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Abstract

Neurofibromatosis type 1, NF-1, is a common monogenic (NF1) disease,  
characterized by highly variable clinical presentation and high predisposition 
for tumors, especially those of astrocytic origin (low- to high-grade gliomas). 
Unfortunately, very few genotype–phenotype correlations have been possible, 
and the numerous identified mutations do not offer help for prognosis and patient 
counselling. Whole gene deletion in animals does not successfully model the disease, 
as NF-1 cases caused by point mutations could be differentially affected by cell 
type-specific alternative splice variants of NF1. In this chapter, we will discuss the 
differential Microtubule-Associated-Protein (MAP) properties of NLS or ΔNLS neu-
rofibromins, produced by the alternatively splicing of exon 51, which also contains 
a Nuclear Localization Sequence (NLS), in the assembly of the mitotic spindle and 
in faithful genome transmission. We will also commend on the major theme that 
emerges about NLS-containing tumor suppressors that function as mitotic MAPs.

Keywords: NLS and ΔNLS neurofibromins, astrocyte, glioblastoma, astral 
microtubules, spindle, Microtubule-Associated-Proteins, chromosome segregation

1. Introduction

Neurofibromatosis type 1 (NF-1) is a common, complex multisystem cancer 
predisposition syndrome, with a worldwide incidence at birth of 1: 2–3000 people 
[1] and a documented high mortality mostly due to malignancies [2]. NF-1 is caused 
by autosomal, dominantly inherited or de novo (50: 50 [3]) pathogenic mutations 
in the NF1 gene, which encodes the large protein neurofibromin. The NF1 gene was 
identified 30 years ago, yet with over 3000 different mutations identified thus far 
[4], only very few genotype–phenotype correlations have been postulated [5–7]. 
Affected individuals may present with a wide range of clinical manifestations, 
mostly from the Central Nervous System, CNS and the Peripheral Nervous System, 
PNS [1], as the NF1 gene remains highly expressed there, whereas is downregulated 
in most other tissues in the adult. Thus, most NF-1 tumors are found in the CNS 
(gliomas) or the PNS (plexiform neurofibromas, malignant peripheral nerve sheath 
tumors, or the hallmark of the disease sub- and cutaneous neurofibromas), while 
there is increased risk for other cancers mostly of neural crest origin [8, 9].
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In particular high-grade gliomas are more frequent in adults with NF-1, which 
have 5 times greater risk for glioblastoma (GBM) than the general population [10]. 
In addition, the great mutation rate of the NF1 gene, which has also made its cloning 
impossible, is now recognized in ~20% of sporadic GBM [11]. In terms of specific 
treatments none are available for the cancers of NF-1 patients. Many drugs, like 
anti-angiogenic agents [12], have shown no responses, and MEK1/2 inhibitors have 
been approved only for plexiform neurofibromas. GBM prognosis remains dire 
(~2 years) even with the use of the highly cytotoxic temozolomide, while clini-
cians daily struggle with decisions for affected children. Unfortunately, gliomas 
frequently are resistant to temozolomide therapy and the candidate mechanism, for 
other tumors too, is the formation of tumor microtubes [13]. These recently rec-
ognized long, highly rich in actin, dynamic membrane protrusions of astrocytoma 
cells form a network for multicellular communication that promotes tumor growth 
and invasion of the brain. Therefore, understanding the cytoskeleton associations 
of neurofibromin is highly important in the effort to identify new therapeutic 
targets.

Confirmation of causative mutation with molecular diagnosis is a difficult task, 
as the large NF1 gene of over 400 Kb and 57 exons has no mutational hot spots and 
one of the highest mutation rates in human genetic disorders, which explains the 
high incidence of de novo variants even within the same family. The complicated 
behavior of the gene is further highlighted from genetic manipulations of mice. 
When Nf1 along with two more tumor suppressor genes (TSGs) were targeted with 
CRISPR/Cas in the forebrain of E13.5 mice, aggressive tumors resembling human 
GBMs were produced; however, whole-genome sequencing of the induced GBMs 
hinted to a very variable repair of CRISPR-induced double-strand breaks, poten-
tially locus-specific [14]. Thus, mouse genetic NF-1 models have been marginally 
helpful in designing prognostic tests or therapies.

