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Chapter

Design and Development of High 
Entropy Alloys Using Artificial 
Intelligence
Shailesh Kumar Singh and Vivek K. Singh

Abstract

The conventional design approach of alloys initiates with one principal element 
and continues by adding several alloying elements to obtain desired properties. In this 
method, the intrinsic properties of the designed alloy are governed by the principal 
element. For example, in steel alloy, iron is the principal element, Aluminium in alu-
minium alloy, and so on. Compared to the conventional alloy, high entropy alloys do 
not have any dominating elements; all the elements present in these alloys either have 
an equal or near-equal ratio of elements. As reported in the literature, these alloys 
exhibit interesting material properties such as high strength, high hardness, improved 
elevated temperature strength, and magnetic properties. These characteristics 
make HEAs a suitable option for high-performance applications in the aero engine, 
aerospace structures, and machine tools. High entropy alloy has multiple principal 
elements as shown in schematic diagram 1; it leads to much higher possible composi-
tions than conventional alloys. The huge compositional space provides an opportunity 
to improve desired mechanical properties. If it is explored through “trial and error,” 
it will be challenging and cumbersome. Therefore, search schemes that can compe-
tently and promptly recognize particular alloys with desired properties are essential. 
Artificial Intelligence is a useful tool to model, discover, and optimize new alloys that 
enable predicting individual material properties as a function of composition. While 
the application of Artificial Intelligence is quite popular in many aspects of society, 
its usage in material informatics is still in the nascent stage. The algorithm used in 
artificial intelligence is trained to pick up predictive rules from data and create a 
material model quicker than a computational model and can even generate the model 
for which no physical model exists. Artificial Intelligence (AI) allows predicting a set 
of experiments to be conducted to detect new alloy having desired properties. Thus, 
AI can be used as a valuable tool to optimize the development of new alloys.

Keywords: high entropy alloy, Artificial Intelligence, mechanical properties

1. Introduction

Humans have been using alloys since ancient times. Arsenical Bronze, an alloy of 
copper and arsenic, was used as far back as the 5th millennium BCE. Sumerians first 
started alloying copper and tin to form Bronze in the third millennium BC. Bronze 
was much more challenging than its parent elements. Hence, societies wielding 
bronze weapons skillfully subjugated their neighboring communities. Meteoric 
iron, a naturally occurring alloy of iron and nickel, was in use from 3200 BCE. 
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Persians started using carbon steel in the 16th century BCE. With this began the 
Iron Age. Our modern society also relies heavily on steel.

Typically, alloys have one or two primary components and other components with 
small amounts. The primary ingredients are chosen for the alloy’s leading properties, 
and the smaller components are selected for specific additional properties. High entropy 
alloys’ development is essential in resolving the limitations of conventional alloys, espe-
cially in extreme temperature and loading conditions. High entropy alloys compared to 
traditional alloys do not have any dominating elements; all the elements present in these 
alloys either have an equal or near-equal element. As a result, these types of alloy fea-
tures, as their name suggests, high entropy, i.e., reducing the Gibbs free energy of solid 
solution and their high configuration entropy mixing is stable at higher temperatures. 
These characteristics make HEAs a suitable option for high – performance applications 
such as gas turbines and other aerospace structures, tools, gears, and bearings.

High entropy alloys (HEA) or multi-component alloys are created from equal 
or similar proportions of multiple elements. There are generally two agreed-upon 
definitions of HEAs. It should have more than five elements with concentrations 
ranging from 5–35% of each component, or the entropy of mixing should be greater 
than 1.5R, where R is the gas constant. Due to each constituent element being a 
principal constituent, these alloys are characterized by larger configuration entropy. 
For a 2-component system, the entropy of mixing is given by Eq. (1).

