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Chapter

Optimization and 
Characterization of Novel and 
Non-Edible Seed Oil Sources for 
Biodiesel Production
Inam Ullah Khan and Syed Aftab Hussain Shah

Abstract

Biodiesel mainly comes from edible oil, and there is little research on its yield 
from non-edible sources with low-cost oil. It is paramount to investigate the 
non-edible oil resources which may lead to advance the commercial feasibility 
of biodiesel and cost effectiveness as well as resolve the food issues. This chapter 
describes four novel non-edible seed oil sources comprising Koelreuteria paniculata, 
Rhus typhina, Acacia farnesiana and Albizzia julibrissin for biodiesel production. We 
aimed to optimize different reaction parameters for oil extraction, alkali-catalyzed 
transesterification process for maximal biodiesel production and finally evaluate 
its compatibility with mineral diesel. The optimization factors in transesterifica-
tion included the molar ratio of methanol to oil, reaction time, stirring intensity, 
catalyst concentration and temperature. Two methods have been described includ-
ing Soxhlet and mechanical for extraction of seed oil. The synthesized esters were 
evaluated and characterized through the nuclear magnetic resonance (NMR; 
1H and 13C), Fourier transform infrared (FT-IR) and gas chromatography–mass 
spectrometry (GC–MS) and the total conversion of crude oil to fatty acid methyl 
esters (FAMEs) were established. The inductively coupled plasma-optical emission 
spectrometry (ICP-OES) and Elemental Analyzer (EA) were used for evalua-
tion of elemental concentration. The physico-chemical characterizations of the 
biodiesel, i.e., flash point, pour point, cloud point, and density were within the 
American Society for Testing and Materials (ASTM; D6751) and European Standards 
((EN14214). Koelreuteria paniculata produced highest biodiesel oil content by 
Soxhlet extraction (28–30%) followed by the Albizzia julibrissin (19–24%), Acacia 
farnesiana (23%), Rhus typhina (20–22%). The density ranged from 0.83–0.87 @ 
15°C (g/cm3) and the kinematic viscosity ranged from 3.75–6.3 (mm2/s) among all 
the plant sources. Koelreuteria paniculata had highest Na (5456.2), Cr (1246.8), Ni 
(658.36), and Al (346.87) elemental concentrations (μg/g) than other plant sources. 
The elemental percent of C, H, N, and O of biodiesel ranged from 72.54–76.86, 
11.25–13.34, 1.97–2.73, and 9.86–12, respectively. In conclusion, these non-edible 
plant seeds offer a cheap source of renewable energy and can be easily grown on 
barren and wastelands and contribute to efficient biodiesel production to mitigate 
the energy crisis.

Keywords: Acacia farnesiana, Albizzia julibrissin, Rhus typhina,  
Koelreuteria paniculata, Biodiesel
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1. Introduction

The global energy need has been confronting major challenges owing to popula-
tion growth and industrialization [1, 2]. Green house gases and their emissions as 
well as developing energy safety mechanisms have perpetually turned the focus on 
research and technological development in this sector. The researcher community is 
applying renewable energy practices as an alternate to petroleum fuels with bio-
diesel, bioethanol, biomass, biogas, and synthetic fuels with the aim to curtail net 
CO2 emission, and improve air, soil, water and global warming [3]. The American 
Biodiesel Standard Specification (ASTM 6751) defines biodiesel (also named fatty 
acid methyl ester; FAMEs) as fuel comprising of monoalkyl esters of long-chain 
fatty acids acquired from vegetable oils or animal fats [4]. The International Energy 
Agency (IEA) provided the estimates about global market share of biofuels to be 
increased from 1% (2004) to 7% by 2030 [5]. The need for utilizing biodiesel is 
associated with its lower exhaust emissions (COx, SOx) and particulate matter [6]. 
Moreover, it possesses tremendous biodegradability [7], lubricity, storage [8], and 
higher flash point [6], oxygen content than diesel [9–11]. The higher oxygen content 
reflects the low carbon emissions, particulate emissions, CO, aromatic hydrocar-
bons, sulfur, smoke, and noise [12]. The major issues for biodiesel production and 
commercialization from vegetable oils comprise their availability and manufacturing 
cost [13].

