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Wire Robots Part II 
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Germany 

1. Introduction 

In (Bruckmann et al., 2008) the kinematics, analysis and design of wire robots were 

presented. This chapter focuses on control and applications of wire robots. Wire robots are a 

very recent area of research. Nevertheless, they are well studied and already in application 

(see section 5). Due to their possible lightweight structure, wire robots can operate at very 

high velocities. Hence, as can be seen by experiment, only positioning control using the 

inverse kinematics is not sufficient. In particular, slackness in the wires can be observed at 

highly dynamic motions. To overcome this problem, force control can be employed. In 

section 4 different control schemes are proposed. The required dynamical model is obtained 

in section 2, while for the calculation of feasible wire force distributions are proposed in 

section 3. Since wire robots are kinematically redundant the latter is not straightforward, but 

requires advanced approaches. The same holds for the control schemes, since a CRPM as 

well as a RRPM is a non-linear, coupled, redundant system (Ming & Higuchi, 1994). 

2. Dynamics 

According to figure 1 a wire robot can be considered as a multibody system with m 
unilateral constraints. In contrast to the generally complicated forward kinematics 
(Bruckmann et al., 2008) the dynamical equations of motion are comparably easy to 

formulate with respect to the base frame . The wrench wwire of the wires acting on the 

platform can be written as (see Fig. 2) 

 
(1) 

Since the forces act along the wires 

 
(2) 

Source: Parallel Manipulators, New Developments, Book edited by: Jee-Hwan Ryu, ISBN 978-3-902613-20-2, pp. 498, April 2008,  
I-Tech Education and Publishing, Vienna, Austria
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holds. It follows 

 

(3) 

 

Fig. 1: Topological structure of a CRPM with n = 6. 

The Newton-Euler equations lead to 

 (4) 

 (5) 

with 
 mp :    the mass of platform, 

 I ∈  R 3×3 :  inertia tensor defined with respect to the inertial system  which is an 
   expression of rotation angles, 

Ω = [ ϕ ϑ  ψ ]T : orientation of the platform in   , 

ƒE :   vector of external forces, 

τ E
 :    vector of external torques. 

The equations eqn. 4 can be rewritten by 

 

(6) 
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with 
Mp : mass matrix of platform, 
E : identity matrix, 

gC  ∈  R n×1 : Cartesian space vector of Coriolis and centrifugal forces and torques, 

gE ∈ R n×1 : vector of the generalized applied forces and torques, not including the 
resultants of wire tensions. 
 

 
 

Fig. 2: Forces for a wire robot 

Taking wire force limits ƒmin and ƒmax (see (Bruckmann et al., 2008)) into account it follows 

 (7) 

 (8) 

3. Wire force calculation 

In section 2 a description of the force equilibrium was presented. Here methods for the 

calculation of a feasible force distribution ƒ, i.e. a force distribution ƒ which satisfies eqn. 7 

and the constraints in eqn. 8, are presented. Obviously eqn. 7 represents an 
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underdetermined system of linear equations. Its solution space is r-dimensional. Hence 

isolating the force distribution ƒ  leads to 

 (9) 

where A+T denotes the Moore-Penrose Pseudo-Inverse of AT . Thus the task of finding a 

feasible wire force distribution has been transformed to the task of finding λ  ∈ R r such 

that ƒ > 0 holds. Note that H is the nullspace or kernel of AT defined as 

 (10) 

where 

 (11) 

In other words, a linear combination of the columns of H describes force distributions 

creating an inner tension in the system without applying wrenches wwire onto the end 

effector. In case of an homogenious problem, i.e. w = 0, it describes the possible solutions of 

eqn. 7 for ƒ. Now the problem of satisfying the constraints of eqn. 8 arises, i.e. the force limits 

also have to be considered. Thus plugging eqn. 9 into eqn. 8 leads to 

 (12) 

