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Chapter

Dyadic Green’s Function for
Multilayered Planar, Cylindrical,
and Spherical Structures with
Impedance Boundary Condition
Shiva Hayati Raad and Zahra Atlasbaf

Abstract

The integral equation (IE) method is one of the efficient approaches for solving
electromagnetic problems, where dyadic Green’s function (DGF) plays an impor-
tant role as the Kernel of the integrals. In general, a layered medium with planar,
cylindrical, or spherical geometry can be used to model different biomedical media
such as human skin, body, or head. Therefore, in this chapter, different approaches
for the derivation of Green’s function for these structures will be introduced. Due to
the recent great interest in two-dimensional (2D) materials, the chapter will also
discuss the generalization of the technique to the same structures with interfaces
made of isotropic and anisotropic surface impedances. To this end, general formulas
for the dyadic Green’s function of the aforementioned structures are extracted
based on the scattering superposition method by considering field and source points
in the arbitrary locations. Apparently, by setting the surface conductivity of the
interfaces equal to zero, the formulations will turn into the associated problem with
dielectric boundaries. This section will also aid in the design of various biomedical
devices such as sensors, cloaks, and spectrometers, with improved functionality.
Finally, the Purcell factor of a dipole emitter in the presence of the layered
structures will be discussed as another biomedical application of the formulation.

Keywords: biomedical, dyadic Green’s function, integral equation, 2D materials,
sensors, Purcell factor

1. Introduction

Planarly, cylindrically and spherically layeredmedia have beenwidely used to
model the human skin, body, or head. In particular, a rectangular slab is proposed to
model and analyze skin temperature distribution [1]. Moreover, in themultilayered
skinmodel, three stacked layers are exploited to simulate the performance of the
epidermis, dermis, and sub-cutis parts of the skin [2]. In other research, a planarly
layeredmedium has been proposed as the simplified human bodymodel by consider-
ing the impact of skin, fat, andmuscle in the electromagnetic performance [3].
Cylindrical-shaped equivalent phantomof the skin is alternatively used to characterize
the interactions between an antenna and the human body [4]. For amore precise
investigation, multilayered cylinders are proposed tomodel a biological systemwith
different tissues [5]. Considering spherical geometrics, the interactions of a
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three-layered spherical human headmodel with a finite-length dipole and a cellular
phone helical antenna are investigated using Green’s function [6, 7]. The research is
extended to the six-layeredmodel, including skin, fat, bone, dura, CSF, and brain
layers of the head [8]. Thismodel has also been used to explore the impact of the shapes
and positions of coils in theMRI system [9]. For the analysis of the aforementioned
structures, integral equation (IE) based methods have been widely used. Dyadic
Green’s function, which is a powerful method to calculate the electromagnetic response
for different excitation sources, plays an essential role in the IE method [10–12].

Different mathematical approaches can be utilized to calculate the dyadic
Green’s function. The dyadic Green’s function in a homogeneous environment can
be expressed in terms of vector functions M, N, and L. The Green’s function is
singular when the field and observation points coincide. In this case, Green’s func-
tion can be written as the main part plus the portion proportional to the impulse
function. This type of decomposition of the Green’s function is not unique and
depends on the shape of the volume that separates the environment [13]. In general,
to obtain the dyadic Green’s function in a layered medium, the Green’s function of
the homogeneous environment can be used. Then, the effect of inhomogeneity can
be considered by adding reflected and transmitted waves to the dyadic Green’s
function [14]. In a similar approach, called the scattering superposition method, the
scattering Green’s function in each layer is expressed in terms of vector wave
functions with the unknown coefficients that are obtained by applying the bound-
ary conditions [15]. Moreover, to calculate the Green’s function of a medium by
impedance method, instead of each dielectric layer a transmission line, and instead
of each metallic layer a current source can be considered in the equivalent model in
the rectangular, cylindrical, and spherical coordinates [15–17].

Considering medical diagnostics and treatment, planarly, cylindrically and
spherically layered media are engineered mainly with plasmonic materials. In this
regard, the interaction of an environment with a nanometer-scale dipole emitter is
of interest in different biomedical fields. For example, the optical activity of the
proteins can be investigated using Green’s tensor approach. Furthermore, a single
excited molecule in the vicinity of a metallic structure can be potentially used in the
sensors because of behaving as a resonant filter. Moreover, the point source is an
appropriate model for the concentrated light sources which are used in medical
applications [18]. Following these trends, different plasmonic structures have been
presented theoretically and realized in the real environment. For example, the effect
of the size of the gold nanoparticles on the decay rate and the energy transfer of
dipole emitters is investigated using Green’s tensor formulation and compared with
the results obtained from the fabrication [19]. The same analysis is carried out for a
metallic cylinder coated with a dielectric layer and the resulted integrals are solved
numerically [20]. Also, Fermat’s golden rule is used to connect the imaginary part of
the Green’s function to the radiation impedance of the dipole antenna adjacent to a
medium, and the Purcell factor is extracted for the planar meta-surface, which is
then experimentally characterized in the microwave frequency band [21].

Recently, graphene’s plasmons are proposed as the low loss and reconfigurable
alternative to the plasmons of the noble metals. There are two approaches to use
graphene in analytical and numerical methods. In the first one, the graphene bound-
ary is modeled with a 2D surface, characterized by its surface conductivity, whereas
in the second one, the graphene layer is replaced by a very thin dielectric [22].
Although the latter can be analyzed using the available formulas previously presented
for the multilayered dielectric structures in the literature [13, 23], graphene analysis
using surface conductivity model has many advantages. First, in the dielectric model,
each graphene interface adds an extra layer to the structure. Therefore, when the
number of graphene layers is large, the problem becomes very complicated. Secondly,
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in the dielectric model, it is necessary to compute the special functions of the cylin-
drical and spherical coordinates with complex arguments, which requires the imple-
mentation of specific algorithms for their effective calculation [24], while in the
impedance boundary condition method, the surface conductivity of graphene appears
as a coefficient for special functions. Third, in the dielectric model, the thickness of
the graphene layer is considered to be about 0.335 nm, which is often very small
compared to other geometrical parameters and makes the convergence of the analyt-
ical functions slow [25]. Also, if the goal is using the dielectric model in numerical
methods, it is necessary to use a dense mesh for the equivalent dielectric of the
graphene that is not optimal in terms of time and memory [26].

Applying the graphene surface conductivity model for the derivation of the
Green’s function has been considered in recent years. For example, for the graphene
sheet under electric bias, the dyadic Green’s function is derived by the Hertzian
potential and plane-wave expansion methods and the corresponding integrals are
solved with the saddle point method [27, 28]. Also, the method is expanded for the
analysis of graphene with tensor surface conductivity which can be used to analyze
graphene with magnetic bias or spatial dispersion. Romberg’s integration procedure
is proposed for the numerical solution of the resulting integrals [29]. In another
research, the analysis of the electric dipole in the proximity of the parallel plate
waveguide with graphene walls is studied by extracting the Green’s function and
calculating the spontaneous emission. It is found that symmetric and asymmetric
plasmonic modes lead to a sharp increase in this parameter [30]. As another
instance, a point source is taken into account in the vicinity of the infinite cylinder
with graphene cover and it is observed that by changing the distance of the source
from the cylinder as well as changing the chemical potential of the graphene layer, the
Fano resonances can be controlled [31]. In this chapter, the dyadic Green’s function of
various planar, cylindrical, and spherical geometries with impedance boundary con-
ditions will be calculated using the scattering superposition method. Specifically, we
have focused on the graphene material due to its wide range of applications. Appar-
ently, another 2D material can be considered by replacing the graphene surface
conductivity with the surface conductivity of the desired material. The presented
formulas can be potentially sued to design various biomedical devices. Moreover, by
approaching the surface impedance to zero, these structures can be potentially used to
investigate the interaction of the human body with different electromagnetic sources.
For the Green’s function calculation of complex media in different coordinates using
vector wave functions, the reader is referred to [32–35].