 ( )A A B B
S x x∆ = − +

mix
nR lnx lnx  (1)

From Figure 1, the entropy increase is maximum when both the components 
are of equal proportions. It is easy to follow that for multi-component systems; 
configurational entropy increases with the increasing number of components. It is 
maximum for any given number of components when all the constituents’ propor-
tions are the same. High entropy alloy can be produced by processing in the gas 
phase, by methods like sputtering or molecular beam epitaxy, in the liquid phase by 
methods like arc melting, induction melting, and Bridgman solidification, or in the 
solid phase by methods like mechanical alloying.

Figure 1. 
The illustrated concept of random mixing of elements.
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Figure 2 shows tetrahedral compositional space for a 4-element alloy [1]. The 
corner points represent pure elements. The alloys typically studied lie near the 
corner points or the edges. One or two primary elements have significant concen-
tration and other elements of minimal concentrations. HEAs are a novel class of 
materials that lie near the centroid of the compositional space. Research accelerated 
in this field after the independent publication of Jien-Wei Yeh and Brian Cantor’s 
papers in 2004. HEAs show great strength to weight ratios, fracture resistance, 
tensile strength, corrosion, and oxidation resistance. HEAs alloy properties are 
affected by the high-entropy effect, lattice distortion effect, sluggish diffusion 
effect, and cocktail effect. The crystal structure of HEAs consists of either face-
centered cubic (fcc), body-centered cubic (bcc) crystal structure, and hexagonal 
close-packed (hcp) structure or a mix of any two. VNbMoTaW has excellent 
refractory properties, CoCrFeMnNi has excellent low-temperature mechanical 
properties, TaNbHfZrTi shows superconductivity. The reasons for such exceptional 
properties of HEAs are their microstructures. The most common structures are the 
Multiphase, single-phase FCC, and single-phase BCC. Generally, when a single-
phase HEA is formed, it tends to create a BCC structure, as BCC lattices can accom-
modate a more extensive range of atomic sizes.

Many techniques are used to explain and guess the different phases of the HEAs 
based on their parameters, like Valence Electron Concentration (VEC), thermody-
namic effects of enthalpy of mixing, and atomic sizes. Phases can be predicted using 
CALPHAD, molecular dynamics simulations, and kinetic mechanisms. However, 
using the traditional methods to predict phase formation is very time-consuming 
and computationally expensive. Density Functional Theory (DFT) is tradition-
ally use to indicate phases by correlating parameters and fitting to existing data. 
Nevertheless, this method is inadequate given that not much is known about the 
compositional spaces’ central regions. Traditional experimentation with HEAs is 
done by exploring the compositional and thermodynamic space based on trial-and-
error strategies. Recently, Artificial Intelligence (AI) has been used to predict the 
formation of HEAs. AI use self-learning mechanisms to find patterns in given data. 
AI is not bound to follow fixed rules in order to obtain the solutions of a specified 
problem; instead, it solves each unique situation in its way. It is this unique feature 

Figure 2. 
Compositional space for 4-element alloy [1].
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of AI, which can be used to tackle the vagueness of a given system. Phase formation 
in HEAs is also such a vague system. AI and its subsets, Machine Learning, and Deep 
Learning can significantly reduce the time component involved in designing HEAs 
with desired properties by quickly traversing the compositional space.

Adaptive Neuro-Fuzzy Interface System (ANFIS) is an AI algorithm, which is 
used for phase prediction in FCC, BCC, and multi-phase HEAs. ANFIS is constructed 
using Artificial Neural Network (ANN) and fuzzy logic. ANN mimics the working of 
a human brain. Fuzzy logic is a mathematical model that works on degrees of truths, 
not just absolute truth and false. ANFIS method is suitable to predict the phases 
in HEAs [2]. Generally two approaches as depicted in Figures 3 and 4 are used in 
practice to model the AI problem. The first approach used the constituent elements 

Figure 3. 
A framework of ANFIS: Composition-based modeling [2].

