it are heterozygous. Mutations in MYH7 and/or MYBPC3 genes account for
80% of the mutations [1, 12, 40]. In some cases, patients have two different
mutations, usually in MYH7 and/or MYBPC3 genes. These mutations result in
the patients being compound heterozygous. The double heterozygotes that have
also been observed have mutations in the MyBP-C/p -MHC, MyBP-C/TNNT2,
MyBP-C/TNNT3, MyBP-C/TPM, p-MHC/TNNT?2 genes. Sometimes, the patients
can be homozygous for a mutation in the genes MyBP-C, p -MHC, and TNNT2
[1, 12, 17, 51, 186-188]. The genotype—phenotype correlations have been linked to
specific mutations [1]. The different mutations in the MYH7gene show great
variability in symptomatology. Patients with the R403Q, R719W and R719Q
mutations have complete penetrance, severe hypertrophy and short life expec-
tancy, whereas those with the V606M mutation have a mild progression [1, 12,
39, 189-191]. All the patients that have mutations in the TNNT2 gene seem to
have a more severe course. In most cases, the affected patients carrying the
mutations R92W, R92Q, TNNT2-I79N are young, and even though they have a
mild LVH, they died of sudden death. The F110I mutation does not seem to
have so severe a development as the rest of the mutations in this gene Arian, 1998;
[1, 12, 192-194].

It was believed that patients having double mutations in HCM have a greater
severity of the disorder due to a double dose effect [186], but in a study carried out
later on the data has demonstrated that this is apparently not so with the exception
of double mutations in MYBPC3 [195, 196].

Incomplete or reduced penetrance has been observed in many cases (20 to 30%)
as there are parents that are carriers of the mutations, but they do not develop
the disease. It is unknown whether carriers will develop the disorder at a certain age
or will remain asymptomatic throughout their lives. Symptoms show a great vari-
ability among the patients that have the same mutation and suffer the disorder.
These may be due to gene interaction, environmental factors and modifier genes.
After 15-year follow-up it is likely carriers will develop the disorder though it is
not certain [1, 19, 197-199]. False positive reports have led to the misdiagnosis of
HCM [200, 201]. It is the most common cause of sudden death in young people
[12, 27-30, 44, 202].

In many cases RCM can be observed overlapping with either HCM or DCM. An
autosomal dominant cardiomyopathy has been described where the single sarco-
mere TNNT2 gene mutation can cause idiopathic RCM in some patients, or HCM or
DCM in others. All affected members of a RCM-associated family have the 179N
mutation in the TNNT2 gene, thus showing the variability of the disorders
[12, 203, 204].

It is very difficult to assess the genotype-phenotype correlation in NCCM. It
seems that when there are mutations in the alpha-dystrobrevin gene (DTNA) on
chromosome 18q12.1 taffazin gene on chromosome Xq28 (Barth syndrome), lamin
A/C gene, ZASP and SCN5A gene can develop the disorder [12, 205].

As soon as the patients are diagnosed with the myopathies mentioned above they
should be cardiac check-up should be performed and treated immediately as the
cardiac therapy improves the cardiac involvement and life expectancy.

In the ion channels disorders the molecular diagnosis of Timothy syndrome
where the gene CACNAIC gene is mutated it should be performed in several
tissues, including sperm.
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It has been observed that mutations in the lamin A/C gene cause CMD1A,
LGMD1B or EDMD2 in the same family [12, 206, 207].

The mitochondrial deletion syndromes are generally not inherited. The de novo
deletions that take place in the mother’s oocytes during germline development or in
the embryo during embryogenesis are to be held responsible for these syndromes.
90% of the patients with KSS have deletions of mtDNA. The deletions are present in
all tissues in individuals with KSS. There is no correlation between the size or the
location of the mtDNA deletion and the phenotype and penetrance because there
are related to the mutation load. An overlap between KKS and MERRF has been
observed due to point mutation in the tRNA [tRNALeu(UUR)] [208].

It has been suggested that the mutations in the nuclear gene RRM2B gene cause
KSS following a Mendelian mode of inheritance. The patient had multiple mtDNA
deletions and a normal left ventricular function with an increased thickness of the
interventricular septum and left posterior ventricular wall [209].

Approximately 80% of cases of MELAS are due to mutations in the mtDNA gene
MT-TL1 which encodes tRNA leucine. The mutations in MT-ND5 gene which
encodes the NADH-ubiquinone oxidoreductase subunit 5 have also been found in
individuals with MELAS or with overlap syndromes [181, 210].

In spite of the fact that there has been considerable improvement in the molec-
ular diagnosis of the different mutations that lead to cardiomyopathies, we still have
to learn more about the pathophysiology of these disorders. Genetic testing for
these inherited disorders has provided us with an insight into the prevalence of the
underlying mutations of the different cardiomyopathies. Even though many genes
which cause cardiomyopathies have been identified and have led to a better under-
standing of the pathogenesis of cardiomyopathies, mutation analyses affecting the
patients have proven not to be the panacea for the different family members [211].
Different variants within a specific gene can be associated with many different
phenotypes, even within the same family, preventing physicians from having a
clear genotype—phenotype correlation. It seems it is a long way ahead to unravel
completely the pathophysiology of the different cardiomyopathies [212, 213].