Even when timely, molecular diagnosis may only rarely offer help for prognosis 
or consultation [5, 7] and the challenge to correlate genotype–phenotype in this dis-
ease of uncontrolled cell growth and tumorigenesis remains largely unmet. It is our 
opinion that the impact of the various mutations will be best appreciated, once our 
currently limited knowledge on the functions of the distinct neurofibromin protein 
domains (Figure 1) will be expanded. As we will elaborate, these domains perform 
critical functions, evidently through inter- and intra-molecular interactions, most 
notably with tubulins, all of which are altered by cell type-specific, alternative 

Figure 1. 
Major NF1 splicing events and neurofibromin domains with functional importance in the CNS. A, the 
two major alternative exons in the NF1 gene, namely 31 and 51, which produce GRDI or GRDII and 
NLS or ΔNLS transcripts, respectively. B, Neurofibromin domains of known functional importance: 
CSRD, Cysteine/Serine-Rich domain; GRD, GAP-related domain; SEC14, Yeast Sec14p-like domain; 
PH, pleckstrin homology domain; CTD, C-Terminal domain and NLS, Nuclear localization sequence. 
Amino acid numbers for all putative isoforms are based on GRDI-NLS neurofibromin (Ensembl transcript 
NF1–201).
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splicing events and post-translational modifications, with mutations adding a supra 
level of complexity that must be met.

Indeed, the quest for genotype–phenotype correlation is complicated by devel-
opmental stage- and tissue- or cell type-specific alternative splicing events of the 
NF1 gene, which is downregulated in most tissues in the adult except CNS and PNS 
tissues. While several alternative exons have been described, three are common in 
the CNS, namely 9a/9br, 31 (former 23), and 51 (former 43) [15–17]. Addition of 
the small alternative exon 9a/9br correlates well with neuronal differentiation and 
is downregulated in oligodendrogliomas [15, 18], but no specific function assign-
ments have been made thus far. In contrast, inclusion of the other two, namely 31 
and 51, does have important functional consequences, as will be discussed next.

Skipping of alternative exon 31, which corresponds to the center of the RasGAP-
related domain (GRD) of neurofibromin (Figure 1A) through which neurofibro-
min inactivates Ras, generates two variants accordingly named as GRD type I, 
GRDI and, if exon 31 is included, as GRD-type II, GRDII [16]. Exon 31 is mostly 
skipped in CNS neurons early on, whereas it is retained as the prominent transcript 
in astrocytes [19–21]. Due to the central role of Ras in many cellular functions and 
in carcinogenesis, GRDs have received high attention. Both GRDs are functional 
RasGAPs [22], when overexpressed in vitro [23] and as we showed in vivo [24], 
albeit GRDI is a much more potent RasGAP than GRDII.

Nevertheless, no significant rescue capacity of GRDs alone has been shown 
for NF-1 phenotypes, leading to the characterization of such phenotypes as Ras-
independent by many researchers [25–27]. Along several such scientific efforts, 
the importance of other domains (Figure 1B) in the allosteric regulation of GRD 
has been established. Indeed, collective experimental evidence has postulated that 
neurofibromin domains may bind each other to form dimers [28], as well as, mul-
tiple proteins to coordinate Ras signalling ([25–27, 29, 30], reviewed in [31]). For 
example, in glioma cells overexpression of CSRD plus GRD -after phosphorylations 
by PKCε or α- binding to cortical F-actin increases and imposes a positive allosteric 
regulation on GRD and thus intense Ras deactivation, which is sufficient to switch 
the effect of EGF signalling from proliferation to differentiation [30]. While this 
mechanism was the first provided answer to the open question of how RasGAPs are 
recruited to the membrane, its clinical significance was directly postulated when 
large cohorts of NF-1 patients, heterozygous for nonsynonymous mutations of any 
of five successive amino acids in the CSRD, were found to have high, >50% predis-
position to malignancies as compared to the general NF-1-affected population [5, 7]. 
SEC14, also reported to halt glioma cell invasion [32], is a domain that mediates 
binding to phospholipids [33, 34] and, as we showed, imposes, like CSRD, a positive 
allosteric regulation on GRD and accelerates Ras deactivation, potent enough to 
switch the activation of ERK from an analogous to a digital mode [24].

Exon 51 in the CTD contains the NLS, a sequence of basic amino acid clusters 
required for proteins of >45 kDa to dock onto the nuclear pore complex as a cargo 
for nuclear import. The necessary energy expenditure and the directionality of the 
import is provided by a gradient of RanGDP in the cytoplasm and RanGTP in the 
nucleus. A similar Ran gradient, generated around duplicated chromosomes during 
mitosis, allows the release of NLS-containing mitotic proteins that regulate spindle 
assembly and congression of chromosomes [35, 36]. NF1 exon 51 may be also 
alternatively transcribed, producing NLS or non NLS (ΔNLS) transcripts and cor-
responding NLS or ΔNLS neurofibromin isoforms (Figure 1). We first identified in 
silico this bipartite NLS and documented experimentally that most neurofibromin 
molecules reside in the nucleus in neurons [37].

