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Chapter

Safe Adaptive Trajectory Tracking
Control of Robot for
Human-Robot Interaction Using
Barrier Function Transformation

Iman Salehi, Ghananeel Rotithor and Ashwin Dani

Abstract

In this chapter, safety methods in human-robot (HR) interaction/collaboration
are presented. Ensuring the safety of humans, objects, or even the robot itself in the
robot’s operating environment is one of the crucial aspects of collaborative robotics.
Since there are limited ways of controlling the behavior of humans, e.g., by placing
physical barriers, shaping the behavior of the robot is a feasible option. The chapter
discusses current methods of placing barriers for human safety in an industrial
setting and novel methods of placing virtual barriers by designing robot controllers
using barrier transformation. The concepts of barrier functions (BFs), control bar-
rier functions (CBFs), and barrier transformations are reviewed. The barrier trans-
formation concept is used to design an adaptive trajectory tracking controller for
the robot such that the robot does not cross the virtual barriers. The designed
controller is tested in simulations. Future directions of safety technology in human-
robot collaboration are presented.

Keywords: Safety, Barrier Transformation, Trajectory Tracking Control, Human-
robot collaboration, Safe adaptive control

1. Introduction

In many robotics and other engineering applications, maintaining system states
within a prescribed bound is essential to satisfy the system safety property. For
example, in a manufacturing collaborative robotics context, it is crucial for the
robot to satisfy requirements, such as trajectory boundedness and to safely carry out
its operations [1-3]. In medical robotics context, when a robot is interacting with a
person, the person undergoing surgery cannot move so the robot must stay within
virtual barriers in 3D space so that it does not harm the person. See [4] for an
example cobot architecture. A review of recent methods for safe human-robot (HR)
interaction methods is presented in [5].

In this chapter, safety in the context of HR collaboration is defined such that the
robot does not cross over a prescribed physical space where humans or other robots
are operating or the robot does not cross joint or the task space limits when the
robot is collaborating with the person. The violation of constraints can lead to
severe degradation of the robot’s performance, unsafe behavior, and sometimes
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failure of the robot’s components. In collaborative robotics applications such as
collaborative manipulation [6], collaborative construction [7], teleoperations [8, 9],
for human-in-the-loop control applications [10], or distributed multi-robot control
applications [11-13], restricting the motion of the robot to a constrained configura-
tion or task space is essential. Safe HR collaboration/interaction is also important for
introducing robot factory co-workers in manufacturing automation [14, 15],
developing robotic assistants for astronauts [5], for assistive robotics [16-20].

The literature related to the control of the robot in HR interaction focuses on
designing impedance control laws [16, 21-23] or admittance control laws [23, 24]
for adapting the interaction forces exerted by the human on the robot, when the
robot is physically interacting with the human. In [24], an admittance controller is
designed which takes inputs from human actions to achieve safer HR interaction. In
[25], a physical human-robot interaction in the context of bikebot is presented. In
[21], a an adaptive impedance controller for HR interaction is developed that is
based on the NN model of the human intention. In [26], a controller is developed
for human robot handover interaction based on dynamic movement primitives. In
these examples, the human is physically interacting with the robot.

Other studies in the literature address the problem of robot/autonomous system
control to avoid running into humans by modeling them as obstacles [27-29]. Most
of these studies view the problem as a collision avoidance problem and solve the
collision avoidance using potential field approach [30]. These control actions are
purely reactionary in nature [31]. To achieve pro-activeness, studies in literature
have designed controllers and motion planners that incorporate the probabilistic
information about the possible intentions of human actions [32-34]. When humans
and robots collaborate, inference of the person’s intentions or robot’s intentions
improves the overall performance of the collaborative task [35]. Many studies in the
literature have focused on designing scheduling and planning algorithms. In [36], a
stochastic trajectory optimizer for motion planning is used for planning robot arm
motion based on human intentions. In [37], scheduling, planning and control algo-
rithms are presented that adapt to the changing preferences of a human co-worker,
while providing strong guarantees for synchronization and timing of activities. In
[38], new hierarchical planners based on Hierarchical Goal Networks are developed
for assembly planning in human-robot team.