The raw materials of biodiesel can be classified into three major groups includ-
ing vegetable oil (edible or non-edible oil), animal fat, and edible waste oil [14]. 
These sources possess triglycerides [15] which carry great potential. Biodiesel 
obtained from vegetable oil has a viable market share in USA and European 
countries [16]. The scientific community is facing eminent challenge remains for 
suitable raw materials, their extraction and finally characterization for efficient 
and cost-effective biodiesel production. The transesterification [17] is a special-
ized method for biodiesel production from vegetable sources through conversion 
of one ester to another having low viscosity than the mineral diesel. The trans-
esterification reaction involves catalyst between triglycerides, and short-chain 
alcohols, which produce monoesters, branched-chain, and long-chain triglyceride 
molecules that are further converted into glycerol and monoesters [18]. The 
three-step reaction forms monoglycerides and diglycerides as intermediates. As 
methanol contains lower charge, it is efficiently used for commercial production of 
biodiesel. Potassium hydroxide (KOH) as a predominate role in transesterification 
reaction [19]. The palm, sunflower, coconut rapeseed, soybean, and flaxseed are 
some of the raw materials being employed for commercialization [20]. Vegetable 
oil contains complex structure so it cannot be directly used in diesel engines and 
it will further aggravate the food supply chain through depletion of forests and 
wildlife destruction. Thus, impetus, toward non-edible sources, has been shifted 
for biodiesel production.

Feedstock has greater significance for ample availability of biodiesel [21]. The 
redeeming traits of non-edible sources include their toxicity, no utility in human 
food as it contains Erucic acid as major constituent of fatty acid; 56–66% [22], 
and its easy cultivation on poor soils [23], and cost-effectiveness. Moreover, it is 
very stable and possesses low melting point [24]. Biomass is a major energy source 
covering almost 10–14% of global need due to its easy combustion, less pollution 
and lower ash content [8]. However, it has equally low calorific value, thermal 
efficiency (10 to 15%), and comparatively large volume and transportation 
issues [8]. Chemically, biomass energy can be converted into liquid and gaseous 
forms [25].
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Many studies have been conducted to explore the non-edible sources for bio-
diesel production comprising Croton megalocarpus [26], Prunus dulcis [27], Prunus 
sibirica [28], Rhazya stricta Decne [29], rubber seed oil [30], Silybum marianum L. 
[31], wild Brassica juncea L. [32], Jatropha curcas and Karanja [33–35], waste tal-
low [36], and notably, algae [37]. However, high-quality biodiesel production still 
remains to decipher from existing economical non-edible sources [38].

2. Description of non-edible plant sources

Four novel and non-edible plant sources have been explored for bio-diesel 
production comprising Koelreuteria paniculata [39], Rhus typhina [40], Acacia 
farnesiana [41], and Albizzia julibrissin [42]. The plant seeds were collected from 
China (Urumqi, Binhai new area near Nankai University’s new campus Tianjin) and 
Pakistan (Lakki Marwat and Islamabad).

2.1 Koelreuteria paniculata

Koelreuteria paniculata belongs to the family Sapindaceae. It is a novel 
non-edible seed oil source that can be investigated for biodiesel production 
(Figure 1). It is less likely that pests may destroy it. It can grow at different soil 

Figure 1. 
Koelreuteria paniculata. (A) Plant; (B) seeds; (C) biodiesel; (D) glycerin.
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environments, even at high pH soils. It possesses gorgeous inflorescence with 
ellipsoid pods and contains abundance of seeds. About 15–20kg seeds are pro-
duced annually from a single plant. The feasibility of planting K. paniculata trees 
ranges from 400 to 500 per hectare area with average production of 115,000 kg 
seeds and 30,000 kg per hectare oil production. K. paniculata species have origin 
from China, Japan, and Korea. K. paniculata is often used as an ornamental 
plant and declared as an invasive due to the inexhaustible seed production and 
offspring. K. paniculata is suitable to grow in unused and desolate lands and its 
seeds can be effectively used as alternate energy source, which contain 28–30% 
oil constituents [39, 43].