Later genetic analysis [17] revealed that in those fetal tissues, which will not 
retain high levels of NF1 expression in the adult, ΔNLS transcripts are expressed in 
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higher percentages. In contrast, in tissues that NF1 remains high in the adult, fetal 
expression of ΔNLS is very low early on and increases with development. Typical 
examples for the former is the liver (ΔNLS constitutes 25% of total NF1 expression 
in the fetus and only 15% in the adult) and for the latter is the brain, where the 
meek expression of 1% rises by 4-fold in the adult. Thus, there is an upregulation 
of ΔNLS transcripts in the tissue most implicated in NF-1 pathology, that is the 
CNS [17].

Moreover, we recently addressed the pressing question of developmental 
regulation of exon 51 skipping/inclusion in CNS cell types, using chick embryo or 
the early postnatal mouse or rat brains. We find that expression of ΔNLS is first 
detected only when neurons become postmitotic with its levels rising from negli-
gent to 10% of total NF1 in mature neurons; in astrocytes in culture, ΔNLS tran-
scripts rise along with those for glial fibrillary acidic protein (GFAP) and reach a 
level of ~5% of total NF1 [19]. Thus, our studies postulate that in both neurons and 
astrocytes as many as four variants and neurofibromin isoforms may be expressed 
(Figure 1), while expression of ΔNLS transcripts and ΔNLS neurofibromins cor-
relates with neuronal and astrocytic differentiation and underline the necessity to 
study the individual functions of ΔNLS and NLS neurofibromins.

The importance of NLS inclusion was totally unexplored, till we documented 
a few years ago that neurofibromin controls the pivotal function of chromo-
some congression on the mitotic spindle [38] (Figure 2) and then proved that 
depletion of NLS neurofibromins deregulates spindle assembly and positioning, 
leading to aneuploidy and increased micronuclei formation [39]. More impor-
tantly, these studies established the function of neurofibromins as MAPs. All 
currently known impacts of this function will be presented in more detail in the 
next section.

In concluding this introduction, we believe that the importance of explor-
ing novel yet fundamental questions on the functions of NLS neurofibromin 
isoforms is tantamount for understanding patient phenotypes and designing 
prognostic tools for NF-1 glioma growth and NF-1 mutation-specific therapies. 

Figure 2. 
Neurofibromins regulate spindle configuration and chromosome congression. A, Mitotic spindles consist of three 
major types of microtubules (MTs): astral MTs that radiate from the centrosomes/poles, microtubule bundles 
(K-fibers) to link kinetochores to poles, and interpolar bundles to separate poles, elongate the spindle, and 
bridge K-fibers [40]. B, SF268 glioblastoma cells, transduced with mock or NF1-specific siRNAs, are stained for 
neurofibromin, β-tubulin, and chromatin, as indicated. In mock siRNA-cells, neurofibromin decorates astral 
MTs (asterisks) and both K-fibers and interpolar MTs (arrowheads), in a symmetric spindle with properly 
aligned chromosomes at its equator (white arrows). Depletion of neurofibromins (siNF1) causes irregularities 
in the spindle geometry and chromosome congression aberrations (yellow arrows) [38]. Images are the maximal 
intensity projection of 0.34 μm confocal plane stacks.
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Therefore, in this Chapter we will focus on novel insights on the MAP function of 
neurofibromins from our recent studies.

2. Neurofibromins as MAPs and their role in mitosis

Tubulins rapidly form highly dynamic noncovalent polymers, the microtubules, 
which execute essential functions for the constant yet ever-changing needs of all 
cells, such as function-coupled shapes, directed intracellular transport, migration, 
and, most importantly for the development of an organism, properly oriented cell 
divisions with accurate genomic transmission. For cell division, several types of 
MTs organize, elongate, and orient a bipolar spindle, through which chromosomes 
will position at the spindle equator for faithful sister chromatid separation and then 
segregation to the two daughter cells ([41–43] and Figure 2A).

Accordingly, multitudes of structurally different MAP proteins associate with 
MTs to regulate MT nucleation, polymerization, organization, bundling, and 
crosslinking in preparation for and completion of mitosis. The availability of 
mitotic MAPs is tightly regulated by coordinated transcription, as well as by cell 
cycle-dependent post-translational modifications, most often phosphorylations 
that control protein trafficking, homeostasis, and inter- or intramolecular interac-
tions [44–46]. Aberrations in these processes may lead to aneuploidy and on to 
tumorigenesis, thus the ability of MAPs to alter MT dynamics is recognized for its 
prognostic value in cancer and as a target for cancer chemotherapies [47, 48].