In the context of control architecture design for human-in-the-loop systems,
adaptive controllers are presented using the inner-outer loop control structure in
[10]. Stability studies of human-in-the-loop telerobotics with time-delay is
presented in [39]. However, these studies do not explicitly consider safety aspects
of the human-in-the-loop systems. Providing safety guarantees on the learned con-
troller of machine/robot is typically achieved by adjusting the reference command
using a pre-filter called a reference governor [40, 41] or by using optimal control
under uncertainty in a differential game setting.

For keeping the robot state bounded in a prescribed bound saturated controllers
can be used [42, 43]. Barrier function (BF) is a commonly used approach to certify
the forward invariance of a closed set with respect to a system model, which can be
used to examine the system’s safety property [44, 45]. There are two candidates to
construct BFs, namely, Reciprocal BFs and Zeroing BFs. The Reciprocal BFs can be
of inverse-type and logarithmic-type. Extensions of BFs to controlled systems called
as control Barrier Functions (CBF) have also been developed in the literature
[46, 47]. Applications of BFs or CBFs in many autonomous robotic systems, such
as robot manipulators, autonomous vehicles, and walking robots, are shown in
[48-50]. In [47, 49, 51], BFs were successfully applied to dynamical systems where
ensuring safety conditions are critical. In [51], time-varying BFs and CBFs for
avoiding moving and static obstacles are derived, and their application to flying
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quadcopter is shown which avoids unsafe obstacle regions. Robustness properties of
the CBFs are studied in [46], which shows that if a perturbation (or model error)
makes it impossible to satisfy the invariance condition for a reciprocal barrier
function, then the solution of the model must cease to exist because the control
input becomes unbounded. For the Zeroing CBFs, Input-to-State stability (ISS)
result holds in the presence of model uncertainties. A concept of exponential BFs
and CBFs is introduced in [52]. The method of CBFs is extended to position-based
constraints with relative degree 2 in [53] to address the safety constraints for
systems with a higher relative degree. Furthermore, a backstepping based design
method to design CBFs with a higher relative degree is also introduced. However,
achieving a backstepping-based CBF design for systems with a higher relative
degree is challenging. In [52], a concept of exponential CBFs is introduced that can
handle state-dependent constraints for systems with a higher relative degree. In
[54], a safety aware RL framework using BFs is proposed.

Barrier Lyapunov function (BLF) is another method that is used for the control
of nonlinear systems when the outputs and states have upper and lower bound
constraints (cf. [55, 56]). The BLF is constructed such that its value grows to infinity
whenever its argument approaches the bounds. In [55, 57], an adaptive controller is
developed using BLF defined over the output tracking error for single-input and
single-output (SISO) nonlinear systems in a strict-feedback form. The controller
works when the constraints are either constant or time-varying output constraints.
An extension to output tracking with partial state constraints is developed in [58].
Using a similar BLF, in [59], an adaptive neural network with full-state feedback
control that uses a Moore-Penrose pseudoinverse term in the control law design is
developed for an uncertain robot dynamics with output constraints, and the signals
of the closed-loop systems are proven to be semi-global uniformly ultimately
bounded (SGUUB). In [54, 60], a BLF method that uses reinforcement learning
(RL) is developed for a state regulation problem of a SISO nonlinear systems in the
Brunovsky form with full-state and control input constraints.

Designing safe controllers using learning-based control methods are also
presented in the literature. For example, in [61], a safe, online, model-free approach
to path planning with Q-learning is discussed. A general safety framework for
learning-based control using reachability analysis is presented in [62]. In [63], a
receding horizon safe path planning approach using mixed integer linear program-
ming (MILP) is presented. Safe trajectory generation for autonomous operation of
spacecraft using convex optimization formulation is proposed in [64]. When the
region is non-convex, successive convexification can be performed [65]. A detailed
survey and tutorial of £; adaptive control architecture for safety critical systems is
presented in [66].

