
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



1

Chapter

Barley Grain Development during 
Drought Stress: Current Status  
and Perspectives
Mortaza Khodaeiaminjan and Véronique Bergougnoux

Abstract

Barley (Hordeum vulgare L.) belongs to small grain cereals that cover more than 
78% of the daily calorie consumption of humans. With a prediction of 9.7 billion 
humans in 2050 (FAO stats) and climatic changes, the question of increasing small 
grain cereal’s production has become an agricultural challenge. Drought exerts a 
strong environmental pressure, causing large yield losses worldwide. Therefore, 
understanding the mechanisms responsible for grain development from the 
fertilization to the mature dry grain is essential to understand how drought can 
affect this developmental program. In this book chapter, we present the physiologi-
cal, molecular and hormonal regulation of barley grain development. In a second 
part, we describe the consequences of drought at different stage of barley develop-
ment, with a special focus on the reproductive phase. Finally, in the last part, we 
present the different methods used to decipher new genetic information related to 
drought-tolerance. All this knowledge contributes to understanding the tolerance 
mechanisms of barley and to developing breeding strategies aiming to bring about 
new varieties with sustained yield in harsh conditions.

Keywords: barley, drought, grain development, QTLs, GWAS

1. Introduction

Small grain cereals (rice, maize wheat, barley, rye and oat) are the most important 
food supply, representing more than 78% of the calories consumed each day by 
humans (FAO Stat). Cultivated barley (Hordeum vulgare L.) is the fourth most impor-
tant cereal worldwide, serving as a model species for the temperate cereals. Indeed, 
barley can grow in highly contrasting habitats and tolerate stress conditions such as 
drought, high and low temperature, and salinity [1, 2]. The use of grains as a source 
of food begun already during the Middle Stone Age, long before cereal domestica-
tion [3]. The early domestication resulted in drastically altered seed size and grain 
number; later the modern plant breeding in combination with agricultural technics 
concurred to the nowadays high yields [4]. However, substantial increases in yield 
have to be reach to ensure food security for the ever-growing worldwide population 
that is estimated to reach more than 9.7 billions inhabitants in 2050 (FAO statistics). 
Moreover, in the current context of climatic changes, the sustainability of cereal grain 
yield has already become a challenge for food security. In the current era, such goals 
can be reached solely by the use of the molecular breeding that requires a deep under-
standing of the molecular mechanisms controling seed and plant development [4].
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In agriculture, yield is defined usually by the classical concept of number of 
inflorescences per cultivated area. Nowadays, grain yield takes also into consider-
ation the grain number per inflorescence and the grain weight, often measured as 
thousand grain weight (TGW) [5]. Factors affecting the overall plant development 
(water and nutrients uptake from soil, development of photosynthetic tissues for 
carbon fixation and storage, carbon and nutrient relocation during grain filling) 
can have important consequences on grain yield [6]. Whereas the number of florets 
determines grain number per inflorescence, grain weight is determined by the 
grain size, and the amount of starch and protein accumulated during grain filling 
[7]. Grain weight reflects the size of the grain, itself determined by length, width 
and volume or filling, among other parameters. All these parameters describe the 
grain architecture. The genetics behond grain architecture is complex, involving 
maternal and paternal developmental signals, hormonal regulation and integrating 
the environmental information such as photoperiod, biotic and abiotic stresses [8]. 
The genetic and molecular bases of this agronomic trait have attracted attention 
in the last decades. In this regards, several studies based on quantitative trait loci 
(QTL) mapping or Genome-wide Association Study (GWAS), combined with 
mutant identification, identified new genes involved in barley grain development 
and yield-related genes [9–14].