Association of neurofibromin with cytosolic MTs was first established by 
confocal microscopy in fibroblasts and the molecule was proposed to act as a MAP, 
through a small segment (residues 815–834 in the CSRD) bearing in silico homol-
ogy to MAPs Tau and MAP2 [49]. Since then, diverse experimental approaches, 
including co-immunoprecipitations, co-purifications, in vitro MT assembly, and 
affinity precipitations, have further documented this interaction with cytosolic 
[23, 24, 29, 37, 38, 50] and with mitotic MTs [38, 39].

Indeed, confocal image analysis of primary or tumor cells derived from the 
ectoderm or the neural crest and quadruply stained for β-tubulin, neurofibromin, 
F-actin and chromatin/chromosomes, shows that pools of endogenous neurofi-
bromin colocalize with cytoplasmic MTs (e.g., rat astrocytes in Figure 3A, yellow 
arrows), as well as with F-actin, mainly at the cell cortex and lamellipodia ([37–39]; 
Figure 3B, yellow arrows). Interestingly, no association could be established with 
any intermediate filament in neural cells, as for example with the abundant astro-
cytic marker GFAP (Figure 3C), except for nuclear lamins [38].

In an earlier study with primary neurons, we found that neurofibromin, in 
addition to its colocalization with cytosolic MTs, localizes also in the nucleus 
and identified a bipartite NLS in the CTD (Figure 1B) as the probable mediator 
of nuclear entry [37]. Previously thought as an artifact in the skin epithelium, 
nuclear neurofibromin is detected with a variety of techniques, i.e., immunocy-
tochemistry (e.g., white arrows in Figure 3), subcellular fractionations, or pro-
teomics [28, 29, 37–39, 51–53] in all cells of an ectodermal origin.

We next provided evidence that the nuclear entry of neurofibromin is active, that 
is through interactions of its NLS with the Ran/importin system [38], as now shown 
in cancer breast cells [54]. Moreover, we established that a requirement for the 
cell-cycle regulated nuclear entry of neurofibromin is phosphorylation by Protein 
Kinase C (PKC) on Serine2808, a residue relatively close to the NLS [29, 38], which 
is retained in both isoforms. As neurofibromin expression patterns and nuclear 
regulation appeared to have all the attributes of a mitotic factor, in particular of a 
MAP, we next addressed the possibility in cells that regularly undergo mitosis.
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Thus, we have postulated that neurofibromin primarily co-localizes with 
β-tubulin at all stages of spindle assembly from prophase to metaphase (e.g., 
Figure 2B) and then through the transformation of the spindle to a machinery for 
chromosome segregation and cell division, that’s is through anaphase, telophase 
and cytokinesis [38, 39]. Again, neurofibromin’s localization onto the spindle 
is apparent in all cells of ectodermal origin, with no exception. More relevant 
for gliomagenesis, endogenous neurofibromin in primary cortical or cerebellar 
astrocytes colocalizes with all three tubulin classes on microtubular structures, that 
is with α- and β-tubulin throughout mitosis and with γ-tubulin at the centrosomes 
at interphase and when duplicated for entrance to mitosis [19, 38, 39].

Experimentally, at least three neurofibromin domains have been previously 
identified to bind tubulins, namely GRD, SEC14, and CTD. Affinities to tubulin 
for the first two domains were explored for regulation of neurofibromin’s RasGAP 
activity and the third for baiting neurofibromin associated proteins or for nuclear 
import studies. Thus, GRDI-tubulin interactions lead to a partial inhibition of its 
cytosolic GAP activity [23] and certain patient mutations in GRD impair the ability 
of neurofibromin to associate with MTs [55], while the competition of tubulin with 
H-Ras for binding to SEC14 that we found in COS cells may provide an explanation 

Figure 3. 
Endogenous neurofibromins colocalize with both A. cytoplasmic MTs and B. F-actin, but not with C. GFAP. 
Rat primary astrocytes are stained for neurofibromin, chromatin (Hoechst 33258) and A, β-tubulin, B, F-actin 
(phalloidin) or C, GFAP. Images are the maximal intensity projection of 0.34 μm confocal planes; yellow 
arrows point to co-localization of neurofibromin with cytoplasmic MTs in A and actin in B; white arrows 
point to nuclear neurofibromin.
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and a mechanism for neurofibromin dissociation away from cytoplasmic micro-
tubules [24]. As for CTD, it baits the plus-end MAP Collapsin response mediator 
protein 2 (CRMP2) [50], while we have shown high affinity of GFP-CTD(+NLS) to 
α-, β- and γ-tubulins [38].