In this chapter, barrier function transformation, presented in [67], is used to
design a safe adaptive trajectory tracking controller for the robot using Euler—
Lagrange (EL) system. The safe adaptive trajectory tracking control architecture of
a robot system presented in this chapter is shown in Figure 1. Full state constraints
are used while designing the torque control law. A gradient parameter update law is
designed along with projection laws to keep the parameter estimates bounded. A
Lyapunov-based stability analysis is presented which concludes semi-global uni-
formly ultimately bounded tracking result. Simulations studies are conducted using
2-link robot such that the tracking controller does not cross the bounds placed on
the joint angles of the robot leading to a desired end-effector motion within a
certain bounds. In addition to the control design and its testing in simulation, the
chapter presents a review of standard techniques of designing safe robot controllers
using BFs and CBFs, followed by a review of Barrier transformations which is used
to design adaptive robot controller of EL robot system in this chapter. Future
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Figure 1.

A block diagram that illustrates the control flow in a robotic system. The architecture constitutes of two main
loops. The inner-loop represents an equivalent unconstrained Euler—Lagrange (EL)-dynamics used to design an
adaptive controller. The outer-loop contains the constrained EL-dynamics and a controller that defines the
desired joint motions at each time step.

directions of the method and its applicability to safety in collaborative robotics are
discussed.

Rest of the chapter is organized as follows. A review of BFs and CBFs and Barrier
transformations is presented. Barrier transformation is then used to design adaptive
robot controller of EL robot system in this chapter. A design and analysis of the safe
adaptive trajectory tracking controller is then discussed. Simulation results of the
designed controller on a 2-link EL robot system model are presented. Future directions
of robot control design for safe human-robot collaboration are provided at the end.

2. Review of barrier functions and control barrier functions

In this section, a brief review of BF and CBF are presented.

2.1 Barrier functions

Consider a continuous nonlinear dynamical system of the form
x =f(x), (1)

where f : R” — R” is a locally Lipschitz continuous nonlinear function and
x(t) € X CR” is the state of the system. A set S €R" is called (forward) invariant
with respect to (1) if for any initial condition x(0):=x(¢¢) €S implies that x(¢) € S,
Vt € R [68]. BFs define a forward invariant safe region, where the solutions of a
dynamical system in this region remain in the region for all time [46, 47, 69].

2.1.1 Constructing the barrier functions

Given a closed set S CR”, its interior and its boundary are defined as follows

S={xeR" : h(x)>0}, (2)
0S = {xeR" : h(x) =0}, (3)
Int(S) = {x€R" : h(x)>0}, (4)

where & : R” — R is a continuously differentiable function.
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Definition 1. [47, Definition 1] Given the continuous system (1), the closed set S
defined by (2)-(4), and continuously differentiable function h : R* — R, a real-valued
function b : Int(S) — R that is differentiable with respect to its argument is said to be a
reciprocal BF, if there exist class K functions n,, n,, n3 such that for all x € Int(S)

1 1
) < ) ©)
P f(x) <nafhx)). ©

Candidate reciprocal BFs are inverse-type and logarithmic-type BFs given by
h(x)
1+h(x)?
unbounded on the set boundary, i.e., b(x) — o asx — 9S.

b(x) = Wlx) and b(x) = —log respectively [47]. Note that the candidate is

2.2 Control barrier functions

BF's are essential means to verify invariance of a set but they cannot be used in
its direct form to design a controller [47]. In other words, to make sure that the set
Int(S) is forward invariant under the dynamics of the system (1), a controller that
guarantees the invariance of the set is required. Similar on how Lyapunov functions
are extended to control Lyapunov functions [70], the concept of BFs can be
extended to the case of control systems through the use of CBFs. Given the
following nonlinear affine control system

%= flx) +gl)u, 7)

with f and g locally Lipschitz, x € ¥ CR", and u € R is the set of admissible
input, in cases where the solutions of (7) do not stay in an invariant set S, a CBF can
be specified that will assure the solutions to remain inside the invariant set.