As already mentionned, grain yield is a complex genetic trait, greatly affected by 
the environment and cultivation conditions. Water deficit or drought is undoubt-
edly the most important environmental factor affecting the global productivity of 
crops [15, 16]. However the extent of the damages, the recovery capacity and the 
impact on the final grain size depend on the developmental stage during which the 
plant faces the stress [16]. In the last decades, improving crop growth and yield 
under changing environmental conditions, especially drought, became a major 
goal of plant breeding programs [17, 18]. Drought tolerance is a complex genetic 
trait, involving multiple genes [19, 20]. Many studies have investigated the genetic 
bases of drought tolerance in barley [18–21]. QTL studies are one of the most used 
approaches to identify genomic regions controlling agronomic performance under 
water-limiting conditions [22, 23]. Recent advances in barley genome sequencing 
provide great potential for genetic studies, such as QTL studies and recent Genome 
Wide Association Studies (GWAS) [24–28]. Very recently, a 50 k iSelect SNP Array, 
based on exome capture, has been developed from a wide range of European barley 
germplasm containing 394 cultivated accessions. This large data set is of great 
interest for further genetic studies in barley [29]. The ability of a plant to adapt to a 
specific environment relies mainly on the genetic variability that is a long process of 
adaptation to the environmental pressure. To face fast changing conditions, plants 
possess epigenetic regulation of gene expression, kind of switch on/off mechanism. 
Epigenetic relies on structural and chemical modification of the genome without 
affecting the genetic information. It promotes fast, and most importantly reversible 
changes in phenotype in response to environment modification [30]. A recent study 
on the hare barley (Hordeum murinum subsp. leporinum) strongly suggested that 
the response to climate change involves epigenetic regulation of gene expression to 
maintain homeostasis and ensure functional stability [31].

It has to be considered that the domestication and breeding strategies, based on 
inter-crossing elite or high-performance varieties, led to a loss of genetic diversity 
[32]. This genetic bottleneck could be overcome by the use of wild relative species 
that constitute a great resource of diversity, useful for new breeding strategies [33].

Understanding the physiology of grain development, as well as the effect 
of drought in this process are crucial for developing efficient breeding pro-
grams aiming to improve or at least sustain barley productivity in water deficit 
conditions.
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In this book chapter, we will focus only on the development of barley grain. For 
more information related to inflorescence development in barley, one can refer to 
recent articles [34, 35]. In a first part, we will describe grain development in barley 
taking into account the hormonal and molecular regulation. In a second part, we 
will identify how water deficit or drought can affect grain development. Finally, 
in the last part, we describe methods used to unravel and study drought tolerant-
associated genes.

2. Grain development in barley

The reproductive phase of development starts with the transition of the veg-
etative meristem into a reproductive meristem (inflorescence primordia), and 
ends with the physiological maturity of the grain characterized by dessication of 
the grain and entrance into dormancy [16]. The entire reproductive phase can be 
divided into several substages: floral initiation, differentiation of inflorescence and 
florets, male and female gametogenesis, pollination, fertilization and seed develop-
ment [16]. From anthesis to maturity, grain development progresses through several 
phases that are commonly divided into three phases. The phase I, called pre-storage 
phase, is a phase of active cell division and differentiation that includes double fer-
tilization, syncitium formation and cellularization. At this phase, the potential size 
is determined by the number of cells formed in the endosperm, as well as the main 
cell types, such as transfer cells, aleurone, starchy endosperm, embryo surrounding 
cells. The phase II, called storage or maturation phase, is the period of grain filling; 
one can observe a fast increase in grain dry weight. Finally, the phase III, or dessica-
tion phase, is characterized by water losses [4, 16, 36].

In barley, the grain is refers as to a caryopsis, type of fruit in which seed and fruit 
coats are fused. Surrounded by husks, the caryopsis consists of a diploid embryo 
and a large triploid endospern, surrounded by tissues of maternal origin (pericarp 
and testa) (Figure 1). The endosperm, tissue of nutritional value, is composed of 
several types of cells: aleurone (AL), starchy endosperm and endosperm transfer 
cells (ETC). Besides starch, the cell of the endosperm accumulate hordeins, the 
major source of proteins in barley grain [37]. The aleurone layer is source of lipids 
and vitamins; it also contains soluble proteins, including enzymes required for the 
remobilization of carbohydrates during the germination [6]. The endosperm devel-
ops with the synchronous division of nuclei without completion of cytokinesis. 
This phase of development is called the syncytial or coenocytic stage [38, 39]. The 
embryo is made of two main parts: the embryo axes and the scutellum, a nursing 
tissue. During grain development, scutellum drives the transport of nutrients to the 
developing embryo while later, during germination, it will contribute to the redis-
tribution of sugars from the endosperm to the germinating embryo [6, 37, 40].

Few days after pollination (DAP), cellularization and differentiation occur, 
enclosing nuclei in cell walls and leading to the cell fate specification of the endo-
sperm (Figure 1). The overall size of the grain partially depends on the number of 
nuclei formed during the syncytial phase; this number can exceed 2000 in Triticum 
and Hordeum [36, 41].