13. What should the genetic counseling be in cardiomyopathy?

Genetic counseling to patients with cardiomyopathy is very complex due to the
fact that there is locus heterogeneity and clinical variability. The geneticist has to be
clear and explain that there are all sorts of disorders that cause it.

It is very important that when a numerical value is provided the patient and/or
his family clearly understand that the value given it is the probability of having a
another a child affected with the disorder. It is imperative they understand that
chance has no memory. The numerical value given to them will be the same for
every new offspring of an affected parent. It would be embarrassing to face a family
that comes with a second affected child because they have misinterpreted the
information given to them.

The different opinions regarding what steps should be taken when the consul-
tants are less than 18 years of age and have a genetic disorder. Should we tell them
when they are asymptomatic and are at risk of having the disorder when they are
adults? If a mutation is found, the children will no longer lead a normal life and it
will also have a negative effect on family life. In ACM, it is advised that the genetic
test be run when the consultant is over 10 years of age. The decision will have to be
made on the fact on whether the treatment could help to lead a better life.

In HCM, the first step the geneticist should take is to order the molecular
analyses of MYH7 and MYBPC3, the two genes that carry most of the mutations.
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Should the mutations not be in these two genes, the genetic analysis has to be
focused on those genes that are considered definite.

Sometimes, if no mutations are found in any of the genes tested, the disorder
cannot be ruled out because it is likely that a new gene not yet discovered can be the
cause of the disorder.

In DCM, the mode of inheritance has to be defined in order to provide a correct
counseling as there is locus and allelic heterogeneity.

In the autosomal dominant cardiomyopathies most individuals diagnosed have
an affected parent. However, the index case may have the disorder as the result of a
de novo mutation [214].

In HCM, it is not known the number of cases that are caused by these de novo
gene mutations. While in Brugada syndrome and in RWS de novo mutations are low,
and in CPVT is almost 40%.

Timothy syndrome is due to either de novo mutations or parental germline
mosaicism. The affected patients do not have offspring because they do not reach
adult life. The siblings are at risk of inheriting the disorder. When there is a de novo
mutation, alternate paternity and maternity as well as whether the patient is
adopted have to be ruled out.

The offspring of a patient suffering autosomal dominant familial cardiomyopa-
thy has a 50% chance of inheriting the mutation. Families in which penetrance
appears to be incomplete or reduced have been observed; therefore, the parent with
a mutation that causes the disorder is not affected whereas the son or daughter is.
The severity and age of onset cannot be predicted [215-217].

The siblings of the index case depend on the genetic condition of their parents. If
a parent is affected or has the mutation that causes the disorder, the risk to inherit
the mutated allele is 50%.

In the cases reported where more than one mutation in one the genes encoding a
sarcomere protein has been identified in a patient with HCM, it is very difficult to
assess the mode of inheritance and makes it arduous for the geneticist to give an
accurate risk assessment to another family member.

It is essential to provide patients and relatives that are at risk, the potential risk
their offspring might have in these disorders and the reproductive options they have.

In the autosomal recessive traits, the parents are obligate carriers. The offspring
of a patient suffering an autosomal recessive familial cardiomyopathy will be obli-
gate carriers. The siblings have a 25% chance of inheriting the mutation.

The deletions in mtDNA are usually due to de novo mutations, so there is only
one family member affected. The offspring of a male patient are not at risk whereas
all females” offspring are at risk of inheriting the mutation. There is not risk that
any other family member will inherit the disease.

When there are multiple mtDNA deletions the analysis of RRM2B should be
performed because it conditions the genetic counseling.

A prenatal diagnosis can be performed in those patients there are at risk of
having any cardiomyopathy, if the mutation carried by the parents or the proband
has been previously identified.

Preimplantation genetic diagnosis (PGD) may be available for families in which
the mutation that causes the disorder has already been identified.

14. Conclusion
Genetic testing has undoubtedly broadened our knowledge of the mechanisms

of cardiomyopathy and has to a certain extent helped physicians to understand to a
certain extent the genotype—phenotype correlation. By having a deeper
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understanding of this genotype—phenotype correlation, it will be easier to get a
clinical management of the patients. It has also aided to diagnose symptomatic and
asymptomatic patients, be able to treat them when it is possible and to perform
genetic counseling of the affected patients, their offspring and first degree relatives.

When a genetic test is performed and a patient is diagnosed with a disorder
genetic counseling is essential for the patient and relatives at risk since this will
allow an early identification of relatives who are at risk.

Not all the mutations that have been described over the last twenty have proven
to be pathogenic. The new classification allows us to understand what mutations are
really pathogenic. A deeper understanding of the genotype—phenotype correlation
is necessary, because this could imply what steps should be taken in order to deal
with the correct management of the patients.
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