2.2.1 Constructing the control barrier functions

In order to find a suitable CBF, the constraint on the system state x is encoded in
a smooth constraint function z(x). A value & (x) > 0 indicates adherence, whereas
h(x) <0 indicates a violation. The set of admissible state X is defined by

Xo={xeR": h(x)>0} (8)
0Xg={xeR": h(x) =0} 9)

A Reciprocal CBF b : Int(X,) — R is a non-negative function, if there exist class
K functions 7;,1,, and 5 such that for all x € Int(X,),

1 1

——— <b(x) L ———— (10)
1) == 1)
ienﬂgm{ﬁfb(x) + Lob(x)u — ny(h(x)) } <0. (11)
where £/b(x) is the Lie-Derivative %Ef) f (x) along the vector field f (x) and
0b(x)

L,b(x) is the Lie-Derivative =~ g(x) along the vector field g(x). Hence for the

system in (7), any locally Lipschitz controller # : Xy — R™ that is selected form (11)
assures the closed-set Xy C R” is forward invariant.
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3. Review of barrier transformation

In this section, review of barrier function transformation is presented. Consider
the following logarithmic barrier function B(z;a,A) : R — R defined on an open
interval (a,A):

B(z;a,A) = In (éa —x

aA_x),Vze(a,A). (12)
where 4 and A are two constants satisfying 4 < A. The barrier function in (12) takes
finite value when its arguments are within the region (4, A) and approaches to infinity
as its arguments reach the boundary of the region, i.e., lim, ., 4B(z;a,A) = *oo.
Due to the monotonic characteristic of the natural logarithm the inverse of the
barrier function (12) exists within the range of its definition, and it is given by

alA (e%y — e%>
B '(y;a,A) =—5—+, WeR (13)
Ae? — ae:

with the derivative defined as

dB '(y;a,A)  Aa® —aA? (14
dy 220 — 2aA + A%

4. Adaptive control of a robot system with full-state constraints

When a robot moves in a constrained space, it is crucial for the robot to satisfy
requirements, such as the joint trajectories’ boundedness, to safely carry out its
operations within a prescribed bound. This section presents an adaptive safe track-
ing control design method that learns the parameters of an uncertain Euler—
Lagrange (EL) system in an online manner using a gradient adaptive learning law.
The controller is designed to track joint angles and joint velocities of the robot arm
such that the bounds on the joint angles and joint velocities are maintained.

4.1 Euler-Lagrange dynamics for robot arm

Consider the Euler-Lagrange (EL) dynamics
M(q)q +Clq,9)q + G(q) =7, (15)

where M(q) € R**? denotes a generalized inertia matrix, C(q, §) € R*** denotes a
generalized centripetal-Coriolis matrix, G,(q) € R denotes a generalized gravity
vector, 7 = 11, - , rd]T eRr? represents the generalized input control vector, and

q(t), 4(t), §(t) eR? denote the link position, velocity, and acceleration vectors,
respectively. The subsequent development is based on the assumption that all the
states are observed, and that M(q), C(q,4), and G,(¢q), are unknown. The following
properties, found in [71, 72], are also exploited in the subsequent development.
Property 1. The inertia matrix is positive definite, and satisfies the following

inequality for any arbitrary vector & € R?:

m ||€]|7 < £TM(q)é <myll¢]1%, (16)
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where m; and m; are positive constants, and || - || represents the Euclidean
norm.
Remark 1. Since M(q) is a symmetric positive definite matrix, it can be shown

that M~ *(q) is also a positive definite matrix, and its 2-norm is upper and lower
bounded with known constants, i.e., m < ||[M~}(q)| <.
Property 2. The EL-dynamics in (15) are linearly parametrizable as follows

Y(q,9,9)0 = M(q)q + C(q,9)q + Gr(q), (17)

where Y : R x R? x RY — R is the regression matrix, and 6 € R” is the set of
the unknown parameters.

Property 3. The norm of the centripetal-Coriolis can be upper bounded in the
following manner:

1C(q9)ll. <Cligll, (18)

where C € R denotes known positive bounding constant, and || - ||., denotes the
induced infinity-norm of a matrix.

4.2 State space system model and control design

Letx = [xl,xz]T € X cR?, where x; = qge R? x, = qge R4, and the EL-dynamics
in (15) can be written as follows

3.C1 = X2,

% = £(x) + g0, 12

where f : R? — R?, g : R — R are locally Lipschitz continuous nonlinear
functions, f(x) = M~ '(x1)(—C(x1,%2)x2 — G,(x1)), and g(x) = M *(x;). With some
algebraic manipulations, the EL-dynamics can be written into d separate first and
second order dynamics:

X1j = X2s (20)

J.(Jz,]':fj(X) —I—gj(x)r, Vj:l,"',d (21)

where f i R* - R, g R* — R™ are nonlinear continuously differentiable
functions. Using the BF transformation (12), the system in (20)—(21) can be
transformed into a constrained state ® = [¢;, ¢,]” € R%, where ¢, = (011> > 91.4] !