The main steps of barley grain development are summarized here. However, 
detailed information can be found in [6, 12, 36]. During the first 6 days after polli-
nation (DAP), in barley, the endosperm cellularizes. Programmed cell death (PCD) 
occurs in the nucellus, except in the region in viscinity with the vascular bundle, 
leading to the differentiation of the nucellar projection (NP). In the same time, the 
region of the syncytium close to the NP initiate cellularization and differentiate 
into the endosperm transfer cells (ETC). During the transition phase (6 to 8 DAP), 
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transcriptional and physiological reprogramming occurs, involving the expression 
of genes encoding proteins with function in energy production and storage product 
synthesis [39, 42]. This phase is marked by endoreduplication, a modified mitotic 
cycle during which nuclei undergo one or more additional rounds of DNA replica-
tion; endoreduplication is common in plant and is often associated with higher 
cell volume [36, 43]. The final composition of the mature grain is then determined 
during the storage phase that lasts from 9 to 23 DAP. Both NP and ETC control the 
fluxes of assimilates into the endosperm [38].

The extremely complex mechanisms defining the grain structures composing 
the seed are tighltly controlled by hormones and involved permanent exchange of 
signals from and to the maternal tissues, but also between embryo and endosperm. 
Whereas the role of abscisic acid (ABA) and gibberellins (GAs) is well documented 
in their role in controling dormancy and germination [44–46], information 
related to the hormonal control of grain development are more scarce. Most of 
the advanced insights come from studies conducted on rice, that is considered as a 
plant model for cereals. The overall point of view is that cytokinin (CK) are most 
probably synthesized in endosperm where they act as a negative regulator of grain 
width but a positive regulator of grain length. Auxin, brassinosteroid and GAs 
(synthesized in the embryo) all promote grain length. The accumulation of CK, 
short after fertilization, corresponds with the formation of syncitium [47]. A recent 
study, based on transcriptomic studies, paved the first steps towards understanding 
the role of hormones during grain development in barley [48]. The NP, a mitotically 
active tissue, is characterized by events of differentiaon/elongation/cell death that 
form a top-down gradient, persisting throughout grain development. GAs might 
contribute to establishing and maintaining this gradient [48]. PCD is an essential 
process throughout grain development, participating in the formation of the NP at 

Figure 1. 
Longitudinal (A) and transversal (B) schematic representation of sections of barley grain showing the different 
tissues (adapted from [6]).
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the early phase of development, of the starchy endosperm, of the vascular tissue, 
and of the scutellum. PCD of the pericarp cells is also important during grain’s 
enlargement [49]. These processes are regulated by ethylene, jasmonate, ABA, 
auxin and GAs [49]. During grain filling, ABA, auxin and CK regulate the source 
photoassimilates during remobilization. Notably they can alter the synchronization 
between source activity and sink strength [50].

In a recent study, Sharma et al. [51] carried out a GWA study using nested 
association mapping populations combining the genetic information of 25 ances-
tor genotypes of H. vulgare subsp. spontaneum into the cultivated barley elite 
cultivar Barke. Authors identified a hotspot located on chromosome 7 showing a 
highly significant association with almost all traits. The ancestral allele increases 
several grain parameters, especially grain length. The region contains two genes: 
THOUSAND GRAIN WEIGHT 6 (TGW6), an IAA-glucose hydrolase, and MAP 
KINASE 6 (MAPK6), a mitogen-activated protein kinase. Interstingly, both genes 
have been demonstrated to influence grain size, weight and biomass in rice [52]. In 
the rice cultivar Nipponbare, TGW6 expression peaked two DAP before decreasing 
rapidly in older seeds. In the Indian landrace rice Kasalath, TGW6 contains 7 SNPs, 
including a − 1 bp deletion causing a frameshift that prevents the production of the 
mature, active protein. The Nipponbare near-isogenic lines containing the Kasalath 
haplotype accumulated markedly less IAA than wild type at 3 DAP, and had larger 
mature grains [52]. The authors concluded that the functional TGW6 affects the 
duration of the coenocytic stage by controlling IAA supply, limiting cell number 
and the subsequent grain size. It is noteworthy that the tgw6 loss-of-function 
resulted in increased carbohydrate storage capacity before heading [53].