2.2 Rhus typhina L.

Rhus typhina L. (Staghorn sumac) is belongs to Anacardiaceae family  
(Figure 2). It has greater distribution in subtropical and temperate regions around 
the world, notably in Africa and North America. It has a maximum height ranging 
from 30 to 35 feet. Its seeds contain enormous potential as feedstock for biodiesel 
production [40]. R. typhina plant grows rapidly and produces abundance of 
seeds. About 300–400 trees can be planted, with approximate 78,000 kg seeds 

Figure 2. 
Rhus typhina (staghorn sumac). (A) Plant; (B) seeds; (C) biodiesel; (D) glycerin.
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and 17,160 kg production per hectare, respectively. R. typhina oil yield has been 
reported as 9% w/w on the basis of acetone/water extract 9:1 v/v [44] and 12% 
[45]; wherein we obtained 22% oil contents [40].

2.3 Acacia farnesiana L.

Acacia farnesiana L. belongs to family Leguminosae (Mimosoideae) and it is 
native to North America [46]. This tall semi-evergreen native shrub or small tree 
is commonly referred to as sweet acacia, Huisache, etc., with soft, medium-green 
feather-like, finely divided small leaves. The slightly thick stem is rich in chocolate 
brown or gray, with long and pointed needles. The small, puff-like yellow flowers 
are very fragrant, appear in clusters in late winter, and then occasionally spread out 
after each new flush, providing nearly four seasons of flowering. An area of about 
one hectare wills 91,500 kg of seeds yield, and the efficiency of oil per hectare is 
approximately 21,250 kg. The fruit is an elongated pod, 3 to 6 inches long, dry, and 
covered with hard skin, brown. Green color attracts birds; squirrels and other mam-
mals have no obvious littering problems and stick to the trees, which is very beauti-
ful. The long-lasting fruit has a smooth appearance and contains seeds cherished by 
birds and other wildlife (Figure 3).

Figure 3. 
Acacia farnesiana. (A) Plant; (B) seeds; (C) biodiesel; (D) glycerin.
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2.4 Albizzia julibrissin

One of the plants, Albizzia julibrissin (Mimosa) belong to Fabaceae, which 
contains non-edible seeds, can be evaluated for biodiesel production (Figure 4). A. 
julibrissin is a deciduous tree, wide and 12 m (40ft) high, but usually 3–6 m (10–
20ft), smooth bark, gray. A. julibrissin fruit comprises of lentil pods with enlarged 
seeds. Each pod is 8–18 cm long and 1.5–2.5 cm wide and can be observed from June 
to February. Each pod usually grows 5–10 elliptical seeds, about 1.25 in length. Some 
authors assert that mimosa produces many seeds [47]. A. julibrissin can produce 
8,000 seeds per year. The average A. julibrissin seed per pound is 11,000 to 11,500 
[48, 49]. Wind, gravity, and water are major contributory factors for dispersal of 
seeds and pods. A. julibrissin is native to Asia and found in Turkey, Azerbaijan, 
China, Japan, Taiwan, and other temperate regions, Bhutan in Asia, India, Nepal, 
Pakistan, Myanmar, Japan and other tropical areas [42, 50].

3.  Oil extraction methodologies and outcomes from non-edible plant 
sources

3.1 Oil extraction

After shelling, drying and pulverizing with a grinder (Xiantaopai XTP-10000A, 
Zhejiang, China) the seeds were processed for extraction. The oil extraction from 

Figure 4. 
Albizzia julibrissin. (A) Plant; (B) seeds; (C) biodiesel; (D) glycerin.
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Acacia farnesiana, Albizzia julibrissin, Rhus typhina and Koelreuteria paniculata was 
carried by Soxhlet (chemical; 90°C for 7 h using different solvents; Figure 5A) and 
mechanical extraction of by two different electric oil expeller machines compris-
ing Fangtai Shibayoufang FL-S2017 China (less power extractor) and Fangtai 
Shibayoufang J508, China (high power extractor), (Figure 5B). Pre-treatment of 
seed is essential for mechanical and Soxhlet extraction, which can increase the 
amount of oil recovery. After 2–3 revolutions, a considerable yield of crude seed 
oil was obtained. The oil removed from the seed by mechanical presses requires 
additional handling of extraction and filtration to produce a purer raw feedstock. 
Further following steps were conducted to get the biodiesel from these sources 
comprising filtration, rotary evaporation for access methanol, heating, trans-
esterification, settling, separation, and washing.

The oil production was calculated by the following equation.