Therefore the task of identifying a feasible force distribution is equivalent to the problem of 

identifying  λ ∈ R r
 such that eqn. 12 holds. In other words, the boundaries of the wire 

forces form a m-dimensional hypercube  ⊂ R m. All force distributions satisfying eqn. 9 

obviously form a r-dimensional subspace  ⊂ R m
 spanned by the kernel of the structure 

matrix (see fig. 3). Hence, if the intersection  of the hypercube  and the subspace  is 

non-empty, feasible solutions ƒ exist, i.e. = ∩  ≠ 0, where  is a r-dimensional 

manifold in the R m. A more detailed introduction is given in (Oh & Agrawal, 2005) and 
(Mikelsons et al., 2008). Noteworthy, the r-dimensional solution space generally allows to 
compute force distributions with different characteristics: While for fast motion, smallest 
possible forces are demanded, for applications requiring a high stiffness, high forces are 
advantageous (Kawamura et al., 2000), (Fang, 2005). 

3.1 Linear optimization 

Looking at the geometric interpretation of finding feasible force distributions, the most 
intuitive way is to search for a convenient characterization of the manifold . Since  is 
completely determined by its vertices, the computation of those seems to be a promising 
way. In this work, two approaches following this idea are shown: In section 3.3, a method 

using the kernel as a transformation is presented. This leads to (
m

r
) r -dimensional linear 
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systems of equations. Alternatively, the approach presented in this section presumes no 

knowledge of the kernel but solves (
m

r
) n dimensional linear systems of equations. Hence, 

the method to be applied has to be chosen depending on m and n. 

 

Fig. 3: The subset  intersecting the hypercube  in the case of n = 1 and m = 3. 

Examining eqn. 7, one needs to set r forces in the wire force distribution to get a quadratic 

system. Obviously the desired points are located on the faces of the cube . It can be shown 

that a point belongs to the workspace if and only if a valid wire force distribution ƒ that 

satisfies 1 

∃ Α ⊂ {1,...,m}, ⏐Α⏐ = r, such that 
i
f  = fmax  ∨ 

i
f  = fmin   ∀i∈ Α (13) 

exists2. Therefore, r wire forces can be set to their minimum or maximum value, 
respectively. It is unknown in advance which wire forces have to be preset to get a feasible 
distribution. Thus, in the worst case all combinations of r wires have to be tested, leaving 
m×m systems of linear equations to be solved for every combination. For sure every vertex 
represents a valid wire force distribution. Choosing the vertex, which minimizes the 1-norm 

                                                 
1 For a set A, |A| denotes the cardinal number of A 

2 Using the kernel as a transformation from the rR  into the mR  (see section 3.3), the 
feasible force distribution form a polyhedron bounded by the force limits. r force limits 
determine a vertex. This finishes the proof. 
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could be an appropriate procedure. The resulting procedure can formally be expressed as a 
Linear Optimization Problem 

 
In (Oh & Agrawal, 2005) a Linear Programming approach is presented to solve the problem 

in the rR . Note that for control purposes, the Linear Optimization approach may deliver 
inadequate results since along a trajectory through the workspace, the result may be 
discontinuous. 

3.2 Nonlinear optimization 

Due to the formulation of the cost function, the Linear Programming method may deliver 
discontinuous solutions along a continuous trajectory. This leads to jumps in the time 
history of the wire forces, causing stability problems and additional mechanical wear. In 

(Verhoeven, 2004) it is proven that cost functions using a p-norm (1 < p < ∞), lead to 
guaranteed continuous wire forces along a continuous trajectory. The resulting formulation 
of the optimization problem is as follows: 

 

In (Verhoeven, 2004), also an effective algorithm is presented which solves the problem 
employing the knowledge of the solution structure, based on an iterative approximation of 
the optimal solution. However, this algorithm has the drawback to fail in specific 
configurations, i.e. solutions might be not found although they exist. To obtain the lowest 
possible force distribution (according to a p-norm), the unbounded polyhedron  is 
introduced, which is limited by the lower wire force limits: 

 (14) 

Furthermore, the wire force distribution ƒlow is introduced, which has minimal p-norm: 

 
(15) 

It should be mentioned that for 1 < p < ∞  ƒ low is unique, which is essential for the continuity 

of flow. The algorithm works as follows 

1. Compute an initial guess #f low for ƒ low. 

2. If #f low is not contained in , move #f low towards  until it is placed on the 

polyhedron. 