Figure 4. 
A framework of ANFIS: Parameter-based modeling [2].
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as the inputs, while the second used a set of six crucial parameters in the formation 
of HEAs. In the first approach, the input elements chosen are Fe, Ni, Ti, Mn, Pd, V, 
Mo, Nb, Si, Ta, Hf, Zr, and W. In the second approach, atomic size parameter (δ), 
enthalpy of mixing (ΔΘmix), configurational entropy (Sc), single dimensionless ther-
modynamic parameter (Φ), intrinsic strain (εrms) and valence electronic concentra-
tion (VEC) are the six input parameters. Φ is the thermodynamic parameter; δ and 
VEC are the parameters of atomic scales; ΔΘmix and Sc are the parameters for nuclear 
interactions. The first model’s accuracy was 84.21%, while it was 80% for the second.

2. Machine learning and design of experiments

Machine Learning (ML) is a subset of Artificial intelligence. ML offers flex-
ibility; as new data becomes available; it is more rapidly able to construct relations 
between input and output data. Kevin Kaufmann and Kenneth S. Vecchio used an 
“ML-HEA” to predict the solid solution-forming ability of the HEA using ther-
modynamic data from ThermoCalc and chemical features with a random forest 
machine-learning model [3]. They also compared the ML-HEA model with other 
traditional models like CALPHAD and LTVC, as mention in Table 1.

The ML-HEA model correctly predicted the phase for 134 alloy systems with 
a known phase. This model is in 94% agreement with the CALPHAD model, and 
82.1% agreement with the DFT based LTVC model. However, until the central 
region of the compositional space is further explored, it will be impossible to truly 
know which of these three models (ML-HEA, CALPHAD, and LTVC) is more 
accurate in predicting the phase of the HEAs.

Chang et al. used ML with ANN to predict the composition of non-equimolar 
AlCoCrFeMnNi to get the highest hardness HEAs [4]. In their limited data set of 
91 alloys, they also included the alloys of Cu and Mn. The input for the network is 
the eight elements present in the alloy, and the target output is the hardness of the 
HEAs. Figure 5 shows good agreement between the experimental hardness and 
predicted hardness. Pearson’s correlation coefficient = 0.97, R-squared correla-
tion = 0.94, and mean absolute error = 36 Vickers Hardness, and Table 2 shows 
good agreement between the predicted hardness and experimental hardness from 
ML3 to ML5. Here ML3, ML4 and ML5 are high entropy alloy.

Cheng Wen et al. [5] used ML to predict hardness in an AlCoCrCuFeNi HEA sys-
tem. They used two approaches using the compositions and other descriptive fac-
tors such as atomic radii, the difference in electronegativity, VEC, mixing enthalpy, 
and configurational entropy. They used hardness data of 155 HEAs, with the 
highest hardness of 735 HV. Pei et al. [6] used machine learning to identify the three 
most important physical properties of the elements (besides the Hume-Rothery 
rules) that describe the HEAs’ formation. They developed a new method based on 
these additional features to predict the FCC, BCC or HCP structure of the HEAs. 

Material 

systems

Known solid solution (Neither, 

FCC, or BCC)

CALPHAD LVTC

Binaries 117 of 117 (100%) 110 of 117 (94%) 102 of 117 (87.2%)

Ternaries N/A 362 of 441 (82.1%) 279 of 441 (63.3%)

Quaternaries 8 of 8 (100%) N/A 690 of 1110 (62.2%)

Quinaries 9 of 9 (100%) N/A 94 of 130 (72.3%)

Table 1. 
Comparison of ML-HEA with CALPHAD and LVTC [3].
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They used a large dataset of 1252 HEAs to train a model to predict the formation of 
phases with an accuracy of 93%. For each constituent element of each HEA, they 
considered 85 elemental properties. From these 85 properties, they can identify 
the three most essential quantities: molar volume, bulk modulus, and melting 
temperature. They used these quantities to develop a model based on the physical 
nature of the elements. This new model was 73% accurate in predicting the phase of 
the HEAs. Figure 6 is a hardness map plotted with the variation of the element Al, 
Co, and Mn contents. The availability of data machine learning technique for alloy 
design can be a valuable tool to predict HEAs’ properties and constituent elements.