( ) ( )Conversion% Obtained seed oil weight g / Total seed weight g 100= ×  (1)

The comparative oil content (%) of 4 plants, obtained by using mechanical 
oil extraction and Soxhlet extraction methods from four plant sources is given in 
Table 1.

3.2 Fourier-transform infrared spectroscopy (FT-IR)

FT-IR spectroscopy data of the mid-infrared region of biodiesel samples to 
recognize functional groups and the bands analogous to various stretching and 
bending vibrations is highlighted in Table 2.

3.3 Nuclear magnetic resonance (NMR)

The FAMEs NMR spectrum was acquired by (Bruker Avance III 400 NMR 
Spectrometer, Karlsruhe, Germany) at 400 MHz (1H-NMR) or 100 MHz (13C-
NMR). Denatured chloroform was used as solvent and tetramethylsilane as the 
internal standard. The biodiesel 1H NMR (300 MHz) spectrum was noted with a 
cycle delay of 1.0 s, and eight times scans with a pulse duration of 30°, (Table 3).  
A carbon 13C NMR (75 MHz) spectrum was recorded with pulse duration of 30°and 
a cycle delay of 1.89 s, followed by scanning for 160 times (Table 4).

Figure 5. 
(A) Instrument for Soxhlet extraction (chemical extraction); (B) instrument for mechanical oil extraction.
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Integration 

value

Chemical 

Shift ppm

Multiplicity Inferences

3 0.89 Multiplet CH3 is attached to aliphatic group.

16 1.30 Multiplet Long aliphatic chain is present.

2 1.62 Quartet CH2 group is attached with terminal CH3.

3 2.04 Multiplet CH2 of long chain aliphatic (Saturated) group.

2 2.30 Triplet CH2 group is attached with CH of long aliphatic 
(Unsaturated/ olefinic group).

1 2.77 Triplet CH group is attached with electron withdrawing 
carbonyl group.

3 3.66 Singlet Methoxy(OCH3)group attached with electron 
withdrawing carbonyl group.

3 5.34 Multiplet Olefinic hydrogen of long chain unsaturated 
aliphatic group

Table 3. 
1H NMR spectroscopic data depicting chemical composition of various methyl esters in biodiesel (FAMES) 
samples.

Peak 

no.

Wave number 

(cm−1)

Group 

attribution

Vibration type Absorption 

Intensity

1 3465 −OH Stretching Weak

2 3006 =C−H Stretching Strong

3 2925 −CH2 Asymmetric stretching 
vibration

Strong

4 2854 −CH2 Symmetric stretching 
vibration

Stretching

Strong

5 1743 −C=O Shear type vibration Strong

6 1641 −CH2 Bending vibration Middling

7 1361 −CH3 Symmetric stretching 
vibration,

Middling

8 1170 C−O−C Anti-stretching vibrations Middling

9 1016 C−O−C Vibration Weak

10 723 −CH2 Plane rocking vibration Weak

Table 2. 
FT-IR data presenting various functional groups in FAMEs.

S. No. Source Name Mechanical 

Extraction (%)

Soxhlet 

extraction (%)

FFAs content 

(%)

1 Koelreuteria paniculata 18.7 28–30 0.91

2 Rhus typhina 13.3 22 1.0

3 Acacia farnesiana 8.3 23 0.4

4 Albizzia julibrissin 9.9 19–24 0.9

Table 1. 
The oil content (%) of 4 plants, using mechanical oil extraction and Soxhlet extraction methods.
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3.4 GC–MS procedure

The outcome of biodiesel in our studies was evaluated by GCMS 
(QP2010SE, Shimadzu, Japan), furnished with a capillary column: PEG-20 M 
(30 m × 0.32 mm × 1 μm film thickness). Helium gas flow rate 1.2 mL/min; split 
ratio 40:1; the injector temperature and injection volume were 220°C and 1 uL; 
Furnace heat up mode was 100°C for 1 min, then from 100°C rises to 210°C at the 
increase rate of 10°C/min. Sensor heat mode was 210°C, and then for 20 min, the 
temperature was continuing at 210°C; ion source temperature of 200°C; for electron 
impact 70 eV ionization mode used; mass range of 35–500 m/z. The FAMEs of all 
plant sources were identified with the mass spectrometry fragmentation design 
provided by the GCMS system software, as matched with those stored in the mass 
spectrometry library NIST14, and their fatty acid identity was further verified by 
matching with known standards and values [39–42].