3. How drought affect the grain development and grain yield

Drought stress can drastically affect plant growth and development at any time 
of the crop life cycle. However, the extent of damages, the recovery capacity, as well 
as the impact on the yield depend on the stage of development at which the crop 
undergoes the stress [17]. Early drought stress at the seed germination stage reduces 
seed germination ratio. Drying soil surface after seedling emergence can cause 
seedling’s failure [54, 55]. During the early vegetative phase, shoot elongation, leaf 
area, and tillering can be limited by drought stress [56]. Drought affects the most 
yield when it occurs at the onset of meiosis, i.e. during gametogenesis, and at the 
early grain initiation [16].

The most sensitive stage of barley growth to drought stress is the spike emer-
gence and the initial stage of grain development [16, 50]. At the beginning of the 
reproductive stage, drought stress can affect the differentiation of floral meristem, 
and subsequently the spikelet’s number. Exposure to the drought stress during the 
gametogenesis leads to pollen sterility; during flower induction and inflorescence 
development, it leads to a delay or complete inhibition in/of flowering. Later, 
drought results in the reduction in the grain size and weight by limiting the number 
of endosperm cells, consequently reducing the potential size of the grain. Finally, at 
later phase of development, drought affects the rate and duration of starch accumu-
lation in the endosperm [16, 17].

Seed filling is the terminal stage of cereal grain development. Several biochemi-
cal processes associated with carbohydrate, protein and lipid synthesis in seeds and 
import of constituents are involved [6]. During the storage phase, endosperm cell 
division and accumulation of seed reserves are largely influenced by the moisture 
status of the cells. Water deficit elevates endogenous ABA concentration, reduces 
starch accumulation and results in ovary abortion leading to poor grain yield [57].
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Flag leaf and ear are the main photosynthetically active organs that provide 
assimilates during grain filling at the end of the plant’s life cycle [58]. Drought stress 
during this period negatively affects the net photosynthetic rate of the flag leaf. 
However, despite the high vapor pressure deficit condition, there is no significant 
effect on the grain-filling [59]. Perhaps, the remobilization of vegetative reserves 
maintains the grain growth rate under drought stress [60]. Whereas drought stress 
during the grain-filling stage enhances assimilate remobilization, it fastens senes-
cence, reducing the grain-filling duration [61].

If one needs to summarize, drought stress is characterized by a low soil mois-
ture that negatively affect nutrient uptake and assimilation at the root level. The 
consequence is a reduced photosynthetic ability, an altered sugar translocation, 
a pre-mature leaf senescence, an altered source/sink equilibrium. Finally, this is 
translated into alteration of the reproductive developmental stage and a shorter 
period of grain filling. All together, this participates to reduce the number of grains 
whose size and quality are highly deteriorated [50].

4.  QTL, GWAS and other studies to identify new genetic resources  
of tolerance to drought

Breeding programs are the most effective method to improve the yield stability 
under drought stress condition [62]. The genetic and molecular bases of grain yield, 
quality and sustainability under drough have been studied in mapping quantita-
tive trait loci (QTL) or Genome-wide Association (GWA) studies, combined with 
mutant identification. The number of studies focusing on the discovery of genes 
controlling yield in cereals and understanding their functions has increased in the 
last years [10]. However, it has to be considered that the domestication and breed-
ing strategies, based on inter-crossing elite or high-performance varieties, led to a 
loss of genetic diversity [32]. This bottleneck can be overcome by the use of wild 
relative species and landraces that constitute a great resource of diversity, useful for 
new breeding strategies [32, 33, 63]. In this regards, Hordeum spontaneum, the wild 
barley ancestor, shows larger adaptation abilities to the unfavorable environmental 
conditions, including drought, compared to the cultivated barley, and an unex-
ploited genetic variability [62]. Therefore, screening drought-tolerant germplasms 
from wild barley to integrate elite traits to the cultivated barley is one of the breed-
ing approaches to improve drought tolerance in barley [19].

As already mentioned, drought tolerance in plants is a complex quantitative trait 
which is controlled by several genes with small effect or by QTLs [56]. Functional 
genomics and QTL mapping are the most useful approaches to identify the key 
genes and networks mediating the yield response under drought stress [64]. A large 
coverage of the plant genome by markers is essential to identify most relevant QTL 
associated with a trait of interest. Among others, single nucleotide polymorphism 
(SNP) is the most widely used type of markers in genomic studies. Recent advanced 
technologies based on high throughput next-generation sequencing (NGS) allow 
cheap and quick deep sequencing of genome of model and non-model crops, largely 
increasing the available genetic information. NGS encompasses different sequenc-
ing technologies and genotyping methods including restriction site-associated 
sequencing (RADseq) [65], diversity array technology sequencing (DArTseq) [66], 
and exome capture [67]. The recent barley genome sequencing [25] makes possible 
to identify the accurate positions and locations of the markers on the chromosome, 
as therefore to perform an effective QTL search in barley germplasm. Genome-
wide association studies (GWAS) are a powerful tool to dissect the genetics of 
complex traits such as drought stress [23, 27, 68]. Genes identified in these studies 
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can be used directly in molecular breeding in countries where the GMO regulation 
allows it, or indirectly in marker-assisted selection (MAS). In MAS, the selection is 
performed as soon as during early developmental stage of plants, reducing the time 
and cost of breeding researches [69–71].