Similarly, Figure 7 used ML and the Design of experiment approach for the 
accelerated design of HEAs. The first machine-learning model is trained with an 
existing dataset consisting of hardness and composition of constituent elements. 
The model is applied to a search in the materials space for unknown value hardness. 
Based on hardness predictions, a function to select the next set of experiments is 
performed—this helps to choose an alloy for experimentation.

Figure 5. 
Predicted versus proper hardness for HEAs, where different colors indicate the variation of the standard 
deviation [4].

Alloy Al Co Cr Fe Mn Ni Experimental 

hardness

Predicted 

hardness 

(HV)

Al03 5.66 18.87 18.87 18.87 18.87 18.87 125 ± 3 242 ± 98

ML1 11 18 22 22 5 22 198 ± 6 303 ± 38

ML2 30.5 16 18.5 16.5 5 13.5 522 ± 8 505 ± 35

ML3 30 6 35 6 18 5 605 ± 14 670 ± 94

ML4 25.5 9 35 10 15.5 5 628 ± 13 670 ± 111

ML5 24 18 35 10 7.5 5.5 650 ± 12 670 ± 98

Table 2. 
Nominal composition (%) of Al03 and ML alloys and their hardness values [4].
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3. Methodology for implementation of AI in HEAs

Figure 8 described the proposed methodology for the implementation of AI to 
develop a new high entropy alloy. AI algorithm create an AI model by training on 
the experimental dataset for training, and then this trained AI model is fed with the 

Figure 6. 
Hardness plot with a variation of Al, Co, and Mn contents and fixed Co content (black dashed line is the 
boundary of<30% risk) [6].

Figure 7. 
A schematic of the ML and DOE based iterative design loop for accelerated design of HEAs.
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desired properties of the new model. The output of the AI model is a set of experi-
ments for the creation of a new alloy. The set of experiments suggested by AI model 
is a subset of an extensive set that will result from all possible combinations of input 
parameters. Presently trial and error method is used to narrow down this search 
space, but the use of AI model can lead to selecting a more appropriate subset from 
this search space. Further, to evolve the AI model with time output of each sug-
gested experiment should be added to the experimental dataset for training and a 
new AI model is created after each update of the dataset.

The strategy to design and develop of high entropy alloy for achieving the 
desired strength in the material using the artificial intelligence approach is 
described below with a detailed explanation:

a. Dataset creation: Data of experiments conducted to create new HEA can be 
obtained from available literature to create a dataset. This database need to be 
divided into three subsets (60:20:20): training, validation, and test dataset.

b. Selection of machine learning (ML) algorithm: For ML algorithm, various 
options like linear regression model, support vector machine, artificial neural 
network, and deep neural networks should be explored. Starting with the most 
straightforward algorithm viz. linear regression, each algorithm’s performance 
after training should be evaluated on training and validation dataset (via a loss 
function like RMSE for expected and actual value of hardness) using k-fold 
cross-validation. Based on its performance and complexity the ML algorithm 
can be selected.

c. Training of AI model: AI model created based on selecting the ML algorithm is 
to be fed with known composition data from the training dataset. The output 
of this model is the estimated value for the hardness of HEA. Several epochs of 
training is to be needed to arrive at an acceptable trained AI model.

d. Apart from composition data several physical properties of constituent 
elements like the difference in atomic radii between composition elements, 
the difference in electronegativity between components, the valence electron 
concentration, the mixing enthalpy, the configurational entropy, the 
U parameter (which is related to the entropy, enthalpy, and the melting point), 
the L parameter (which is associated with an atom’s configuration on a lattice 

Figure 8. 
Methodology for the implementation of AI for the discovery of new alloy.