The comparative GC based identified FAMEs major compositions (%) of 
prepared biodiesel from four non-edible plant sources is given in Table 5.

3.5 ICP-OES procedure for elemental analysis in biodiesel

Inductively Coupled Plasma Spectrometer (Spectro-blue, Germany) and 
Elemental Analyzer (Vario EL CUBE, Germany) were used for the presence of 
metals in the biodiesel. For the ICP-OES test, 1 g of oil sample was taken for incin-
erating. The ashing process involved an increase in the oven temperature to 200°C 
in one hour; then the heat levels were mainatained upto 500 °C for 2 h, and finally 

Peak No: Peak area/ region/ ppm Identified compound Chemical structure

1 14.07 Terminal methyl carbon −CH3

2 22.55–34.09 Methylene carbon −CH2

3 51.37 Methoxy carbon −OCH3

4 127.91–130.19 Olefinic carbon C=C

5 174.24 Carboxyl carbon of ester −COOCH3

Table 4. 
13C NMR spectroscopic data depicting the chemical shift values matching to various structural features in 
FAMEs.

FAMEs major 

compositions (%)

Plant species

Koelreuteria paniculata Rhus typhina Acacia farnesiana Albizzia julibrissin

C16:0 9.7 14.0 6.85 10.598

C16:1 — — — —

C18:0 1.8 3.2 2.36 2.12

C18:2 25.5 47.2 12.13 12.030

C18:3 3.6 1.1 1.23 —

C20:0 2.4 0.8 — —

C20:1 48.5 0.5 — —

C21:1 — — — —

Table 5. 
GC based identified FAMEs major compositions (%) of prepared biodiesel.
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to 800°C for 5 h. The ash was dissolved in 10 mL of 2% HNO3. The prepared sample 
was used for elements finding and concentration test of the biodiesel.

The account of ICP-OES comparative element concentrations of 4 non edible oil 
plant species is given in Table 6.

3.6 Elemental analyzer (EA) procedure for elemental analysis

The element analyzer (Vario EL CUBE, Germany) was used to detect the H, N, C 
and O concentrations of biodiesel obtained from plant sources [39–42]. About 0.5 mL 
of biodiesel, 3 mL of concentrated HCl and 1 mL of nitric acid were taken in a tube 
and kept them at rest for 10–15min, to dissolve the oil in the solution. Fresh reagents 
can be used for sample preparation. The aqua regia amount was twice than the sample. 
About 1 mL of prepared solution was taken in a new tube and added deionized water 
making it up to 5 mL. The technique was repeated for 2–3 times until the sample 
appeared as clear and vivid and ready for evaluation of C, H, N, and O concentrations.

The comparative account of elemental analysis of biodiesel obtained from 4 non 
edible oil plant species is given in Table 7.

3.7  Physiochemical properties of biodiesel seed oil from four non edible oil  
plant species

The comparative account of physiochemical properties of biodiesel seed oil 
obtained from four non edible oil plant species is given in Table 8.

Elements Concentration (μg/g)

Petro-diesel KPOB RTOB AFOB AJOB

Sb — 5744.02 7845.2 — —

Na 868.3 5456.2 70.29 868.3 868.3

K 213.3 6.14 213.3 213.3

Cr 2.5 1246.8 3.41 — —

Ni 12.4 658.36 46.98 12.4 12.4

Al — 346.87 55.56 — —

Sn — 378.61 838.6 — —

Mn 1.5 92.05 5.58 1.5 1.5

Ti — 64.40 −124.11 — —

Li 1.6 43.93 105.5 1.6 —

V — 42.79 15.42 — —

Cu 99.6 24.63 31.82 — —

Ca 21.4 14.90 21.4 21.4

Mg 35.6 32.10 32.74 35.6 35.6

Bi — 19.90 29.05 — —

Zn 9.5 13.08 49.89 9.5 —

Co 21.2 10.69 7.96 21.2 21.2

Cd — — 1.59 — —

Abbreviations: Koelreuteria paniculata Biodiesel Oil (KPOB); Rhus typhina Biodiesel Oil (RTOB); Acacia 
farnesiana Biodiesel Oil (AFOB); Albizzia julibrissin Biodiesel Oil (AJOB).