2. Surface conductivity of graphene material under different conditions

Graphene is a two-dimensional material made of carbon atoms and can be
considered in the solution of Maxwell’s equations using surface conductivity
boundary condition [23]. Depending on the geometrical and optical conditions,
graphene surface conductivity can be isotropic or anisotropic. The purpose of this
section is to provide an overview of the graphene surface conductivity under
different conditions (electric bias, magnetic bias, and spatial dispersion) and for
different geometries (continuous or patterned sheets).

It should be noted that graphene material is mainly synthesized through four
methods, including 1) mechanical exfoliation of highly ordered pyrolytic graphite
(HOPG), 2) the epitaxial growth of graphene on silicon carbide (SiC), 3) the
reduction of graphene oxide, and 4) chemical vapor deposition (CVD) technique.
The comparison of these methods in terms of quality and the fabricated area is
provided in Table 1 [36].
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In this regard, a monolayer graphene film with metallic electrodes is transferred
to a high impedance surface (HIS) which is realized by the printed circuit board
(PCB) technology at microwave frequencies. The measurement is conducted in a
small microwave chamber [37]. In another research in the same spectrum, an
infrared laser is used to etch the CVD grown graphene sheet with predefined
periodicity and later investigate the absorption of the designed structure inside a
rectangular waveguide [38]. The electron beam lithography is another approach
used for pattering the graphene sheet for enhanced light matter interaction [39].
Moreover, a transparent graphene millimeter wave absorber constructed by multi-
ple transfer-etch processing is characterized by reflectometery technique at
140 GHz [40]. Also, CVD-grown graphene is used to enhance the sensitivity of the
surface-enhanced Raman spectroscopy (SERS)-based chemical sensor. The mea-
surement is done using a Raman spectrometer at the laser wavelength of 785 nm
(red) [41]. In another sensor chip, DNA is hybridized to the graphene-based sub-
strate under UV light with the wavelength of 260 nm. In this sensor, the atomic
force microscopy (AFM) is used to ensure the continuity and uniformity of the
synthesized graphene, and Raman characterization is used to investigate its quality
and the number of layers [42].

2.1 Graphene material under electric bias

When a graphene sheet is under electric bias, its surface conductivity is isotropic
and can be approximately calculated by using Kubo’s formulas as [43]:

σintra ¼
2ie2kBT

ℏ
2π ωþ i=τð Þ

ln 2 cosh
μc

2kBT

� �� �

(1)

σinter ¼
e2

4ℏ
� 1

2
þ 1

π
arctan

ℏω� 2μc
2kBT

� �

�
�

i

2π
ln

ℏωþ 2μcð Þ2

ℏω� 2μcð Þ2 þ 2kBTð Þ2

 !#

(2)

In the above equations,T is the temperature, μc is the chemical potential of
graphene, ℏ is the reduced Planck’s constant, KB is the Boltzmann’s constant, and ω

is the angular frequency. At low-THz frequencies, the inter-band contribution of
the surface conductivity can be neglected. Also, the graphene layer can be modeled
as a dielectric with very low thickness δ and equivalent dielectric constant ε ¼
1� i σ

ωε0δ
[22]. Note that in the above equations, graphene is assumed to be in the

linear region, otherwise, other terms proportional to 1=ω3 and 1=ω4 should be added
respectively for the frequency range of ℏω< 2μc and ℏω≥ 2μc [44].

To increase the light-matter interaction of graphene material, the nano-pattering
method has been proposed [45]. The surface conductivity of the periodic graphene

Method Quality Area

Mechanical exfoliation of highly ordered pyrolytic graphite

(HOPG)

Very high Small

Epitaxial growth of graphene on silicon carbide (SiC) Medium Large (3–4 inches wafers)

Reduction of graphene oxide (rGO) Medium Large

Chemical vapor deposition (CVD) High Very large (30 inches)

Table 1.
Comparison of the quality and area of synthesized graphene using different techniques [36].
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elements under the electric bias is also isotropic. For the square patches shown in
Figure 1(a), by considering the periodicity of D0 and the air gap distance of g,
closed-form surface impedance (inverse of the surface conductivity) is as [47]:

Zs ¼
D0

σs D0 � gð Þ þ i
π

2ωε0
ε2þ1
2

� �

D0 ln csc πg
2D0

� 	h i (3)

The effective surface conductivity of periodic graphene elements with arbitrary
pattern can be measured or extracted using the parameter retrieval method through
full-wave simulation [48]. It should be noted that for computing the electric field
required for each considered chemical potential, approximate equations can be
derived as [49]:

μc eVð Þ ¼ λ1E
λ2
0 ,E0 V=nmð Þ≥0

�λ1E
λ2
0 ,E0 V=nmð Þ<0

(

(4)

where, λ1 ¼ 0:3677 and λ2 ¼ 0:5010. For the chemical potentials in the range of
[�1,1] eV, the required bias fields are in the order of several volts per nanometer,
which can be implemented practically [29].

The surface conductivity of densely packed graphene strips, as illustrated in
Figure 1(b), is anisotropic and can be approximated in the form of a diagonal
tensor using the effective medium formulation as [50]:

σxx ¼
WσσC

LσC þWσ

σyy ¼ σ
W

L
σxy ¼ σyx ¼ 0

(5)

In the above equations, W and L are the width and periodicity of the strips,
respectively. Also, σ is the surface conductivity of graphene under electric bias, and
σc is the static conductivity of the surface. Two very important properties of this
environment are the existence of near-zero surface conductivity and hyperbolic
dispersion region with the potential applications in 2D lens structures and the
spontaneous emission enhancement of the dipole emitters [50, 51].

Figure 1.
(a) Graphene square patches with the periodicity of D0 and the air gap distance of g and (b) densely packed
graphene strips with the width W and the periodicity L [46].
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2.2 Graphene sheet with spatial dispersion effects

When the graphene sheet is placed on a substrate with a high dielectric constant,
its surface conductivity is a tensor in which the elements depend on the wave
propagation constant in the structure. This is called the spatial dispersion effect and
the associated formulae for calculating surface conductivity are [29]:

σxx ¼ σ þ α
d2

dx2
þ β

d2

dy2
(6)

σyy ¼ σ þ β
d2

dx2
þ α

d2

dy2
(7)

σxy ¼ σyx ¼ 2β
d2

dxdy
(8)

The parameters σ, α, and β are extracted for an unbiased sheet μc ¼ 0ð Þ thorough
perturbation theory [29]. The resulting equations are valid for the electrically biased
sheet μc 6¼ 0ð Þ, as well [52].