The importance of neurofibromin as a mitotic MAP was first discovered, when 
we showed that siRNA-depletion of all transcripts and thus of all neurofibromin 
isoforms leads to severe errors in chromosome congression, with chromosomes 
remaining unattached or randomly away from the spindle equator even at full meta-
phasic spindle length (Figure 2B, yellow arrows and [38]). Typically, the unstable 
lateral interactions between kinetochores and microtubules, which dominate early 
prometaphase, lead to the reproducible arrangement of chromosomes in an equato-
rial ring, or torus-like distribution on the surface of the spindle [56]. This loss of the 
toroidal arrangement of chromosomes with neurofibromin depletion has to be the 
first evidence that neurofibromin may act to stabilize microtubule for chromosome 
congression. Consistent with this, using overexpressions of our human CTD con-
struct but not of other domains, abnormal bypassing of mitotic arrest was rescued 
in the yeast, after the yeast homologs of neurofibromin Ira1 and 2 were deleted [25].

The importance of neurofibromin isoforms as major mitotic MAPs was next 
discovered, when we probed the individual effects of neurofibromin isoforms 
that differ in the sequence of the 41 amino acids encoded by exon 51, namely of 
ΔNLS- and NLS-neurofibromins, on mitotic spindle assembly and faithful genomic 
transmission [39]. These effects will be highlighted next.

3. NLS and ΔNLS neurofibromins are different MAPS

To further address the mechanism by which neurofibromin regulates chromo-
some congression and considering together that a. neurofibromin accumulates 
in the nucleus in a Ran-dependent manner at late S/G2 and resides on the spindle 
throughout mitosis [38], b. the major cellular target in NF-1 for abnormal prolifera-
tion and carcinogenesis is the astrocyte [10], and c. the higher expression of NLS- 
over ΔNLS -NF1 transcripts in astrocytes [19], we next evaluated separately the 
roles of ΔNLS- and NLS-isoforms in spindle assembly and chromosome segregation 
in an astrocytic cell context.

For these purposes, we have generated SF268 glioblastoma cell lines that sta-
bly express, under the control of doxycycline, shRNAs specifically designed to 
degrade either both GRDI- and GRDII-ΔNLS or both GRDI- and GRDII-NLS-NF1 
transcripts (referred to as NLS-cells and ΔNLS-cells, respectively). This reversible 
genetic modification has allowed us to pose the question of possible different func-
tions of ΔNLS- and NLS-isoforms and dissect their roles in mitosis [39].

Confocal image analysis of cells immunostained for β-tubulin and neurofibromin 
and co-stained for filamentous actin, along quantitation of colocalization, postulates 
that ΔNLS neurofibromins are absent from the nucleus [39]. Moreover, in ΔNLS-
cells association of neurofibromin with F-actin is significantly limited, especially in 
lamellipodia, whereas NLS-neurofibromins richly decorate them along other actin 
structures. Association with tubulin is not significantly reduced in ΔNLS-cells, yet 
microtubule organizing centers (MTOCs) are discerned with difficulty, because 
MTs organize a dense but non-radial network. To the contrary, NLS neurofibromin 
colocalization with β-tubulin is significantly enhanced, although β-tubulin intensity 
itself is not increased [39].

This different robustness of MTOC formation among ΔNLS-cells and the paren-
tal or NLS-cells is functionally validated with cell migration after wound (scratch) 
assays. In astrocytes, relocation of their major MTOC, the centrosome, between 
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the nucleus and the leading-edge during migration is well explained [57]. When 
positions of centrosomes and nuclei are observed in cells stained for γ-tubulin and 
Hoechst, respectively, confocal microscopy shows that, unlike parental and NLS-
cells, it is readily apparent that centrosomes in ΔNLS-cells fail to position properly, 
remaining randomly oriented [39]. Hence, time-lapse video microscopy of cells 
during wound healing confirms that NLS-cells and the parental SF268 cells move 
with a directed, multicellular movement, while ΔNLS-cells, moving almost as fast, 
perform a palindromic motion and fail to repair the “scratch wound” (videos in 
[39]). Overall, this is the first time that neurofibromin is linked to astrocytic cell 
migration, and, at least the loss of NLS neurofibromins, to defective centrosome 
positioning and functional cell polarity [39].