Table 6. 
ICP-OES element concentrations of 4 non edible oil plant species.
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Ultimate analysis KPBD RTBD AFBD AJBD

C% 72.54 74.89 76.37 76.86

H% 12.73 413.02 13.34 11.25

N% 2.73 1.97 2.18 2.03

O% 12 8.11 9.86

HHV 23.39 23.39 23.39

Abbreviations: Koelreuteria paniculata Biodiesel Oil (KPOB); Rhus typhina Biodiesel Oil (RTOB); Acacia 
farnesiana Biodiesel Oil (AFOB); Albizzia julibrissin Biodiesel Oil (AJOB).

Table 7. 
Elemental analysis of biodiesel from 4 non edible oil plant species.

Parameters EN 14214 ASTM 

D-6751

Petro-

diesel

KPOB RTOB AFOB AJOB

Oil contents (wt. %) — — — 28–30 20–22 23 19–24

Density @ 15°C  
(g/cm3)

0.86–0.90 0.86–0.90 0.809 0.879 0.879 0.831 0.842

Kinematic viscosity  
@ 40°C (mm2/s)

3.5–5.0 1.9–6.0 1.3–4.1 6.21 6.3 5.32 3.75

Flashpoint (°C) Min. 120 Min. 130 60–80 147 168 158 160

Ignition value — — — 175 — —

Acid value
(mg KOH/g−1)

Max. 
0.50

Max. 0.5 — 0.07 0.40

Saponification value 
(mg KOH/g−1)

— — — 176.4 175.6 174.8 180.4

Iodine value
(g I2/100 mg)

Max. 120 Max. 120 — 80.7 85 142.5 118.5

Refractive index
@ 20 °C

— — — 1.4901 — —

Cloud point (°C) — — −15–5 2 7 7 9

Pour point (°C) — — −2.0 −30 −11 −28 −12

Fire point (°C) — — — 198 189 190

Cetane number Min. 51 Min. 47 49.7 51 — 52 58

Free fatty acid (%) — — — 0.91 1.0 0.4 0.9

HHV (MJ/kg) — — — 23.39 23.73 — —

Ash content (g/100 g) — — — 0.002 0.3 0.002 0.003

Specific gravity @15 
(°C)

— — — 0.88 0.855 0.831 0.842

Cold filter plug point 
(°C)

Max.19 Max.19 −16 −18 14 −25 3

Sulphated ash content 
(wt.%)

Max.0.02 — — 0.003 — —

Oxidation stability 
(110°C, h)

Min. 6 Min. 3 25.8 — 18.3 −1.86 4.71

Abbreviations: Koelreuteria paniculata Biodiesel Oil (KPOB); Rhus typhina Biodiesel Oil (RTOB); Acacia 
farnesiana Biodiesel Oil (AFOB); Albizzia julibrissin Biodiesel Oil (AJOB).

Table 8. 
Physiochemical properties of biodiesel (FAMEs) samples.
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4. Discussion

The great potential exists for using non-edible seed oil as biodiesel, which has 
been highlighted in this chapter. The plant sources explored were Koelreuteria 
paniculata, Rhus typhina, Acacia farnesiana and Albizzia julibrissin.

Biodiesel can be synthesized from vegetable oils, animal fats or algae oils [51]. 
The Soxhlet extraction allows the sample to repeatedly bring into contact with fresh 
portions of extracting materials, hence facilitating the equilibrium. It remains at 
relatively high temperature and no filtration is required [52]. In the present study, 
Koelreuteria paniculata produced highest biodiesel oil content by Soxhlet extraction 
(28–30%) followed by the Albizzia julibrissin (19–24%), Acacia farnesiana (23%), 
Rhus typhina (20–22%) than the mechanical extraction.

The biodiesel production largely depends upon the choice of appropriate, cost-
effective and environment friendly catalysts [53] based on the nature of oil which 
greatly help in transesterification of oil. Density optimization is a vital biodiesel 
factor having huge impact on fuel quality as well the cost incurred [54]. The density 
for all plant sources ranged from 0.83–0.87 @ 15°C (g/cm3). The kinematic viscos-
ity ranged from 3.75–6.3 (mm2/s) among all the plant sources. Our results show 
that densities of all plant sources were within the ASTM (D6751) and (EN14214) 
standards.