2.3 Graphene sheet under magnetic bias

When a graphene sheet is under magnetic bias, its surface conductivity is also a
tensor. The diagonal elements of this tensor are equal and the off-diagonal elements
are opposite in sign defined as [53].

σxx ω,B0ð Þ ¼ σ0
1� iωτ

ωcτð Þ2 þ 1� iωτð Þ2
(9)

σyx ω,B0ð Þ ¼ σ0
ωcτ

ωcτð Þ2 þ 1� iωτð Þ2
(10)

where σ0 ¼ 2e2τ
πℏ2

kBT ln 2 cosh μc
2kBT

� 	

and ωc ¼ eB0ν
2
F

μc
. The approximate formulas

for the calculation of the surface impedance of the square graphene elements under
magnetic bias, shown in Figure 1(a), are as follows [54]:

Zp ¼ FGZg þ
i

2α

ffiffiffiffiffiffiffiffiffiffiffi

μ0

ε0εeff

r

1 0

0 1

� �

(11)

where FG ¼ 0:6 D0= D0 � gð Þ½ �3 þ 0:4 and α ¼ � k0D0
ffiffiffiffiffi

εeff
p

π
ln sin πg

2D0

� 	h i

. Similar to

the electrically biased patterned elements with arbitrary shapes, the parameter retrieval
method can be used under the appliedmagnetic bias [55]. Given the discussion of the
above three sections, it is observed that assuming the surface conductivity of grapheneas:

σ ¼
σxx σxy

σyx σyy

� �

(12)

All items expressed above can be extracted as a special case.

3. Analysis of graphene-based structures using dyadic Green’s function

Dyadic Green’s functions for the planarly, cylindrically, and spherically layered
structures with graphene interfaces will be derived in this section. To this end, the
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boundary conditions of the continuity and discontinuity of tangential electric
and magnetic fields are respectively satisfied regarding the considered surface
conductivity model for the graphene.

3.1 Graphene-based planarly layered media

This section aims to obtain dyadic Green’s functions for planar structures with
graphene boundaries. This problem can be solved either in the rectangular or
cylindrical coordinates. In the first sub-section, a graphene sheet with the tensor
surface conductivity boundary condition (TSCBC) is considered and its dyadic
Green’s function is calculated in the rectangular coordinates. In this case, the
anisotropy of the surface impedance causes the coupling of the transverse electric
(TE) and transverse magnetic (TM) fields. As a result of coupling, the number of
unknown coefficients in the expansion of the dyadic Green’s function is increased
concerning the electrically biased sheet. In the second part of this section, a
graphene-dielectric stack with an arbitrary number of layers is investigated consid-
ering the electric bias for the graphene sheets. This problem is solved in the cylin-
drical coordinates to simplify the calculation of the resulted Sommerfeld integrals.

3.1.1 Graphene sheet with the tensor surface conductivity boundary condition

The purpose of this section is to obtain the dyadic Green’s function of a graphene
sheet with the tensor surface conductivity in the interface of half-spaces, as shown
in Figure 2(a). The constitutive parameters of the top and bottom regions are
considered as (ε1, μ1) and (ε2, μ2), respectively. Without losing the generality of the
problem, the source is assumed to be in the first environment and the graphene
boundary is considered in z = 0 interface. Dyadic Green’s function of this structure
will be calculated using the scattering superposition method. For this purpose, the
Green’s function in each region of the problem is written in the form of the Green’s
function in the absence and presence of structure. Thus [23]:

G
11ð Þ
e ¼ Ge0 R,R0

� 	

þG
11ð Þ
es R,R0
� 	

z>0 (13)

G
21ð Þ
e ¼ G

21ð Þ
es R,R0
� 	

z<0 (14)

where G
11ð Þ
es and G

21ð Þ
es are respectively the scattering Green’s function in

regions 1 and 2 and they are expanded in terms of M and N vector wave functions.

Figure 2.
(a) Graphene sheet with the tensor surface conductivity boundary condition at the interface of half-spaces [46]
and (b) graphene-dielectric stack.
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Also, Ge0 is the free-space Green’s function which can be computed using the Gm

method as:

Ge0 R,R0
� 	

¼ � 1

k1ð Þ2
ẑẑ δ R,R0

� 	

þ
ð

∞

�∞

ð

∞

�∞

dkxdkyC
1ð Þ

� M �h1ð ÞM0
h1ð Þ þN �h1ð ÞN0

h1ð Þ
n o

z< z0 (15)

where C 1ð Þ ¼ i
8π2h1 k2xþk2yð Þ . Using the scalar wave function ψ k

� �

¼
exp ikxxþ ikyyþ ikzz

� �

, it can be readily found that:

M k
� �

¼ i kyx̂� kxŷ
� �

ψ k
� �

(16)

N k
� �

¼ � kz
k j

kxx̂þ kyŷ
� �

þ
k2x þ k2y

k j
ẑ

 !

ψ k
� �

(17)

The parameters kx, ky, and kz are the wavenumbers in x, y, and z directions,
respectively, and kj shows the wavenumber for j = 1, 2. These parameters are not

independent and are related to each other via kz ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2j � k2x � k2y

q

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2j � k2ρ

q

.

The vector wave function M represents the electric field of TE modes and the

vector wave function N shows the electric field of the TM waves. In the structure
under consideration, the anisotropy of surface conductivity leads to the coupling of
TE and TM fields. Therefore [56]:

G
11ð Þ
es R,R0
� 	

¼
ð

∞

�∞

ð

∞

�∞

dkxdkyC
1ð Þ � a1M h1ð Þ þ a01N h1ð Þ

� �

M
0
h1ð Þ

h

þ b1N h1ð Þ þ b01M h1ð Þ
� �

N
0
h1ð Þ
i

(18)

G
21ð Þ
es R,R0
� 	

¼
ð

∞

�∞

ð

∞

�∞

dkxdkyC
1ð Þ

� a2M �h2ð Þ þ a02N �h2ð Þ
� �

M
0
h1ð Þþ

h

b2N �h2ð Þ þ b02M �h2ð Þ
� �

N
0
h1ð Þ
i

(19)

The unknown coefficients a1, a01, b1, b
0
1, a2, a

0
2, b2, and b02 will be obtained by

applying the boundary conditions. Using the self and mutual orthogonality of the
vector wave functions, the above equations can be divided into two systems of
equations, each with four unknown coefficients. The boundary conditions on the
electric and magnetic Green’s functions respectively state that:

ẑ � G
11ð Þ
e �G

21ð Þ
e

� �

¼ 0 (20)

ẑ � ∇�G
11ð Þ
e

iωμ1
� ∇�G

21ð Þ
e

iωμ2

0

@

1

A ¼ σ:G
21ð Þ
e (21)

After applying the above boundary conditions and removing the coupling effect
from the tangential components of the electric field, and by defining, A ¼
σxxkx þ σxyky, B ¼ σyxkx þ σyyky, C ¼ σxxky � σxykx, and, D ¼ σyykx � σyxky,
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the unknown coefficients of the TE waves, a1 ¼ Δ
1ð Þ
TE

ΔTE
and a01 ¼

Δ
2ð Þ
TE

ΔTE
, can be

obtained as [46]:

ΔTE ¼ ik2ρP
þQþ þ Pþ Akx þ Bky

� �

iω
h1
k1

þ Qþiω Cky þDkx
� �

þ ω2i
h1
k1

BCþ ADð Þ (22)

Δ
1ð Þ
TE ¼ ik2ρQ

þP� þ Akx þ Bky
� �

P�iω
h1
k1

� ωi Cky þDkx
� �

Qþ � ω2i
h1
k1

BCþ ADð Þ (23)

Δ
2ð Þ
TE ¼ ω

2h1
μ1

Dky � Ckx
� �

(24)

where, Pþ ¼ h1
μ1
þ h2

μ2
, Qþ ¼ k1

μ1
þ k22h1

k1h2μ2
, P� ¼ h1

μ1
� h2

μ2
, and Q� ¼ k1

μ1
� k22h1

k1h2μ2
. By defin-

ing the TM waves expansion coefficients as b1 ¼ Δ
1ð Þ
TM

ΔTM
and b01 ¼

Δ
2ð Þ
TM

ΔTM
, it can be shown:

ΔTM ¼ ik2ρQ
þPþ þ iωQþ Cky þDkx

� �

þ iω
h1
k1

Pþ Akx þ Bky
� �

þ iω2 h1
k1

ADþ BCð Þ (25)

Δ
1ð Þ
TM ¼ �ik2ρQ

�Pþ þ iω
h1
k1

Pþ þ Akx þ Bky
� �

� iω Dkx þ Cky
� �

Q�

þ iω2 h1
k1

ADþ BCð Þ (26)

Δ
2ð Þ
TM ¼ �2ω

h1
μ1

Aky � Bkx
� �

(27)

Other unknown coefficients can be obtained using decoupling equations in [46]. To
validate the obtained coefficients, the structure of Figure 1(a) consisting of square
patches withD0 = 5 μm, g = 0.5 μm, μc = 0.5 eV and τ = 0.5 ps with plane wave
illumination is considered under electric and magnetic biases. Since Green’s function
coefficients are the same as reflection and transmission coefficients of the plane wave,
the results of Green’s function are comparedwith the results of the circuitmodel as [54]:

S31 ¼
2 2þ η0σdð Þ

2þ η0σdð Þ2 þ η0σ0ð Þ2
(28)

S41 ¼
2η0σ0

2þ η0σdð Þ2 þ η0σ0ð Þ2
(29)

Figure 3 shows the magnitude of the transmission coefficient by considering the
electric bias for the graphene layer. The results of the two methods are identical,

Figure 3.
The magnitude of the transmission coefficient for the graphene nano-patch with the parameters D0 = 5 μm,
g = 0.5 μm, μc = 0.5 eV, and τ = 0.5 ps [46].
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and because of the absence of electromagnetic coupling under electric bias, the
transmission coefficient due to mutual coupling is zero. In Figure 4 the same results
are illustrated for the applied magnetic bias of 0.5 Tesla. There is good agreement in
the magnitude and phase of the transmission coefficient in the abovementioned two
methods. Also, by finding the poles of the coefficients, the electromagnetic wave
propagation constants for the electrically and magnetically biased graphene sheets
can be obtained which are in full agreement with [28, 57], respectively. The cor-
rectness of the extracted coefficients confirms the validity of the dyadic Green’s
function formulation.

3.1.2 Graphene-dielectric stack

Dyadic Green’s function for an N-layer dielectric environment has been previ-
ously formulated using the scattering superposition method [58]. In this section, the
above equations are extended to the environment with the electrically biased
graphene boundaries, as shown in Figure 2(b). The graphene boundary can be
either continuous or periodically patterned as discussed in section 2. To start the
analysis, the layers are numbered by starting from the top layer, and an arbitrary
field point i and source point j are assumed. The problem is solved in the cylindrical
coordinates. Since the cylindrical wave functions are discussed in detail in the next
section, they are not mentioned here. The dyadic Green’s function can be expanded
as [58]:

G
ijð Þ
es r, r0ð Þ ¼ i

4π

ð

∞

�∞
dh
X

∞

n¼0

2� δ0n
� �

λh j

1� δNi
� �

Mnλ

�

hið Þ 1� δ1j

� 	

A
ij
MM

0
nλ �h j

� �

þ 1� δNj

� 	

B
ij
MM

0
nλ h j

� �

h i

þ

1� δNi
� �

Nnλ hið Þ 1� δ1j

� 	

A
ij
NN

0
nλ �h j

� �

þ 1� δNj

� 	

B
ij
NN

0
nλ h j

� �

h i

þ

1� δ1i
� �

Mnη �hið Þ 1� δ1j

� 	

C
ij
MM

0
nλ �h j

� �

þ 1� δNj

� 	

D
ij
MM

0
nλ h j

� �

h i

þ

1� δ1i
� �

Nnη �hið Þ � 1� δ1j

� 	

C
ij
NN

0
nλ �h j

� �

þ 1� δNj

� 	

D
ij
NN

0
nλ h j

� �

h io

(30)

In the above equations, M and N are vector wave functions in the cylindrical

coordinate system, and A
ij
M,N, B

ij
M,N, C

ij
M,N, D

ij
M,N are unknown coefficients. The

Kranoker delta function is used in the field expansion to generalize the formulation
for the arbitrary locations of the field and source points. By applying the boundary
conditions on the tangential components of the electric field at the interface of the
arbitrary two layers, denoted by i and i + 1, it can be shown that:

Figure 4.
(a) The magnitude and (b) phase of the transmission coefficient for the graphene nano-patch with D0 = 5 μm,
g = 0.5 μm, μc = 0.5 eV, ps. τ =0.5, and B0 = 0.5 T [46].
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A
ij
M

B
ij
M

OiA
ij
N

OiB
ij
N

2

6

6

6

6

6

4

3

7

7

7

7

7

5

eihizi þ

C
ij
M

D
ij
M þ δij

OiC
ij
N

Oi D
ij
N þ δij

� 	

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

e�ihizi ¼

A
iþ1ð Þj
M þ δ

j
iþ1

� 	

B
iþ1ð Þj
M

Oiþ1 A
iþ1ð Þj
N þ δ

j
iþ1

� 	

Oiþ1B
iþ1ð Þj
N

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

eihiþ1zi

þ

C
iþ1ð Þj
M

D
iþ1ð Þj
M

Oiþ1C
iþ1ð Þj
N

Oiþ1D
iþ1ð Þj
N

2

6

6

6

6

6

4

3

7

7

7

7

7

5

e�ihiþ1zi (31)

where Oi ¼ hi
ki
,Pi ¼ hi

μi
,Q i ¼ ki

μi
. The boundary condition on the tangential

components of the magnetic field yields:

Piþ1 A
iþ1ð Þj
M þ δ

j
iþ1

� 	

Piþ1B
iþ1ð Þj
M

Q iþ1 A
iþ1ð Þj
N þ δ

j
iþ1

� 	

Q iþ1B
iþ1ð Þj
N

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

eihiþ1zi �

Piþ1C
iþ1ð Þj
M

Piþ1D
iþ1ð Þj
M

Q iþ1C
iþ1ð Þj
N

Q iþ1D
iþ1ð Þj
N

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

e�ihiþ1zi �

PiA
ij
M

PiB
ij
M

Q iA
ij
N

Q iB
ij
N

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

eihizi

þ

PiC
ij
M

Pi D
ij
M þ δij

� 	

Q iC
ij
N

Q i D
ij
N þ δij

� 	

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

e�ihizi ¼ iωσ iþ1ð Þi

A
ij
M

B
ij
M

PiA
ij
N

PiB
ij
N

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

eihizi þ iωσ iþ1ð Þi

C
ij
M

D
ij
M þ δij

� 	

PiC
ij
N

Pi D
ij
N þ δij

� 	

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

e�ihizi

(32)