3. Minimize the p-norm of #f low. 

The initial guess is obtained by the orthogonal projection #f low of ƒ min onto the manifold of 

feasible force distributions F. Note that #f low is not always contained in . The second step 
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of the algorithm is performed by moving along the negative gradient of the distance 

between the polyhedron  and #f low. The distance is measured in the squared 2-norm. 

Finally, the minimization of #f low is done using a gradient based method again. Analogously, 

a vector ƒ high representing the highest possible solution in the chosen p-norm can be 

obtained. Hence, choosing a wire force distribution on the line between ƒ low and ƒ high allows 

either fast motions due to low wire forces or high stiffness due to high wire forces. This 
approach is very effective in terms of computation time since the initial guess is often 
already a feasible solution, but suffers from the fact that a solution is not always found. 

3.3 Barycentric force calculation 
The shown approaches require the usage of an optimizer to deliver continuous results as 
shown in ((Verhoeven, 2004),(Nahon & Angeles, 1991), (Bruckmann et al., 2006), 
(Voglewede & Ebert-Uphoff, 2004) and (Bosscher & Ebert-Uphoff, 2004)). Standard 
optimizer implementations as LAPACK or the NAG ® library require iterative 
computations, which may not be used within a realtime control system due to their 
normally non-predictable worst-case runtime. In this section, a non-iterative algorithm is 
shown, which provides continuous force distributions furthermost from the force limits. The 
algorithm provides a force distribution, which lies in the center of gravity (CoG or 
barycenter) of the intersection manifold  . 
The structure matrix AT has the dimension n × m. Hence, within the workspace, the kernel 

can be computed as H = (h1 . . . hr ) ∈ R m×r. Here, the kernel is used to define a map from the 

R r to ⊂  R m, i.e. for all λ ∈ Λ , eqn. 12 must hold, where Λ  is the (convex) 

polyhedron-shaped preimage of the manifold  under the mapping γ :R r →  R m,  

λ  →  −A+Tw+H λ . In other words, since γ  maps the R r onto the solution subspace , it 

maps the polyhedron Λ ⊂ R r onto the solution manifold . Since there is no explicit 

expression for Λ , a convenient representation is sought. As mentioned above Λ  is a 

polyhedron. Thus, its vertices determine Λ completely. Componentwise evaluation of both 

sides of eqn. 12 gives 2m hyperplanes in R r. The vertices of Λ  are intersection points of r 
hyperplanes. Hence, all those intersection points are calculated and examined with respect 

to their compatibility with all inequalities. Obviously a vertex of the polyhedron Λ  has to 
satisfy all inequalities of eqn. 12. In order to compute the center of gravity of the obtained 

polyhedron, Λ  is triangulated, i.e. splitted into r-simplexes. In the case of r = 2 this just 
means dividing into triangles. Advanced techniques as shown in (Cignoni et al., 1998) are 
required in the case of higher dimensions. Triangulation delivers a list of ns simplexes Pk 

with each having r + 1 vertices v
jk

 with k = 1 . . . ns and j = 1 . . . r + 1. The volumes Vk of the 

simplexes can be determined by integration (Hammer et al., 1956). Furthermore their CoG 

λ
ks

are computed by the equation 

 

(16) 

which is used to calculate the CoG λ s of the polyhedron via 
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(17) 

Finally, the solution is transformed back using the mapping γ  

 
(18) 

where ƒ s is the center of gravity of the manifold . 

 

 
 

Fig. 4: Visualisation of the map H in the case of m = 3 and n = 1 

3.3.1 Proof-of-Concept 

In this section we prove that the CoG of the manifold  can be computed by calculating the 

CoG of the convex polyhedron. Without loss of generality w = 0 is assumed. The CoG of the 

manifold  can be computed componentwise as 
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(19) 

The theorem for integration on manifolds states 

 

(20) 

where H* : Λ →  , λ →  H λ  is a map from Λ  to  and (DH)* is the Jacobian of H* which 

is equal to H itself since it is linear. Furthermore, T( ) det H H  is independent from λ  and 

can hence be canceled in the next step. Additionally splitting Λ  into the simplexes gives: 

 

(21) 

Since H is independent from λ , it can be moved out of the integral: 

 

(22) 

Using eqn. 19 and eqn. 17 this can be rewritten as 

 

(23) 

Therefore ƒ s = Hλs holds where λs denotes the CoG of Λ  in R r. 