9

Design and Development of High Entropy Alloys Using Artificial Intelligence
DOI: http://dx.doi.org/10.5772/intechopen.96761

and its radius) and the g parameter (the solid angles of atomic packing for the 
elements with the most significant and most minor atomic sizes) are related 
to the intrinsic properties and affect the final hardness. So further AI model 
should also be trained by accepting both composition data and physical 
properties as inputs.

e. Training and test datasets with bootstrapping should be used for training the 
AI model. A bootstrap training set can be generated by resampling the original 
training data and testing data with replacement. On each made training set, 
an AI model is created. Each of these AI models can then run on the original 
training dataset to give different hardness values for each training sample. This 
give the output as estimated hardness and standard deviation for the estimated 
hardness.

f. Use of AI model in the design of experiments: By assuming an available range 
of values for each constituent element, a virtual search space can be created 
for experiments to conducted of creation of new HEA. Using this virtual space 
as input to generated AI models, an estimate for hardness and corresponding 
confidence (standard deviation) can be computed. Candidates in virtual space 
can then be selected for desired hardness and sorted standard deviation value 
for the design of experiments.

4. Summary

Artificial Intelligence is a valuable tool to model, discover, and optimize new 
alloys that enable predicting individual material properties as a function of com-
position. Artificial Intelligence (AI) allows the prediction of a set of experiments 
to be conducted to discover new alloy having desired properties. Thus, AI can be 
used as an effective tool to optimize the development of new alloys. The use of AI 
for predicting phase, hardness, and other HEAs properties is a gateway to many 
possibilities. It is the flexibility of AI to adapt to new data that enables further 
improvement of the models’ accuracy, which will lead to a better understanding of 
phases of HEAs.

Synthesizing HEAs is a complicated and expensive process, so using traditional 
modeling to explore compositional space and synthesizing each alloy is impractical. 
AI can be used so that it is not necessary to explore the entire composition space. 
AI models can handle voluminous experiment data and are bound to outperform 
human counterparts. Therefore, AI can be effectively employed to competently 
and promptly recognize particular High Entropy alloys with desired mechanical 
properties.



Advances in High-Entropy Alloys - Materials Research, Exotic Properties and Applications

10

Author details

Shailesh Kumar Singh1* and Vivek K. Singh2

1 Advanced Tribology Research Centre, CSIR-Indian Institute of Petroleum, 
Dehradun, India

2 Department of Mechanical Engineering, Indian Institute of Technology, Bombay, 
India

*Address all correspondence to: sk.singh@iip.res.in

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 



11

Design and Development of High Entropy Alloys Using Artificial Intelligence
DOI: http://dx.doi.org/10.5772/intechopen.96761

References

[1] E. P George, D. Raabe, and R O 
Ritchie: High Entropy alloy, Nature 
Review, Vol.4, (2019), pp, 515-534

[2] A.Agarwal, and A. K. Prasada Rao: 
Artificial Intelligence Predicts Body-
Centered-Cubic and Face-Centered-
Cubic Phases in High-Entropy Alloys. 
JOM , Vol. 71, (2019) pp.3424-3432.

[3] K Kaufmann, and K. S. Vecchio: 
Searching for high entropy alloys: 
A machine learning approach, 
Acta Materialia, Volume 198, 2020, 
pp. 178-222.

[4] Y J Chang, C Y Jui, W J Lee: 
Prediction of the Composition and 
Hardness of High-Entropy Alloys by 
Machine Learning. JOM, Vol. 71, 2019, 
pp.3433-3442

[5] Cheng Wen, Yan Zhang, Changxin 
Wang, Dezhen Xue, Yang Bai, Stoichko 
Antonov, Lanhong Dai, Turab 
Lookman, and Yanjing Su: Machine 
learning assisted design of high 
entropy alloys with desired property, 
Acta Materialia, Volume 170, 2019, 
pp. 109-117.

[6] Pei, Z., Yin, J., Hawk, J.A. et al. 
Machine-learning informed prediction 
of high-entropy solid solution 
formation: Beyond the Hume-Rothery 
rules. npj Comput Mater 6, Vol.50 
2020, pp.1-8.