By re-writing the coefficients as a matrix:

A
iþ1ð Þj
M,N þ δ

j
iþ1 B

iþ1ð Þj
M,N

C
iþ1ð Þj
M,N D

iþ1ð Þj
M,N

2

4

3

5 ¼

1

TH,V
Fi

RH,V
Fi

TH,V
Fi

RH,V
Pi

TH,V
Pi

1

TH,V
Pi

2

6

6

6

6

4

3

7

7

7

7

5

A
ij
M,N B

ij
M,N

C
ij
M,N D

ij
M,N þ δ

j
i

" #

(33)

the outgoing and incoming reflection and transmission coefficients can be

defined and used to extract the recursive relations. The coefficients for M
0

sources are:

RH
Fi ¼

μihiþ1 � μiþ1hi þ g

μihiþ1 þ μiþ1hi þ g
(34)

RH
Pi ¼

μihiþ1 � μiþ1hi � g

μihiþ1 þ μiþ1hi � g
(35)

TH
Fi ¼

2μihiþ1

μihiþ1 þ μiþ1hi þ g
(36)
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TH
Pi ¼

2μihiþ1

μihiþ1 þ μiþ1hi � g
(37)

The coefficients for N
0
sources are:

RV
Fi ¼

μihik
2
iþ1 � k2i μiþ1hiþ1 þ ghihiþ1

μihik
2
iþ1 þ μiþ1hiþ1k

2
i þ ghihiþ1

(38)

RV
Pi ¼

μihik
2
iþ1 � μiþ1k

2
i hiþ1 � ghihiþ1

μihik
2
iþ1 þ μiþ1k

2
i hiþ1 � ghihiþ1

(39)

TV
Pi ¼

2μiþ1kikiþ1hiþ1

μihik
2
iþ1 þ μiþ1k

2
i hiþ1 � ghihiþ1

(40)

TV
Fi ¼

2μihiþ1kikiþ1

μihik
2
iþ1 þ μiþ1hiþ1k

2
i þ ghihiþ1

(41)

The superscripts H and V respectively denote TE and TM sources. Also, sub-
scripts F and P are used to show the incoming and outgoing waves, respectively.
The procedure of extracting the unknown coefficients using (34)-(41) is discussed
in [58]. To validate the proposed formulas, a parallel plate waveguide with graphene
walls is considered. To extract the characteristic equation using the proposed for-
mulations, it is necessary to force the denominator of the coefficients equal to zero.
For this three-layer medium:

T 1ð Þ ¼ T2:T1 ¼ :

1

TH
F2

ei h2�h1ð Þd RH
F2

TH
F2

e�i h2�h1ð Þd

RH
P2

TH
P2

ei h2þh1ð Þd 1

TH
P2

e�i h2�h1ð Þd

2

6

6

6

6

6

4

3

7

7

7

7

7

5

:

1

TH
F1

RH
F1

TH
F1

RH
P1

TH
P1

1

TH
P1

2

6

6

6

6

6

4

3

7

7

7

7

7

5

(42)

From which it can be deduced that B11
M,N ¼ � T

1ð Þ
12

T
1ð Þ
11

. By setting T
1ð Þ
11 equal to zero

and assuming that the medium (1) and (3) are the same, and also defining
h ¼ iωμ1σ, for the H coefficients it can be concluded that:

eih2d � 1

eih2d þ 1
h1 � h2 þ hð Þ ¼ 0 ) h2 þ hþ j tan

h2d

2

� �

h1 ¼ 0 (43)

This procedure is repeatable for V sources. Also, to calculate the reflection
coefficient from a multilayer structure, it is necessary to consider the field and
source points in region 1. In this case, the only non-zero coefficient in Green’s

function expansion is B11
M,N coefficient representing the plane wave reflection

coefficient from the multilayer structure.

3.2 Graphene-based cylindrical structures

In this section, the dyadic Green’s function of a cylindrical structure with the
tensor surface conductivity boundary condition will be extracted. Later, different
examples of guiding and scattering problems are provided to investigate the validity
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of the formulation. In general, in cylindrical structures, TE and TM modes are
coupled, which leads to the complexity of mathematical relations. Therefore, the
generalization of the formulation to the multilayered cylinders is not considered
here. Note that graphene sheets can be wrapped around cylindrical particles due to
the presence of van der Waals force [59]. For this purpose, tape-assist transfer
under micromanipulation and spin-coating methods are proposed [60].

3.2.1 Dyadic Green’s function for a cylinder with tensor surface conductivity boundary
condition

The dyadic Green’s function of the single-layer cylinder with the tensor surface
conductivity boundary condition, as considered in Figure 5., will be extracted in the
following. The interior region of the cylinder is made of dielectric material and its
cover is considered as a full tensor surface conductivity. To solve the problem, the
vector wave functions are defined as [23]:

Mμ hð Þ ¼ eimϕeihz im
Zm μrð Þ

r
r̂� ∂Zm μrð Þ

∂r
ϕ̂

� �

(44)

Nμ hð Þ ¼ 1

k j
eimϕeihz ih

∂Zm μrð Þ
∂r

r̂� hm

r
Zm μrð Þϕ̂� μ2Zm μrð Þẑ

� �

(45)

In the above equations, Zm is the cylindrical Bessel function in the inner layer
and the cylindrical Hankel function in the outer layer, both with the orders of m.
The wavenumber in the radial direction is μ and the wavenumber along the length is
h. The free-space Green’s function in the cylindrical coordinates is [23]:

Ge0 R,R
0� 	

¼ � 1

k2
r̂r̂δ R� R0
� 	

þ i

8π

ð

∞

�∞

dh
X

∞

m¼�∞

1

η2
� Mη hð ÞM0

η

1ð Þ �hð Þ þNη hð ÞN0
η

1ð Þ �hð Þ
h i

R<R0

(46)

Figure 5.
(a) A monolayer cylinder with a 2D cover with the tensor surface conductivity boundary condition and (b) its
special cases constructed by densely packed strips and square nano-patches [61].
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In the cylindrical coordinate system, TE and TM modes are coupled and the
expansion of the fields are [23].