3.3.2 Continuity of solution 

In this section the continuity of of the solution of the developed algorithm in the p-norm 

( )1,
p
p⋅ ≠ ∞  is proven, i.e. the function Γ :R m· n → R n, which maps a matrix A∈ R m×n 

(considered as a vector in R m· n) onto the center of gravity as described before, is 
continuous on the set of points of the workspace. 
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Proof 

Again without loss of generality w =0 is assumed. First Γ is splitted into two mappings  

Ker : R m·n → R n· r and GravC : R n· r → R n. The latter maps a vector p from R n· r onto the 

center of gravity of the manifold  spanned by the r n-dimensional downwards listed 

vectors in p. Ker :R m· n → R n· r maps a matrix A on its kernel H represented as a vector p in 

R n· r. In calculations the kernel is still denoted with H for simplicity. Continuity of Ker and 

GravC implies continuity of Γ , since Γ = GravC c  Ker. 

First the continuity of GravC will be proven. Therefore Λ ≠ 0 is assumed (i.e. the intersection 

of hypercube  and subspace  is non-empty and thus also the CoG exists), since continuity 

inside of  is to be proven. The CoG λ s is considered: 

 

(24) 

Let sλ# be the CoG of Λ# , where Λ# is the preimage of F# , which is obtained from #H = H +E. 

The matrices H = [h1 . . . hr]T ∈ R n×r and E = [e1 . . . er]T ∈ R n×r are considered as  

vectors in R n· r. Then the p-norm of H is  . It follows  

 

(25) 

 

(26) 

Since the vertices of the polyhedron λ#  are obtained from the inequality 

 
 

 

(27) 
 

(28) 

and the vertices of the polyhedron Λ  are obtained from (12), it is obvious that 

 
 

 

(29) 
 

(30) 
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Hence 

 
(31) 

holds, because Λ#  and Λ  are bounded. This yields together with eqn. (18) 

 
 

 

(32) 
 

(33) 

This implies the continuity of GravC. 
The continuity of Ker follows from the fact that the solution of a full ranked linear system of 
equations depends continuously on the coefficient matrix. 

4. Control 

Wire robots allow for very high velocities and accelerations when handling lightweight 
goods. In this case, wire robots benefit from their lightweight structure and low moved 
masses. Contrariwise, wire-based mechanisms like cranes, winches or lifting blocks are used 
widely to move extremely heavy loads. Thus, the wide range of application demands for a 
robust and responsive control. To move the platform along a trajectory precisely, position 
control is mandatory. On the other hand, the usage of wires claims for a careful observation 
and control of the applied tensions to guarantee a safe and accurate operation. Pure force 
control suffers from the drawbacks of model based control, e.g. model mismatch and 
parameter uncertainties. Thus force control is not sufficient and a combined force and 
position control is advised. Beside this, the relatively high elasticity of the wires may 
demand for a compensation by control. (Fang, 2005) shows more details of the shown 
concepts. 

4.1 Elastic wire compensation 
Compared to a conventional parallel kinematic machine (e.g. Stewart platform), a wire robot 
has generally a higher elasticity in the kinematic chains connecting the base and the 
platform. This is both due to the stiffness of the wire material as well as due to the wire 
construction (e.g. laid/twisted, braided or plaited)(Feyrer, 2000). Approximating the 
dynamical characteristics of the wires by a linear spring-damper model and considering the 
unilateral constraint, the wire model can be described as 

 

(34) 

with 1 < i < m, ci and di denoting the stiffness and damping coefficients, respectively and Δ li 

denoting the length change due to elasticity. Assuming the untensed wire length is li,0, Δ li 
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can be computed as Δ li = li − li, 0. The stiffness coefficient ci depends on the actual wire 
length. Using the wire cross section A and Young’s modulus E, ci can be calculated as 

 
(35) 

with 

 
(36) 

Note that this is only a linear approach. Taking into account long and heavy wires, a specific 

wire composition and applied tensions close to the admittible work load, advanced non-

linear models have to be utilized. Especially the damping coefficient di may be hard to 

estimate (Wehking et al., 1999) and thus, experiments have to be carried out (Vogel & 

Götzelmann, 2002). 