Several factors have to be taken into consideration while considering reliable 
QTLs and markers in GWAS. First, allele frequency differences due to population 
stratification (systematic ancestry differences) is one of those factors. Population 
stratification can cause spurious associations in QTL mapping studies [70]. 
Therefore, the population structure (i.e. geographical origins and breeding history) 
needs to be analyzed prior to QTL/marker mapping, using statistical methods such 
as the principal component approach (PCA) [70]. Second, one might consider the 
environmental effects on the QTL expression. Specific environmental conditions 
such as abiotic stresses can increase the expression of specific QTLs named adaptive 
QTL. The presence and quantity of adaptive QTLs vary between different environ-
ments and experiments. The interaction between QTLs and environment (Q × E) 
can therefore modify the effect of a specific QTL according to the environmental 
conditions that can be the intensity of drought stress or the combination with 
different stresses such as heat or salinity [72]. An alternative to QTL studies, based 
on inheritability of markers across offspring, is to use natural populations and map 
traits by an association analysis, named linkage disequilibrium (LD) mapping. LD 
or gametic disequilibrium is the “nonrandom association of alleles at different loci”. 
In simpler words, it reflects the correlation between polymorphisms. LD is caused 
by the mutation and recombination in a large, randomly mated population with 
independent loci segregations. In small populations with less individuals, the rare 
allelic combinations might be lost because of genetic drift [73].

To date, some QTLs involved in drought stress response have been identified 
in barley. Jabbari et al. [68] reported eight markers over the 3H, 5H and 6H chro-
mosomes, significantly associated with grain number per spike using association 
mapping based on LD under the irrigated and water deficit conditions in barley. 
Honsdorf et al. [74] found an unknown wild barley QTL allele on chromosome 
4H that improved thousand-grain weight under terminal drought stress. Similarly, 
a QTL on chromosome 4H related to increased biomass under both drought and 
control conditions was identified by GWAS, in a study involving offspring of a 
cross between wild barley accessions and an elite barley cultivar [27]. These results 
show that wild barley Hordeum spontaneum is a useful source of drought tolerance 
alleles in barley breeding programs. The use of recombinant inbred lines (RILs) 
resulting from a cross between Syrian and European cultivars identified that the 
earliness allele from the Syrian parent confered higher yield performance under 
drought conditions [75]. Drought response-specific QTLs were identified within 
the confidence intervals of candidate genes encoding antioxidants, carboxylic acid 
biosynthesis enzymes, heat shock proteins, small auxin up-regulated RNAs, nitric 
oxide synthase, ATP sulfurylases, and flowering time regulation proteins [75]. 
Adjustment of flowering time and in particular early flowering represents an escape 
strategy of plants to complete the sensitive reproductive stage before unfavorable 
environmental conditions. In barley, most of the seed dry weight is composed of 
carbohydrates which are produced and transferred to the seeds from the photosyn-
thetic organs of the spike such as lemma, palea and awn [76]. Spike is more resilient 
to drought stress compare to the flag leaf and awn is the major photosynthetic organ 
under terminal drought stress and plays a crucial role in grain filling [77]. Several 
QTLs for grain plumpness and yield in doubled haploid populations of barley with 
significant Q × E interaction have been identified [78].

Another widely used method to identify drought-associated genes is to analyze 
gene expression profiles at the transcriptional level of the drought-resistant and 
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sensitive line exposed to drought stress [79–81]. Barley transcriptomic data reported 
differentially expressed genes in drought-tolerant and sensitive genotypes, in 
relation to terminal drought stress. Several genes with known or predicted function 
were found to be constitutively expressed in the drought-tolerant barley genotypes, 
representing a potential mechanism of adaptation to the stress. To date, several 
drought tolerance-associated genes have been reported in plant species [82, 83]. 
However, their overexpression in transgenic plants did not significantly improve 
drought tolerance [84] indicating that drought tolerance is a complex mechanism 
that might involve different regulation at the genetic level.