G
11ð Þ
es R,R

0� 	

¼ i

8π

ð

∞

�∞

dh
X

∞

m¼�∞

1

η2
�

AηMη
1ð Þ

hð Þ þ BηNη
1ð Þ

hð Þ
h i

M
0
η

1ð Þ �hð Þ þ CηNη
1ð Þ

hð Þ þDηMη
1ð Þ

hð Þ
h i

N
0
η

1ð Þ �hð Þ
n o

(47)

G
21ð Þ
es R,R

0� 	

¼ i

8π

ð

∞

�∞

dh
X

∞

m¼�∞

1

η2
�

aξMξ hð Þ þ bξNξ hð Þ
� 

M
0
η

1ð Þ �hð Þ þ cξNξ hð Þ þ dξMξ hð Þ
� 

N
0
η

1ð Þ �hð Þ
n o

(48)

where Aη, Bη, Cη, and Dη are the unknown coefficients of the DGF expansion in
region 1. Also, aξ, bξ, cξ, and dξ are DGF expansion coefficients in the region 2. The
boundary condition on the tangential components of the magnetic Green’s function
is given by [61]:

r̂� ∇�G
11ð Þ
e

μ1
� ∇�G

21ð Þ
e

μ2

0

@

1

A ¼ iωσϕz:G
21ð Þ
e (49)

By applying the above-mentioned boundary condition along with the boundary
condition regarding the continuity of the electric Green’s function to (47)–(48), the
system of equations to determine the unknown coefficients can be obtained as:

� ∂H 1ð Þ
m ηað Þ
∂a

� 1

k1

hm

a
H 1ð Þ

m ηað Þ ∂Jm ξað Þ
∂a

1

k2

hm

a
Jm ξað Þ

0 � 1

k1
η2H 1ð Þ

m ηað Þ 0
1

k2
ξ2Jm ξað Þ

� 1

μ1

hm

a
H 1ð Þ

m ηað Þ � k1
μ1

∂H 1ð Þ
m ηað Þ
∂a

1

μ2

hm

a
Jm ξað Þ þ σ1

k2
μ2

∂Jm ξað Þ
∂a

þ σ2

1

μ1
η2H 1ð Þ

m ηað Þ 0 � 1

μ2
ξ2Jm ξað Þ þ σ3 σ4
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�

Aη

Bη

aξ

bξ
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6

6
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6
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3

7

7

7

7

7

7

7

7

5

¼

∂Jm ηað Þ
∂a

0

1

μ1

hm

a
Jm ηað Þ

� 1

μ1
η2Jm ηað Þ
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6

6
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6
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6
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3

7

7
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7
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7

7

7

7

7

7

7
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(50)
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� 1

k1

hm

a
H 1ð Þ

m ηað Þ � ∂H 1ð Þ
m ηað Þ
∂a

1

k2

hm

a
Jn ξað Þ ∂Jm ξað Þ

∂a

� 1

k1
η2H 1ð Þ

m ηað Þ 0
1

k2
ξ2Jm ξað Þ 0

� k1
μ1

∂H 1ð Þ
m ηað Þ
∂a

� 1

μ1

hm

a
H 1ð Þ

m ηað Þ k2
μ2

∂Jm ξað Þ
∂a

þ σ01
1

μ2

hm

a
Jm ξað Þ þ σ02

0
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μ1
η2H 1ð Þ

m ηað Þ σ03 � 1

μ2
ξ2Jm ξað Þ þ σ04
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k1

hm

a
Jm ηað Þ
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k1
η2Jm ηað Þ
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7
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7
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7

7

5

:

(51)

where:

σ1 ¼ iωσzϕ
∂Jm ξað Þ

∂a
, σ2 ¼ iω

σzz

k2
ξ2Jm ξað Þ þ iωσzϕ

hm

k2a
Jm ξað Þ

σ3 ¼ iωσϕϕ
∂Jm ξað Þ

∂a
, σ4 ¼ iωσϕϕ

1

k2

hm

a
Jm ξað Þ þ iωσϕz

1

k2
ξ2Jm ξað Þ

σ01 ¼ iωσzz
1

k2
ξ2Jm ξað Þ þ iωσzϕ

hm

k2a
Jm ξað Þ, σ02 ¼ iωσzϕ

∂Jm ξað Þ
∂a

σ03 ¼ iωσϕϕ
1

k2

hm

a
Jm ξað Þ þ iωσϕz

1

k2
ξ2Jm ξað Þ, σ04 ¼ iωσϕϕ

∂Jm ξað Þ
a

Nullifying the determinant of the matrices (50)–(51) for m = 0, each of the
above matrices can be separated as the multiplication of:

ωε2

ξ

J1 ξað Þ
J0 ξað Þ �

ωε1

η

H
1ð Þ
1 ηað Þ

H
1ð Þ
0 ηað Þ

þ iσd ¼ 0 (52)

ξ

ωμ2

J0 ξað Þ
J1 ξað Þ �

η

ωμ1

H
1ð Þ
0 ηað Þ

H
1ð Þ
1 ηað Þ

þ iσd ¼ 0 (53)

For the graphene shell under magnetic bias, both matrices in (50)–(51) result in
the following equation for the propagation constant of hybrid TE and TM waves:

ωε2

ξ

H
1ð Þ
1 �ξað Þ

H
1ð Þ
0 �ξað Þ

� ωε1

η

J1 �ηað Þ
J0 �ηað Þ þ iσd

" #

� η

ωμ1

J0 �ηað Þ
J1 �ηað Þ �

ξ

ωμ2

H
1ð Þ
0 �ξað Þ

H
1ð Þ
1 �ξað Þ

þ iσd

" #

¼ �σ20

(54)

Which is in agreement with [57]. Also, the total scattering cross-section (TSCS)
of a graphene-coated cylinder with the parameters a = 50 μm, ε2 = 2.4, τ = 1 ps,
μc = 0.25 eV under electric bias is calculated for both TE and TM polarizations in
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Figure 6, and compared with the results of the CST2017 software package. As can
be seen, both methods have resulted in the same results.

As another example, the densely packed graphene strips with the parameters
L = 420 nm, W = 400 nm, μc = 0.5 eV, and τ = 1 ps are considered around the
dielectric cylinder as in Figure 5. It is assumed that the strips are wrapped around a
hollow cylinder with the radius of a = 50 μm. Figure 7 shows the TSCS of this
structure for the magnetic biases with the strength in the range of 20-40 T. As
observed, by increasing the magnetic bias, the resonant frequency of the surface
plasmons blue shifts. The associated planar structure behaves as a hyperbolic meta-
surface [62]. Under locally flat consideration of the curvature, this structure can
also be considered as a hyperbolic medium. In the cylindrical geometries, hyper-
bolic meta-surfaces can be obtained using graphene-dielectric stacks [63]. The
advantage of this hyperbolic structure is its two-dimensional nature and
reconfigurability. It is also demonstrated that covering the surface of nanotubes
with the hyperbolic meta-surface increases the interaction of the light with dipole
emitters [64].

Finally, as Figure 5(b) illustrates, graphene-based square patches around the
cylinder are considered under magnetic bias. Geometrical and optical parameters
are as follows: τ = 1 ps, g = 0.5 μm, and D = 0.5 μm and the TSCS is illustrated in
Figure 8. for B0 = 0 T and B0 = 10 T. As can be seen, by changing the magnetic bias,
the optical state changes from the maximum scattering to the minimum scattering.
Such capability has recently been proposed by using a phase change material for
switching between these two situations [65]. In this structure, the operating fre-
quency can also be adjusted by changing the electric bias of graphene.

Figure 6.
TSCS for an infinite cylinder covered with electrically biased graphene shell with a = 50 μm, ε2 = 2.4, τ = 1 ps,
and μc = 0.25 eV considering (a) TE and (b) TM polarization for the incident wave [61].