4.2 Motion control in joint space 

The idea of motion control in joint space is to use a feedback position control and a 
feedforward force controller. The feedforward control employs an inverse dynamics model 
to calculate the winch torques necessary for the accelerations belonging to the desired 
trajectory. Since the used dynamic model usually will not cover all mechanical influences 
(e.g. friction), the remaining position errors can be compensated by the position control 
which employs the inverse kinematics. Noteworthy, the inverse dynamics is calculated for 
the desired platform position. Optionally, one may think of tracking control to guide the 
platform along the desired trajectory for the price of additional calculations. Referring to 
eqn. 6, the inverse system dynamics (i.e. the wire force distribution) can be computed by 
methods shown in section 3 (where the loads w include the inertia and gravity loads). 
Assuming the winch drives are adressable by desired torques (which is normally the case 
for DC/EC motors, preferably with digital current control), the motor dynamics can be 
modeled as 

 (37) 

where MM ∈ R m×m is the inertial matrix of the drive units, η is the radius of the drums and 

D∈R m×m depends on the structure of the motors. Combining the feedforward force control 

and the feedback position control leads to the following controller output: 

 
(38) 

denoting the feedback gain matrices Kp ∈ R m×m and Kd ∈ R m×m and the actual and desired 
motor angles Θ and Θ d, respectively. Due to the decoupled position controllers, these may 
be designed as decentralized, simple and high control rate devices. To compensate for 
elastic tendons, the following correction may be applied: 
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(39) 

where Θ̂ d,i corresponds to the uncompensated drum angle (1 ≤  i ≤  m). 

4.3 Motion control in operational space 
Observing the sections above, independent linear PD controllers are applied. Practical 
experiences show that this is possible even though the system dynamics are described by a 
nonlinear, coupled system of equations due to the parallel topology of the robot, 
represented by the pose dependent structure matrix. Nevertheless, it is difficult to 
determine stable or even optimal controller parameters since the usual tools of the linear 
control theory may only be applied for locally linearized configurations of the robot. For 
predefined trajectories, this may be possible (e.g. by defining a cost function accumulating 
the control errors in simulation and applying a nonlinear optimizer to obain values for Kp 

and Kd), but is is desirable to have a globally linear system to avoid this only locally valid 
approach. From literature (Schwarz, 1991) (Woernle, 1995), exact linearization approaches 
are known which eliminate the nonlinear system characteristics by feedback. Using this as 
an inner loop, an outer linear controller may now be applied to the resulting linear system. 
Eqns. 37 and 6 deliver 

 
(40) 

Fig. 5: Block scheme of motion control in joint space (Fang, 2005) 
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Since the final control law is formulated in the operational space, this equation is 
transformed into cartesian coordinates using the inverse kinematics relations 

 
 

 

(41) 
 

(42) 

In cartesian coordinates the dynamical equations are then given by 

 

(43) 

Instead of using the motor torques u as the system input, the resulting forces and torques 
acting onto the platform Fν  are chosen to represent the actuator torques. Now a global 
linearization is desired. Setting Fν  = Meqν  +N delivers 

 (44) 

and is therefore a proper choice. This linear system is now controlled by a PD controller for 
the position. Thus, the new system input is extended by 

 (45) 

Substituting eqn. 45 into eqn. 43, Fν  can be found as 

 (46) 

which describes the required wrench onto the platform w which allows to calculate the 
desired wire forces by the methods shown in section 3. Optionally, the desired forces can be 
controlled by an outer feedback loop to enhance the control precision. 
 