T . - . .
and ¢, = [@1, -, ¢,,4]  are the constrained joint position and velocity vectors,
respectively, as follows:

(pi,j g B(xl,jaél,]) Ai,j)) VZ — 1,2 and V] — 1, "‘,d (22)

xi,]- :B71<¢i,j;5i,]"Ai:j>’ Vz:1,2 and ijl,,d (23)

where B! <gol- j5 0ijs A ,j> can be obtained using (13) and §;j, A;; are lower and

upper bounds on state, respectively. Using the chain rule of differentiation, i.e.,
dx,',j . 0x,~,j dfﬂ,')j
dt "~ d¢;; di? 0p;

tions result in the transformed state ¢, ;, and it is given by

axi Jj

where

can be obtained using (14), and some algebraic manipula-
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iy =K (02 ) B (02382081 ) = Frs(mnjony)s W =1dy  (28)
P25 = Koy (%,j) (fj(x) +gj(x>u> =Fj(®) + Gyj(®)7r, Vj=1,--,d, (25)

where

Foj(@) = Ky, <¢2,j>fj ( [Bil (%,1) o BT (%,j)]) (26)
G (@) = Ky (%,j)gj < [B_l (¢11) - B! <<02,]'>D (27)

1
and Kij(o;,) = (%]”) ,Vi =1,2and Vj = 1, ---,d. The constrained system in

terms of ® can be expressed in a compact form as follows
O = F(®) + G(D)r, (28)

where F : R? — R* and G : R¥ — R¥*4 are given by

[ F11 ((ﬂl,la (ﬂz,1> i
: O4xa
F1d(€01da€02d) Go,1(®)
F(D) = ’ ’ ’ s D) = 29
(@) Fy1(®) g(®) : (29)
: G,4(D)
L Fyu(®)

Assumption 1. The function F : R% — R* is locally Lipschitz continuous, and
there exists a positive constant F such that for ® € ¥, ||F(®@)|| < F||®||, where
¥ c R* is a compact set containing the origin. Moreover, the system is assumed to
be controllable over ¥ with G(®) being locally Lipschitz and bounded in ¥, i.e.,
|G(®)|| < G, where G is a positive scalar.

Following (28), the EL-dynamics can be represented in the constrained space as
follows

M((pp>lcz_1(¢2)¢2 + C((Ppa (PU)IC;1(¢1)¢2 + G, ((pp) =1, (30)
where
9y =B (012)> B (o) > (31)
0= B (021)s = B (020)]" (32)
and
Kii(@iq) 0
Ki(é:) = , (33)
0 Kia(®:4)

_1 ..
with ICl’] <(pl’]> = w, Vi=1,2 and V] =1, ,d



Safe Adaptive Trajectory Tracking Control of Robot for Human-Robot Interaction Using...
DOI: http://dx.doi.org/10.5772/intechopen.97255

Assumption 2. The terms /;(¢;) defined in (33) is positive definite, and its 2-norm

is upper and lower bounded by known positive constants, i.e., k; < [|K;(¢;)|| <k:, Vi =
1,2.
Lemma 1. Given the term /;(¢;) defined in (33) with

(p,,) _

, Vi=1,2 and Vj =1, ---,d, (34)

the 2-norm of its inverse, K; ' (¢;), can be upper bounded by a positive constant
Ky i.e., 1ICH ()l <%, Vi = 1,2.
Proof: The 2-norm of K; *(¢;) = diag (IC;ll (@in)> = » ICZ-;} (¢i4)) can be upper

bounded because IC;,]-l (cpi J-> is bounded, that is

82 5. A2
lim Al’]@’j 51’]AU
Pij7e ((§2 05 IS A 2 =i
j (51.,]{; )~ 26,7 + AL J>

=0, (35)

which implies that 2-norm of K; *(¢;) can be upper bounded by a positive constant &;.
Now, using Property 2, the EL-dynamics in (30) can be linearly parameterized,
and it is given by

MKy + CK7 s + Gy = Y (s 011 b1, 2,2 )0, (36)

where Y7 : R? x R? x R? x R? x R — R¥" is the regression matrix. Note that
in (36), and henceforth the parameter dependency of the elements in the
EL-dynamics are dropped for brevity.