Figure 7.
TSCS for an infinite length hollow cylinder (a = 50 μm) coated with densely packed graphene strips with
L = 420 nm, W = 400 nm, μc = 0.5 eV, and τ = 1 ps considering different magnetic biases [61].
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It is essential to note that in the cylindrical structures, the spatial domain Green’s
function consists of an integral on the real axis. Due to the existence of poles in the
integration path, the integration path is usually deformed into a triangular shape.
Also, a common method for calculating the spatial domain Green’s function is the
generalized pencil of function (GPOF) method in which the Green’s function is
expanded in terms of the complex exponential functions [66]. The unknowns can
be found via the algorithm provided in [67]. Also, as mentioned earlier, the dyadic
Green’s function of the graphene-based multilayered cylindrical structures will not
be considered here. For calculating the scattering cross-section of graphene-based
multilayer cylindrical structures, a simple approach based on the transfer matrix
method (TMM) is proposed that will be suitable for establishing novel optical
devices [68, 69].

3.3 Graphene-based spherically layered medium

In this section, a multi-layered spherical structure with the graphene boundaries
is considered and its Green’s function is extracted by assuming different locations
for the source and observation points. The relationship between the Green’s func-
tion expansion coefficients and the modified Mie-Lorentz coefficients is exhibited
to discuss how to solve the scattering problems using the Green’s function.
Scattering analysis of graphene-based layered structures is of great importance in
the design of novel optical devices [70]. Finally, the procedure for calculating the
Purcell factor is considered as an important application. Instances of experimentally
realized graphene-coated spherical particles can be found in [71, 72], where
improved template method and hydrothermal method are proposed for the
synthesis. Also, transmission electron microscopy (TEM) and field emission scan-
ning electron microscopy (FE-SEM) are used for characterization.

3.3.1 Dyadic Green’s function of a graphene-based spherically layered structure

Let us consider an N-layer spherical medium with the graphene boundaries as
shown in Figure 9. The purpose of this section is to compute the dyadic Green’s
function of this structure with the assumption of arbitrary locations for the field
and source points. For this purpose, the Green’s function in each layer is expanded
in terms of vector wave functions with unknown coefficients. These functions are
calculated using the scalar wave function of [74]:

Figure 8.
TSCS for an infinite cylinder coated with graphene patches with D = 0.5 μm, g = 0.5 μm, and τ = 0.5 ps under
different electric and magnetic biases [61].

17

Dyadic Green’s Function for Multilayered Planar, Cylindrical, and Spherical…
DOI: http://dx.doi.org/10.5772/intechopen.95834



φmn r, θ,ϕð Þ ¼ zn kpr
� �

Pm
n cos θð Þeimϕ (55)

where zn :ð Þ represents the spherical Bessel or Hankel functions of order n and
Pm
n :ð Þ is the associated Legendre function with degree n and order m. It can be

readily shown that:

Mmn kp
� �

¼ zn kpr
� �

eimϕ im

sin θ
Pm
n cos θð Þθ̂� dPm

n cos θð Þ
dθ

ϕ̂

� �

(56)

Nmn kp
� �

¼ n nþ 1ð Þ
kpr

zn kpr
� �

Pm
n cos θð Þ eimϕr̂þ

1

kpr

d rzn kpr
� �� 

dr

dPm
n cos θð Þ
dθ

θ̂þ im

sin θ
Pm
n cos θð Þϕ̂

� �

eimϕ

(57)

The above vector functions are self and mutually orthogonal. This feature will be
used to decouple the equation when computing the unknown coefficients.

As mentioned earlier, in the scattering superposition method, the dyadic Green’s
function is written as the sum of the free-space and scattering Green’s functions.
The free-space Green’s function is related to the source in an infinite homogeneous
medium while the scattering Green’s function is due to the source in the presence of
the layered medium. The expansion of the Green’s function for the spherical
structure with N concentric layers, assuming that the source and field points
are respectively located in the desired layers with the labels p and q, can be
written as [23]:

Ĝ
pqð Þ

e r, r0ð Þ ¼ Ĝ
pqð Þ

0e r, r0ð Þδpq þ Ĝ
pqð Þ

es r, r0ð Þ (58)

The free-space Green’s function can be obtained using the residue theorem
as [23]:

Ĝ0e r, r
0ð Þ ¼ � r̂r̂

k2q
δ r� r0ð Þ þ ikq

4π

X

∞

n¼1

X

n

m¼�n

2� δ0m
� � 2nþ 1

n nþ 1ð Þ�

n�mð Þ!
nþmð Þ!�

M
1ð Þ
mn kq
� �

M
0
mn kq
� �

þN
1ð Þ
mn kq
� �

N
0
mn kq
� �

r> r0

Mmn kq
� �

M
0 1ð Þ

mn kq
� �

þNmn kq
� �

N
0 1ð Þ

mn kq
� �

r< r0

8

>

<

>

:

(59)

Figure 9.
Spherically layered medium with graphene boundaries (a) 2D and (b) 3D views [73].
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Moreover, scattering Green’s function in each layer can be expanded as [75]:

Ĝ
pqð Þ

es r, r0ð Þ ¼ ikq
4π

X

∞

n¼1

X

n

m¼�n

2� δ0m
� � 2nþ 1

n nþ 1ð Þ
n�mð Þ!
nþmð Þ!�

1� δNp

� 	

M
1ð Þ
mn 1� δ1q

� 	

A
pq
H M

0
mn þ 1� δNq

� 	

B
pq
H M

0 1ð Þ
mn

h in

þ 1� δNp

� 	

N
1ð Þ
mn 1� δ1q

� 	

A
pq
V N

0
mn þ 1� δNq

� 	

B
pq
V N

0 1ð Þ
mn

h i

þ 1� δ1p

� 	

Mmn 1� δ1q

� 	

C
pq
H M

0
mn þ 1� δNq

� 	

D
pq
H M

0 1ð Þ
mn

h i

þ 1� δ1p

� 	

Nmn 1� δ1q

� 	

C
pq
V N

0
mn þ 1� δNq

� 	

D
pq
V N

0 1ð Þ
mn

h io

(60)

where A
pq
H,V , B

pq
H,V , C

pq
H,V , and D

pq
H,V are the unknown coefficients of the Green’s

function to be obtained. In the above formulation, the superscript (1) represents
that the spherical Hankel functions of the first type are chosen to represent the
spherical vector functions. For the other vector wave functions, the first-kind
Bessel function should be selected. As observed, in the spherical structures the TE
and TM waves are not coupled. Thus, the expansion of the fields only includes the

interaction of the functions M and M0 as well as the functions N and N0. Moreover,
to solve the problem for the structures with the arbitrary number of layers, the
Kronecker delta function is used in the expansions of the fields. In the middle layers
of the spherical structure, the electric field is a linear combination of the Bessel and
Hankel functions, whereas in the outermost layer, only the Hankel functions, and in

the innermost layer, only the Bessel functions will exist. So we have used 1� δ1p

� 	

and 1� δNp

� 	

functions. To determine the delta functions related to the source

terms, free-space Green’s function can be used. For q = 1 (external layer), the source
functions related to the second criterion of the free-space Green’s function is used.
Also, for q = N (internal layer) the source functions related to the first criterion
should be used. In the middle layers, a linear combination of different source
functions must be used.