Both types of neurofibromins retained colocalization with β-tubulin on the 
mitotic spindle, albeit colocalization levels with NLS-neurofibromin are, as also 
for cytosolic MTs, significantly raised (Figure 4, images, plots, and colocalization 
means; [39]). Considering together that NLS neurofibromins do not affect MT 
densities, whereas ΔNLS-neurofibromins inversely regulate MT densities both in 
the cytoplasm and the spindle [39], these data document differential MAP proper-
ties for ΔNLS-neurofibromins as compared to NLS-neurofibromins.

Examinations of colocalization with γ-tubulin on the duplicated centrosome, 
show a 25% decrease for NLS-neurofibromins, while ΔNLS neurofibromins show 
no statistical differences on this aspect. Yet, centrosomes in ΔNLS cells have larger 
volumes (1.8x), indicating that NLS neurofibromins may help form a more effi-
cient mitotic centrosome, in terms of future spindle assembly [38, 39]. In human 
cells, the centrosome is the major MTOC for spindle MT assembly and duplicated 
centrosomes serve as poles to orient the spindle. More specifically, γ-tubulin and 
its several associated proteins form a large ring complex (γ-TuRC) that serves to 

Figure 4. 
NLS- and ΔNLS-neurofibromins have different affinities for mitotic MTs. Naïve, ΔNLS-, and NLS- SF268 
cells are stained for neurofibromin and β-tubulin. The first two columns contain single focal 0.34 μm planes 
of a confocal stack and the third column their mergings. Scatter plots show signal intensity in each plane 
(Volocity®) and numbers are the colocalization means±SE; arrow indicates the statistically significant 
difference in NLS- versus ΔNLS- or parental cells.
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nucleate highly dynamic MTs from the spindle, K-fibers from kinetochores, and 
interpolar bundles that elongate the spindle [43, 58, 59]. Because γ-TuRC is dispens-
able for this purpose on occasion [60], the role of MAP-dependent regulation in the 
nucleation to centrosomes, whether increasing [61] or inhibiting nucleation [62], 
has been highlighted.

The differential properties of the NLS and ΔNLS isoforms as MAPs on centro-
some size are further highlighted by the effects on MT nucleation prior to nuclear 
envelope breakdown, when the relatively sparse microtubule formations of inter-
phase cells transfigure into a bipolar spindle. Indeed, our studies have documented 
that the following parameters are greatly affected with depletion of NLS neurofi-
bromins [39]:

3.1 Astral MT formation and spindle positioning

A most striking difference is the abnormal astral MT growth patterns with loss 
of NLS neurofibromins, as the average length of astral MTs in NLS-cells grows to 
5.9 ± 0.33 μm over 4.0 ± 0.19 μm in parentals (p < 0.0001), while is robustly dimin-
ished in ΔNLS-cells (Figures 4 and 5, asterisks; [39]). Proper astral formation is 
required for spindle position and aberrations of astral MTs correlate well with spin-
dle misorientation [41], and we too find that loss of astral MTs with loss of NLS-
neurofibromin leads to statistically differential positioning of the spindle by several 
degrees [39]. A number of diverse families of proteins impact the timely nucleation 
and maintenance of astral MTs, yet few may cause loss of astral MTs. Notably, func-
tional ablation (phosphoablating mutants) of End-binding protein 2 (EB2), an MT 
plus-end MAP that binds to MT lattices in a phosphorylation-dependent manner 

Figure 5. 
Spindle configuration and chromosome congression are regulated by neurofibromin isoforms. A, 
Immunofluorescence confocal images of cells at metaphase stained for β-tubulin and chromatin of SF268, 
NLS, and ΔNLS-SF268 cells. B, 3D reconstructions (IMARIS) of the same images for better viewing show 
that parental and NLS-cells have a rich array of astral MTs (asterisks) and properly congressed chromosomes 
(white arrows). In contrast, ΔNLS cells lack astral MTs (asterisks) and display abnormal chromosome 
congression (yellow arrows).
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during mitosis, leads to a marked delay in anaphase onset and abnormalities in 
chromosome congression [63]. Multifunction proteins ALIX and RACK1 acting 
through regulation of other MAPs [64] or motor proteins [65], are also essential 
for proper astral MT elongation, spindle orientation and chromosome segregation. 
Whether neurofibromins regulate in addition the actions of other MAPs remain to 
be investigated; it is clear, however, that NLS neurofibromins are essential for astral 
MTs formation.