 

Fig. 6: Block scheme of motion control in operational space 
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5. Applications 

 

Fig. 7(a) Early wire manipulation        Fig. 7(b) Arecibo telescope 

As already mentioned before, wire-based manipulation and construction is used since 
millenia, mostly taking advantage from the principle of the lifting block. In ancient 
civilisations like the Egypt of the Pharaos, probably wires and winches were applied to 
build the pyramids - wether using ramps or lifting mechanisms (see fig. 7(a)). Crane 
technology was only possible due to the usage of wires and especially the old Romans 
deleloped this technology to a remarkable state - they already lifted loads around 7 tons 
with cranes driven by 4 workers. With industrialisation, the transport and manipulation of 
heavy goods became very important, and hence, cranes using steel cables completed the 
transport chain for cargo handling. In the last few years, the automatisation of crane 

technology was subject to extensive research, e.g. in the project RoboCrane ®  by the 
National Institute of Standards and Technology (NIST) (Bostelman et al., 2000). At the 
University of Rostock, the prototype CABLEV (Cable Levitation) (Maier, 2004),(Heyden, 
2006) was build up, see fig. 8. It uses a gantry crane and three wires to guide the load along 
a trajectory. Thew load is stabilized by a tracking control for IRPM systems which eliminates  

 

 

Fig. 8: CABLEV protoype 

oscillations. In Japan, the Tadokoro Laboratory of the Tohoku University in Japan proposes 
the application of wires for rescue robots (Takemura et al., 2005) (Maeda et al., 1999). A 
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problem solved very smart by usage of wires is the positioning of a large telescope. Several 
projects, e.g. the world’s largest telescope at Arecibo (fig. 7(b)), deal with the usage of wires 
to place the receiver module. The Arecibo project (900t receiver, approximately 300m 
satellite dish diameter) uses three wires guided by three mast heads while other projects use 
an inverse configuration, lifting the receiver by balloons (see (Su et al., 2001), (Taghirad & 
Nahon, 2007a), (Taghirad & Nahon, 2007b)). Another popular application of wire robots is 
the usage as a manipulator for aerodynamical models in wind tunnels as proposed in 
(Lafourcade et al., 2002), (Zheng, 2006) and (Yaqing et al., 2007). Here, the experiments take 
advantage from the very thin wires since undisturbed air flow is mandatory. On the other 
hand, the wire robot can perform high dynamical motion as for example the FALCON (Fast 
Load Conveyance) robot (Kawamura et al., 1995). In the past few years at the Chair for 
Mechatronics at the University of Duisburg-Essen the testbed for wire robots SEGESTA 

(Seilgetriebene Stewart-Plattformen in Theorie und Anwendung) (Hiller et al., 2005b) has 
been developed. It is currently operated with seven (see fig. 9) wires in an CRPM 
configuration or eight wires for a RRPM setup. Focus of research is the development of fast 
and reliable methods for workspace calculation (Verhoeven & Hiller, 2000) and robot 
design. Another focus is the development of robust and realtime-capable control concepts 
(Mikelsons et al., 2008). Since the teststand is available, the theoretical results can be tested 
and verified (Hiller et al., 2005a). The system performs accelerations up to 10g and velocities 
around 10m/s. 
 

 

Fig. 9: SEGESTA protoype 

Another very recent application area has been created by Visual Act AB®. As pictured in fig. 
10. a snowboard simulator was built up. The snowboarder is connected to four wires 
leading to three translational d.o.f.. Hence, the snowboarder can be guided along a trajectory 
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in a setting consisting of ramps to grind on while he is moving freely in the air. (Visualact 
AB, 2006). A completely different field is the application of wire robots for rehabilitation 
which was demonstrated by the system String Man by the Fraunhofer-Institut für 
Produktionsanlagen und Konstruktionstechnik (IPK) in Berlin, Germany (Surdilovic et al., 
2007). Another prototype for rehabilitation is described in (Frey et al., 2006). The application 
of wire robots as a tracking device was proposed in (Ottaviano & Ceccarelli, 2006), (Thomas 
et al., 2003) and (Ottaviano et al., 2005). Here, the wire robot is not actively supporting a 
load but attached to an object which is tracked by the robot. 
 

 

Fig. 10: Snowboard Simulator 
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