The 1H-NMR procedure is used to evaluate the un-saturation and “residual” 
fatty acid composition [55]. In our study, the biodiesel 1H NMR (300 MHz) 
spectrum was noted with a cycle delay of 1.0 s, and eight times scans with a pulse 
duration of 30°. 13C NMR spectroscopic data represented the chemical shift values 
matching to various structural features in FAMEs.

The metals such as Cu, Co, Fe, Mn and Ni are known to catalyze oxidative deg-
radation reactions in vegetable oils and biodiesel [56]. The presence of some metals, 
such as Al, Ca, Cr, Cu, Fe, Mg, Pb, V and Zn, among other, in fuel is undesirable 
due to their release into the atmosphere upon fuel combustion [57]. Koelreuteria 
paniculata had highest Na (5456.2), Cr (1246.8), Ni (658.36), and Al (346.87) 
elemental concentrations (μg/g) than other plant sources. Moreover, Al, Cr, Sn, V, 
Cu, Bi, Cd were not detected in Acacia farnesiana and Albizzia julibrissin and both 
showed comparable Zn, K, Ni, Mn, Ca, and Co concentrations with petro diesel. 
The metal elements in biodiesel result into engine degradation, operational as well 
as cause environmental pollution [58]. In our study, the elemental percent of C, H, 
N, and O of biodiesel ranged from 72.54–76.86, 11.25–13.34, 1.97–2.73, and 9.86–12, 
respectively.

Flash point of fuels is imperative to determine the prerequisites for transporta-
tion and storage temperature [59]. The flash point was highest in the biodiesel oil 
of Rhus typhina (168°C), followed by Albizzia julibrissin (160°C), Acacia farnesiana 
(158°C), Koelreuteria paniculata (147°C) which was comparable to EN 14214 (Min. 
120°C), ASTM D-6751 (Min. 130°C) petro diesel (60–80°C) standards.

The main shortcomings of biodiesel are related to the low-temperature per-
formance and oxidation stability. The oxidation stability (110°C, h) was recorded 
as 18.3 in Rhus typhina, 4.71 in Albizzia julibrissin, −1.86 in Acacia farnesiana and 
these fall in the recommended values of EN 14214 (Min. 6), ASTM D-6751 (Min. 
3) and petro diesel (25.8). This highlights that the saturated fraction of biodiesel 
has a positive effect on its stability as in the case of our results, but the long-chain 
saturates may compromise fuel performance at lower temperatures [60].

Metal-containing fuel additives and un-removed catalysts are the major con-
tributors of sulfated ash [61]. The sulphated ash content (%) was not detected in 
Rhus typhina, Acacia farnesiana, Albizzia julibrissin and it was 0.003 in Koelreuteria 
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paniculata as compared to the EN 14214 (Max.0.02) standards, hence these plant 
sources can be used for biodiesel production.

5. Conclusions

The physico-chemical characterizations of the biodiesel, i.e., flash point, pour 
point, cloud point, and density, have been found within the ASTM (D6751) and 
(EN14214) standards. The values of fuel properties were comparable with mineral 
diesel. FT-IR, NMR, and GC–MS analysis established the total conversion of crude 
oil to FAMEs. The elemental analysis of biodiesel ensured the feasibility for envi-
ronment friendly usage. These sources have been optimized through optimization 
of transesterification reactions: oil to methanol ratio (6:1), a potassium hydroxide 
concentration (3.0%), temperature (65°C), stirring rate (700 rpm) and reaction 
time (60–80 min). The highest biodiesel yield was obtained from Albizzia julibrissin 
(98%) followed by Acacia farnesiana (96%), Koelreuteria paniculata (95.2%) and 
Koelreuteria paniculata (93.33%). FAMEs of all sources were compatible to ASTM 
(D6751) and (EN14214) standards. These non-edible plant seeds offer a cheap 
source of renewable energy. These plants can be easily grown on barren and waste-
lands and contribute to efficient biodiesel production to curtail the energy crisis. 
Keeping these findings in preview, we can assert that biodiesel obtained from these 
non-edible seeds has a huge potential as an alternative to petroleum diesel and can 
be efficient renewable source of fuel.
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