3.2 Spindle length

Both parental and NLS-cells with fully developed metaphasic spindles have 
normally congressed chromosomes at the spindle equator (Figure 5, white arrows), 
albeit the latter have significantly shorter spindles (pole to pole  distance  
x
_

 = 8.91 ± 0.22 μm versus 10.8 ± 0.2 μm; p < 0.0001 [39]). In stark contrast, cells 
expressing only ΔNLS-neurofibromins have very poorly aligned chromosomes at 
the equator (Figure 5, yellow arrows), although their metaphasic spindle length is 
significantly longer (x

_ 
= 11.5 ± 0.15 μm; p < 0.01;). In over 50% of ΔNLS cells, the 

majority of chromosomes from a wide diffused ring and altogether lack the typical 
tight alignment seen at metaphase (Figure 5, yellow arrows).

3.3 Spindle geometry

When confocal z-planes of β-tubulin and Hoechst fluorescence signals are 
reconstructed in three-dimensions, the dramatically different spindle geom-
etries, formed in the absence of NLS-neurofibromins, become readily apparent 
(Figure 5B). The anastral spindles of ΔNLS cells feature large hollows by the 
equator and chromosomes forming queues on some prominent thick K-fibers, 
while over half of the cells have unaligned chromosomes, or a 4-fold increase 
compared to control and NLS-cells [39]. In interpreting this geometry, we assume 
that thicker MT formations may result from upregulation of the augmin-medi-
ated, local amplification of MTs, as augmin targets γ-TuRCs to nucleate preexist-
ing MTs [66]; in parallel, bridging (Figure 2A) MTs [40] delay to develop, hence 
the spindle equator is almost devoid of tubulin signals. As these metaphasic pat-
terns [39] strongly resemble those typically seen at prometaphase when unstable 
interactions of MTs dominate [56], the important role of neurofibromins as 
MAPs for mitosis is further highlighted.

3.4 Duration of mitotic phases

Abnormal positioning of the spindle often associates with altered times spent 
at mitotic stages. Quantification of the mitotic stage distribution for each cell type 
by flow cytometry validates this prediction, since loss of NLS-neurofibromin elicits 
an almost 50% increase in time spent at metaphase [39]. In contrast, NLS cells have 
significantly lower percentages in prophase and metaphase over parentals, which, 
combined with higher percentages in cytokinesis, reflected an overall acceleration 
through metaphase. Considered together, these results document for the first time 
that neurofibromin actively participates in the progression of mitosis. Moreover, 
these data further support the notion that NLS- and ΔNLS-neurofibromins may 
exert opposing effects during aster formation and spindle assembly, as, in parental 
cells, these two parameters appear to be the arithmetic sum of the results obtained 
with each isoform type [39].
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3.5 Chromosome segregation fidelity

In parental (Figures 2 and 5, white arrows) and NLS-neurofibromin express-
ing cells (Figure 5, white arrows), chromosomes move in a coordinated manner 
towards the opposed poles and chromosome compaction is readily seen. In cells 
expressing only ΔNLS-neurofibromins, these parameters are again inversely 
regulated, namely, despite the prolonged time spent at metaphase, a significant 
>40% increase in cells with chromosome segregation errors mainly lagging chro-
mosomes is documented (Figure 5, yellow arrows); similar delays in chromosome 
compaction in ΔNLS-neurofibromin cells are recorded in telophase [39]. The 
described effects on spindle assembly and chromosome segregation perturbations 
are readily traced in the high frequency of micronuclei, and a 5-fold increase in the 
numbers of cells with micronuclei within 10 mitotic cycles [39]. Micronuclei may 
facilitate rapid karyotype evolution, as their few chromosomes, unprotected from 
DNA damage, often undergo chromothripsis and chromoanasynthesis and then get 
incorporated into the genome of the host cell within just 1–2 mitoses [67].

Summarizing, these data establish for the first time that NLS- and ΔNLS-
neurofibromins actively participate in the formation of mitotic asters and 
spindles, and efficient, error-free chromosome congression, possibly by exert-
ing opposing effects. The question then rises about the possible mechanisms 
that would explain their different interactions with tubulins and microtubules. 
Drawing from immunoprecipitations studies with various antibodies, whereby 
different amounts of endogenously expressed neurofibromin is recovered from 
ΔNLS- or NLS-cell lysates [39], we have to reasonably presume that inclusion, 
or not, of the 41 amino acids of exon 51 may alter the conformation of the mol-
ecule. Numerous examples exist when one to few residues change the functional 
properties of a protein by imposing changes on protein conformation and post-
translational modifications. Thus, an expected differential conformation of the 
ΔNLS or NLS neurofibromins would impact both its known intramolecular and 
intermolecular interactions.