The regulation of gene expression is an important process, in part controlled by 
microRNAs (miRNAs). MiRNAs are single-stranded noncoding RNAs composed 
of 20–24 nucleotides that play an important role as gene regulators in a wide range 
of organisms by cleavage of target messenger RNAs (mRNA), translational repres-
sion and DNA methylation [85]. Drought-responsive miRNAs have been reported 
in many plants to participate in the regulation of drought-responsive genes [86]. 
Moreover, the expression of miRNAs itself is altered in response to drought stress. 
Four drought stress-induced miRNAs (hvu-miR156a, hvu-miR166, hvu-miR171 and 
hvu-miR408) were reported in barley leaves differentially expressed under drought 
conditions [87]. Lv et al. [88] reported three miRNAs (miR-n026a, miR-n029 
and miR-n035) up-regulated under drought and salinity stresses in barley leaves. 
Hackenberg et al. [89] identified a miRNA, hvu-miR5049b up-regulated, under 
the drought conditions. Additionally, authors indicated that hvu-miR168-5p was 
up-regulated under drought stress only in leaves while its expression level remained 
unchanged in barley roots suggesting that some of the drought-regulated miRNAs 
can be expressed differently in barley tissues. Ferdous et al. [90] determined that 
Hv-miR827 enhances drought tolerance in barley. Several miRNAs were identified 
with different abundance in two different drought-sensitive and tolerant barley 
cultivars as drought-responsive miRNAs [91]. Recently, 2 conserved and 10 novel 
miRNAs were identified as drought-tolerant miRNAs in two different drought-
tolerant and sensitive wild barley genotypes [92]. These miRNAs can regulate many 
different genes involved in numerous biological and metabolic processes in plants 
such as growth, development, hormone signaling, consequently affecting the stress 
response in plants.

Besides miRNAs, epigenetic factors such as DNA methylation and histone 
modifications in response to environmental conditions lead to changes in chromatin 
structure. Open and closed chromatin states cause gene activation and gene silenc-
ing, respectively, and regulate a wide range of developmental processes in plants in 
response to changing environment [93]. Chromatin dynamic and DNA-methylation 
have been reported as tolerance mechanisms to drought stress in crops [93, 94].

Beyond that what has been discussed above, the role of transcription factors 
(TFs) in the regulatory networks underlying plant responses to abiotic stresses is 
crucial [95]. Recently, Collin et al. [96] showed that the barley mutant carrying 
ABA INSENSITIVE 5 (ABI5) genes (HvABI5) is drought tolerant compared to its 
parents. ABI5 is a basic leucine zipper (bZIP) transcription factor which acts in the 
ABA network. ABA is the crucial regulator of plant responses to abiotic stresses. 
ABA-dependent signaling alters the activity of stress-responsive genes and thus 
regulate physiological processes, such as photosynthesis, stomatal closure and 
osmoprotectant biosynthesis in response to drought stress [97, 98]. MYB genes 
encode another class of TFs known for their involvement in the regulation of 
drought stress responses [99]. Harb et al. [79] reported that NAC transcription 
factors are specifically induced in drought-tolerant barley compared to sensitive 
genotype. The improvement roles of NAC genes in response to the drought stress 
have been reported previously [100].
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Alternative splicing (AS) was also found to differ between genotypes as a key 
mechanism controlling the expression of the drought-responsive gene in barley 
[101]. In the gene expression process, during the transcription of DNA to RNA, first 
precursor mRNA (pre-mRNAs) are produced, containing the introns which inter-
rupt the protein-coding regions. Splicing is an essential step to remove the introns 
through the pre-mRNAs [102]. In AS, a single pre-mRNA can produce more than 
one mRNA through the use of alternative splice sites. Alternative mRNAs encoding 
different isoforms of proteins increases the diversity of an organism’s transcriptome 
and proteome [103]. AS can regulate the gene expression at the transcript levels by 
producing unstable mRNA isoforms, which can be degraded by nonsense-mediated 
decay (NMD) [104].

5. Concluding remarks

Plant responses to drought stress, including different tolerance mechanisms 
and genetic controls, are complex. Further studies are required to determine the 
molecular basis of yield-related traits in barley before their integration into breed-
ing programs focused on tolerance to drought stress and sustainable yield under 
adverse conditions.
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