Lemma 2. Suppose that there exists a controller that tracks the desired trajectory
for the system given in (30). Then, the same controller can also track the desired
trajectory of the original system in (15) given that the initial state of the system
x(0) =x¢ € X.

Proof: See proof of ([55], Lemma 1)

Lemma 2 proves that if the initial state is within the prescribed bound, a control
law can be designed for the full-state constrained system such that it satisfies the
tracking objective of the original system.

4.2.1 Safe adaptive tracking control development

In this subsection, an adaptive control technique is used to identify the parame-
ters of an uncertain system and track the desired joint position ¢4 (¢) : R* — R?
and joint velocity ¢ (t) : R* — R? trajectories.

. . Y d . .
Assumption 3. The signals ¢4, ¢%, ¢, are uniformly continuous and bounded

—des —des - des o —des ~des

des
d d j —des
such that [|5°[| < ¢y, 145711 < by 5 1y 11 <, , where ¢y, ¢, , and ¢, are
known positive constants.
Consider the following tracking control input design

t = MK, a + CK; W + G, — pKar, (37)

where (°) denotes the parameter estimates and / is a positive scalar. Signals a, v, r
are given by
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- des

a=d¢, — Ay, (38)
v = ¢5° — Ady, (39)
r= é?)z + Ag’b (40)

where ¢, 2 ¢, — $% and ¢, 2 §, — ¢% are position and velocity tracking errors,

respectively. A € R**? is a positive definite diagonal matrix, and its 2-norm is upper

bounded by a known positive constant, i.e., |A]| < A.
In terms of the linear parameterization of the EL-dynamics, i.e., Property 2, the
control input (37) can be rewritten as

T = Y2 (00 000 K3 ()0, Ky (1)) 0 = Bl )1, (41)

where Y, : R? x R? x R? x R? — R is the regression matrix. Substituting (37)
in the EL-dynamics (30) yields the following closed-loop error dynamics given by

MK, Y+ CKCy Y + BKor = Y0, (42)

where 0 = 6 — 0 is the parameter estimation error. The parameter § update rule
is given by

é = proj(—F’lYglCzr), (43)

where '€ R"*" is a diagonal and positive definite matrix, and proj(-) is a
standard projection operator that ensures the parameter estimates are bounded, i.e.,

0<0<0 (for further details see [71]).
Remark 2. The parameter estimation error @ is bounded and uniformly
continuous since @ evolves according to the update law in (43).

4.2.2 Lyapunov stability analysis

To facilitate the following development of the Lyapunov stability analysis, let ¢ :
. T
0, 00) — R**" denote the composite state vector, i.e., {(t) £ [VT ), 1 (t), 0" (t)} . Let

Amin{-} and Az {-} denote the minimum and maximum eigenvalues of its argument.

Theorem 1.1. The controller and parameter update laws defined in (41) and (43)
ensure SGUUB tracking of the desired state trajectories, provided the following sufficient
conditions,

r1>2(1+7s+77)s ¥3>2(1+ 75+ 76), (44)

are satisfied, where

r1=pm k3ys = Pl

Y2 = ﬂmax{ATA}a ve = (r2 + 74)5?63 (45)
Y3 = Y14min {ATA} 77 = (6 + }’4)50216

v4 = Aa @ = kymCK:

Proof: See details in [67].

10
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5. Simulations

Simulation studies are conducted to verify and demonstrate the performance of
the designed safe adaptive robot controller. The simulations are conducted using
MacBook Pro running Intel i7 processor and 16 Gigabytes of memory and the
controller and EL dynamic model is coded using MATLAB 2018a.