It should be noted that by using the addition theorem in Legendre functions, the
internal series in the Green’s function expansion can be eliminated [11]. To select
the number of terms required for the convergence of the external series, the condi-
tions of the problem must be considered. In the other words, in the structures
whose electrical size is very much smaller than that of the wavelength, the term
n = 1 is sufficient for the convergence [76]. Also, in the case where the distance
between the source and observation points is large, the series can be truncated in
the number Nt ¼ xþ 3

ffiffiffi

x
p þ 2 , where x = k0R1. Otherwise, the convergence of the

series is weak, and a large number of terms in the range of 20 k0R1 should be
considered. In this case, the series acceleration techniques will be highly efficient in
terms of computational efficiency [77, 78].

Boundary conditions on tangential components of electric and magnetic Green’s
functions in the interface of two adjacent layers are [73]:

r̂� Ĝ
pqð Þ

e ¼ r̂� Ĝ
pþ1ð Þq½ �

e (61)

1

iωμpþ1

r̂ � ∇� Ĝ
pþ1ð Þq½ �

e � 1

iωμp
r̂ � ∇� Ĝ

pqð Þ

e ¼ �σ pþ1ð Þp r̂ � r̂ �G
pqð Þ
e

� �

(62)
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which respectively lead to the following equations:
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(63)
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(64)

In the above equations, ψ
pq
n ¼ jn kpRq

� �

, ξpqn ¼ h 1ð Þ
n kpRq

� �

, ∂ψ
pq
n ¼

1=ρ d ρ jn ρð Þ
� �

�

ρ¼kpRq
and ∂ξpqn ¼ 1=ρ d ρh 1ð Þ

n ρð Þ
h i�

�

�

ρ¼kpRq

. To obtain recursive relations

for unknown coefficients of Green’s function, separating the above equations is
necessary. Therefore [75]:

A
pþ1ð Þq
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(66)

where the reflection and transmission coefficients for TE waves are computed as:

RH
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kpþ1μp∂ψ
pþ1ð Þp
n ψ

pp
n � kpμpþ1∂ψ

pp
n ψ
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RH
Pp ¼

kpþ1μp∂ξ
pþ1ð Þp
n ξppn � kpμpþ1∂ξ

pp
n ξ pþ1ð Þp

n þ g ξppn ξ pþ1ð Þp
n

kpþ1μp∂ξ
pþ1ð Þp
n ψ

pp
n � kpμpþ1∂ψ

pp
n ξ pþ1ð Þp

n þ g ψ
pp
n ξ pþ1ð Þp

n

(68)
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Also, the reflection and transmission coefficients for the TM waves are:
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(74)

In the above formulas, the subscripts F and P represent the outgoing and

incoming waves, respectively. The symbols TH
P,Fð Þp and RH

P,Fð Þp express the transmis-

sion and reflection of TE waves (due to the presence of superscript H), whereas the

expression TV
P,Fð Þ p and RV

P,Fð Þp express the transmission and reflection of the TM

waves (due to the presence of superscript V). Using the matrix form:
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Recursive relations can use to start through: A
Nq
H,V ¼ B

Nq
H,V ¼ C

1q
H,V ¼ D

1q
H,V ¼ 0.

It should be noted that due to the difficulty of constructing multiple concentric
graphene shells, one can consider each boundary as a dielectric or perfect electric
conductor (PEC) in the optical design. For example, an optical absorber consisting
of a metal-dielectric spherical resonator whose outermost layer is coated with
graphene is shown to enhance the absorption of the resonator [79]. To design
optical structures such as absorber and invisible cloaks using Green’s function
formulation, it is necessary to transfer the point source to infinity to resemble a
plane wave. In this case, considering the expansion of Green’s function, it can be

observed that the only unknown coefficients of expansion are B
pq
H,V and D

pq
H,V

coefficients. Using the convolution integral it can be shown that [23]:

G0e:J þG
11ð Þ
es :J ¼ G

21ð Þ
es :J (76)
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The source dependency is the same in all of the above Green’s functions and can
be simplified from both sides of the equation. It is observed that the equation is
converted into the equation resulting from the Mie analysis of the spherically
layered structures. By directly starting from the Mie-Lorentz theory, the same
results can be obtained [80]. Moreover, due to the sub-wavelength nature of the
localized graphene plasmons, the final formulas can be simplified using the poly-
nomial approximation of the special functions [81]. These structures can also be
used as the building blocks of optical meta-materials [82].

3.3.2 Purcell factor and energy transfer between donor-acceptor emitters

Asmentioned earlier, one of the important applications of Green’s function is study-
ing the interaction of dipole emitters in the vicinity of nanostructures. For this purpose,
a vertical dipole in the vicinity of the graphene-based spherical structure, whichwas
introduced in the previous section, is considered and its Purcell factor is calculated using
theGreen’s function. Assuming that the field point and observation points for the dipole

withmoment d⊥

0 ¼ d0r̂ are in the same location of r0 ¼ Δ>R1, θ
0 ¼ 0, andϕ0 ¼ 0, by

calculating the scattered field using the convolution integral and the use of [18]:

Γd0
total

Γ0
¼ 1þ 6πε0

k31d
2
0

Im d0:E
d0
sca r0ð Þ

� 

(77)

where symbol Im represents the imaginary part of the complex function.
The decay rate can be calculated. For this purpose, using relationships:

Pm
n cos θð Þ θ!0j ≃ sin mθ ¼

1 m ¼ 0

0 m 6¼ 0

�

(78)

dPm
n cos θð Þ
dθ

θ!0j ≃m sin m�1ð Þθ ¼
1 m ¼ 1

0 m 6¼ 1

�

(79)

The scattered field can be calculated. Thus [73]:

Γ⊥
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Γ0
¼ 1� 3

2

X

n

n nþ 1ð Þ 2nþ 1ð Þℜ zn k1Δð Þ
k1Δ

� �2

B11
V

" #

(80)

As can be seen, the above equation is in full agreement with [83] which has
extracted the decay rate for a core-shell plasmonic sphere, whereas in this case, it is

necessary to use the Mie coefficients of graphene-based structure, namely, B11
V .

Using the derived formulas, the positions of the dipole can be considered arbitrarily.
The transferred energy between the donor-acceptor pairs can be calculated
straightforwardly using the Green’s function G as [84]:

Γ ωð Þ
Γ0 ωð Þ ¼

dA:G rA, rB,ωð Þ:dBj j2

dA:G0 rA, rB,ωð Þ:dBj j2
(81)

where the subscript 0 refers to the free-space parameters and dA and dB are
respectively the dipole moments of the acceptor and donor.

4. Conclusion

In conclusion, dyadic Green’s function extraction for planarly, cylindrically, and
spherically layered medium based on scattering superposition method is a unified
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approach to deal with a wide range of electromagnetic problems in the realm of
biomedicine. Specifically, the interaction of the human skin, body, and head with
the electromagnetic sources with arbitrary distributions can be studied. Moreover,
by engineering the constitutive parameters of the layers, a variety of novel devices
for medical diagnostics and treatment can be proposed. Plasmonic metals and 2D
materials are two main categories of such materials. For the sake of efficient ana-
lytical analysis, the impedance boundary condition is satisfied in the case of 2D
materials to be used in the design of compact devices.
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