In support of this argument the affinity of NLS- is higher for β- and lower for 
γ-tubulin when compared to ΔNLS-neurofibromins. Moreover, revisiting the ques-
tion of MAP domains in the primary sequence of neurofibromin, we have identified, 
at higher percentages of similarity than the previously suggested [49], three other 
small Tau-like motifs [39], one of which corresponds to codons apposed to 50–51 or 
50–52 exon junctions and could be affected by the inclusion or skipping of exon 51.

Our results show that the direction of the ΔNLS or NLS knockdown effects 
is most often opposite and suggest that the two functionally interact when both 
present. Whether this occurs through the formation of a dimer, if neurofibromins 
form dimers [28, 68] in eukaryotic cells at normal neurofibromin concentrations, is 
an intriguing question. Indeed, how the NLS and ΔNLS conformations may affect 
dimer formation is an interesting experimental goal.

Given the higher abundance of NLS transcripts irrespectively of GRD type that 
we observe in neurons and astrocytes [19], it is not possible to have only NLS-ΔNLS 
heterodimers. It is, however, possible to have homodimers only, or dimerization to 
be driven by properties that GRDI or GRDII attain. If any of the latter are enter-
tained in eukaryotic cells, then an additional level of regulation is to be expected. At 
any rate, loss of the amino acids and the NLS encoded by exon 51 suffices to produce 
a different MAP. By the same token, the expression of two closely related isoforms 
yet with differential effects on MT structures further suggests that an extra layer of 
regulation on MT dynamics is thereby served by neurofibromins.
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4. Conclusions: NLS-containing, tumor suppressor MAPS

A major theme that emerges from our studies and studies by others is that 
several MAPs have been described as tumor suppressors and correspondingly sev-
eral proteins, identified as such, are found to function as mitotic MAPs. Another 
typical characteristic of such tumor suppressors is the presence of an NLS in their 
amino acid sequence, which regulates both their timely nuclear import in prepara-
tion of mitosis and their release during spindle assembly. All currently known 
tumor suppressor proteins with such attributes are listed in Table 1.

Perturbations of spindle assembly and chromosome segregation, when tumor 
suppressors that act as mitotic MAPs are lost or mutated, is a first step to aneu-
ploidy. Given the usually compromised ability for DNA repair and the increased 
replication stress in these genetic backgrounds, the resulting aneuploidy may addi-
tionally feed chromosomal instability (CIN) and thus rapid evolution of karyotypes 
with clonal expansion advantages and tumorigenesis [104, 105]. Hence, the study of 
the regulation of NLS-containing tumor suppressors must receive high attention in 
the collective effort of understanding their mechanism of action and for developing 
better prognostic and possibly therapeutic approaches.

Protein Gene Functions served

APC APC MT stabilization, astral MT formation, compaction of mitotic 

chromatin, chromosome segregation [69–71]

ATIP3 MTUS1 MT stability, cell polarity and migration, centrosome number, 

metaphase spindle length [72–74]

BRCA1 BRCA1 MT nucleation, spindle assembly, centromeric cohesion [75–77]

CYLD CYLD MT polymerization and stability, especially of astral MTs; 

spindle positioning [78, 79]

DAB2IP DAB2IP MT stability [80]

DLC-2/STARD13 STARD13 MT stability, spindle positioning, chromosome segregation [81]

DLG1/ SAP97 SAP97 MTs polarization, centrosome positioning [57, 82]

FEZ1/LZTS1 FEZ1/LZTS1 MT assembly, chromosome segregation [83, 84]

FHIT FHIT MT assembly, spindle disassembly [85, 86]

NAV3 NAV3 MT stability [87]

Neurofibromin NF1 MT polymerization, cell migration, astral MT formation, 

spindle assembly and positioning, chromosome segregation 

[19, 24, 29, 37–39]

NF2/Merlin NF2 MT polymerization; actin cytoskeleton organization, signalling 

scaffolding at the membrane [88–90]

p53 TP53 Clustering of centrosomes, pole formation [91–93]

PTEN PTEN Centrosome and spindle pole motility, spindle assembly, 

chromosome segregation [45, 94]

RASSF1A RASSF1A MT stability, spindle organization, chromosome segregation 

[95–97]

RB1 RB1 MT dynamics, centrosome number and condensation, 

chromosome segregation [98–100]

VHL VHL MT stability, spindle positioning [101, 102]

WT1 WT1 Chromosomal segregation, mitotic checkpoint [103]

Table 1. 
Tumor Suppressors with a functional NLS and established roles as MAPs.
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