5.1 Safe tracking control of an uncertain EL-dynamics with full-state
constraints using BF

In this section, the controller and adaptive laws developed in (37) and (43) are
simulated for a two-link robot planar manipulator, with dynamics shown in (46),

where c1, ¢, c1p denote cos (ql), cos (qz), and cos (ql + qz) respectively, sin,
denotes sin (q,), and g is the gravitational constant.

|:61+262c2 93+92c2} {ql} 4 |:stin2q'2 stinz(q'1+qz):| [41] + [64gcl+65g01z] _ {Tl}

03+6,¢) 03 éz 0, sin 2q1 0 qz 95gc12 2
M) Cla.d) Grlg)
(46)
The nominal values of the parameter vector 6 = [61, 0,, 63, 04, 6s]" are
0, = 0.325 kg - m? 03 = 0.217 kg - m? (47)
0, = 0.240 kg - m’ 0s=24kg-m 65=10 kg-m
The desired trajectory is selected as
44, = (—4 — 6¢*) sin (¢),94, = (=4 — 3¢ ") cos (t). (48)

The objective is to track the desired joint trajectory provided that the model

parameters are unknown while the state Q = [¢, §] satisfies the following con-
straints,

g, € (—4.4,4.1) g, €(-10.2,4.2)

49
g, €(~7.1,42) G, € (—4.2,4.93) (“49)
To this end, the barrier function formulation presented in Section 3 is used along
with the adaptive control developed in Section 4. The feedback and adaptation
gains for the proposed controller are selected as f = 14, A = diag(2.01,2.01), and
I' = diag(30, 30). The results of the simulation are shown in Figures 2-4. The joints

—Qu
g1 with barrier controller .
g1 without barrier controller a3 \
5 3 37/ \
\

i--bounds
\
\
\
\ 4 \
A A r/

—d2d
- -gs with barrier controller

gz without barrier controller
- bounds fl

10 15 20

Figure 2.
Evolution of the joint angles for the planar robot simulation using an adaptive law with and without BF.
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Figure 3.

Evolution of the joint angle ervors and joint velocity errors for the planar robot simulation using an adaptive law
with BF.
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Figure 4.

Evolution of the parameter estimation ervor for the planar robot simulation.

position evolution ¢, (¢) and ¢, (t) of a two degrees-of-freedom planar robot using an
adaptive law with and without BF are shown in Figure 2. It can be observed from
Figure 2 that when the adaptive law with BF is used, the estimated trajectories are
blocked from crossing over the boundaries that are set for each of the joints. The
position and velocity estimation errors are depicted in Figure 3. From Figures 2 and
3, it is clear that the tracking error asymptotically converges to zero, and, because
the Lyapunov candidate does not contain any terms that are negative definite in 0,
the parameter estimation does not converge but it does remain bounded. Bounded-
ness of the parameter estimation errors can be seen in Figure 4.

6. Conclusions and future directions

This chapter provides a perspective on problems wherein humans and robots
work collaboratively with one another. Research in this field aims to relax the
current workplace constraints, such as fences, virtual curtains often seen in
manufacturing settings between humans and robots or velocity limits on collabora-
tive robots. This chapter develops an efficient robot control methodology to create a
safe working environment without sacrificing the efficiency of the robots. In the
context of the chapter, safety is defined as a constrained behavior of a system, and
robot effectiveness, as driving the actual behavior of the robot to the desired
behavior. To this end, an online safe tracking controller for an uncertain Euler—
Lagrange robotic system with is developed where the constraints are placed on all
the states. A barrier function transform is used to transform the full-state
constrained EL-dynamics into an equivalent unconstrained system with no prior
knowledge of the system parameters. An adaptive controller is developed along

12
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with a gradient based adaptive parameter estimation law on the transformed system
that tracks the desired trajectories of the original system. The controller guarantees
that the robot trajectories remain inside a pre-specified safe region, tracking the
desired trajectories and the parameter estimation errors remain bounded. The
method can be utilized for applications wherein robots must operate in a confined
space to reach an object for grasping or other manipulation tasks such as pick and
place.

In future, the usefulness of barrier transformation to design a visual servo
controller will be shown. Constrained VS approach can guarantee target features to
remain within the camera field of view for the duration of the task. Some recent
efforts in that direction can be found in [73]. Utilizing CBF for developing safe
robot controllers by utilizing human actions and workspaces can be another avenue
of future research for safe human-robot interaction.
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